Geochemistry of the Brent Impact Structure, Ontario, Canada

Total Page:16

File Type:pdf, Size:1020Kb

Geochemistry of the Brent Impact Structure, Ontario, Canada FACULTEIT WETENSCHAPPEN Vakgroep Geologie en Bodemkunde Geochemistry of the Brent impact structure, Ontario, Canada Bart Vleminckx Academiejaar 2010–2011 Scriptie voorgelegd tot het behalen van de graad Van Master in de Geologie Promotor: Prof. Dr. Ph. Claeys Co-promotor: Prof. Dr. M. Elburg Begeleider: Drs. S. Goderis Leescommissie: Prof. Dr. P. Van den haute, Prof. Dr. F. Vanhaecke I. ACKNOWLEDGEMENTS I would like to thank Prof. P. Claeys, Prof. M. Elburg and S. Goderis for their answers, remarks, contributions and making this master dissertation possible; J. Spray for providing the Brent samples; F. Paquay for providing the Os isotope data; V. Renson for providing the Pb isotope data; J. Sauvage for contributing to the platinum group element analysis preparations; J. Belza, E. De Pelsmaeker, D. Debruyne, T. Van der Gucht, and I. Smet for contributing to the major element analysis preparations; M. Van Tomme for everything. Cover art: http://www.mnh.si.edu/earth/text/5_3_2_0.html PAGE I II. NOTE ON STYLE When the contents or structure of a (sub)section is in large measure extracted from one or several works, the references are given introductory to the section. In all other cases in‐text references are used. If not stated else, the reference of a figure’s caption is the same as that of the figure’s source. SI units and prefixes are used following BIPM [2006]. Large numbers are written by the short scale naming system and with the dot as decimal separator. Non‐SI units (with SI prefixes) used are astronomical distance in astronomical units (AU) as distance from the Sun (with Earth set at 1 AU), geological date in annum (a) as years before present (i.e. 1950) and time period in minutes (min), hours (h) or years (y). Chemical element and compound notations are used following IUPAC [2007]. Other abbreviations used are wt.% for weight %, vol.% for volume %, USA for United States of America, USD for USA dollar, SD for standard deviation and SE for standard error. Calendar dates are in the international date format ISO [2004]. If not stated else, sizes of meteorites, craters and impact structures are expressed as their diameters. PAGE II III. DUTCH SUMMARY De eerste vaste stoffen van het zonnestelsel ontstonden 4.567 Ga geleden door condensatie uit de zonnenevel. Door elektromagnetische accretie vormden deze de planetesimalen. Sommige werden zo massief dat ze een kern en mantel met partiële opsmelting vormden. Omdat het zonnestelsel toen nog veel heter was door het samentrekken van de zonnenevel en de jonge zon, konden binnen een bepaalde afstand van de zon, de sneeuwlijn genaamd, geen H‐verbindingen condenseren in ijzen. De planetesimalen die hier ontstonden kregen daarom een samenstelling van voornamelijk metaal en gesteente, en worden asteroïden genoemd. Buiten de sneeuwlijn vormden zich planetesimalen die voornamelijk uit H‐ijzen bestaan met slechts een klein deel metaal en gesteente, kometen genaamd. Onder invloed van de zwaartekracht vormden deze asteroïden en kometen de planeten, dwergplaneten en manen. Er bleven echter ook een aanzienlijk aantal planetesimalen over. Deze zijn niet willekeurig verspreid over het zonnestelsel te vinden, maar verblijven in bepaalde gebieden die begrens worden door zwaartekracht perturbaties van planeten. Zo zijn de meeste kometen te vinden voorbij de planeten in Oortwolk en Kuiper gordel. De asteroïden bevinden zich voornamelijk in de asteroïdengordel tussen 2.1 en 3.3 AU, maar ook andere verblijfsgebieden zijn bekend zoals de Hungarias, Hildas en Cybeles. Niet alle kometen en asteroïden blijven echter in deze gebieden. Diegene die het meest hun verblijfsgebied verlaten zijn de asteroïden uit de asteroïdengordel. Orbitale resonanties met Jupiter zorgen namelijk voor lege gebieden in deze gordel, Kirkwood gaten genoemd. Omloopbanen in deze gebieden hebben perioden gelijk aan een gehele breuk van Jupiters periode en ontvangen dus meer frequent zwaartekracht perturbaties. Door botsingen tussen asteroïden ontstaan fragmenten die deze Kirkwood gaten kunnen bereiken en zo de asteroïdengordel verlaten naar paden doorheen het zonnestelsel. Zo ontvangt de Aarde een deel van deze fragmenten. Wanneer ze de atmosfeer binnen treden zal frictie ontstaan waardoor ze vertragen, opbranden en/of exploderen. Alleen diegene vanaf een bepaalde massa zullen het vaste oppervlak van de Aarde kunnen bereiken. Deze worden meteorieten genoemd. Meteorieten met massa’s vanaf ongeveer 10 Mg zullen zelfs een aanzienlijk deel van hun snelheid PAGE III kunnen behouden en de Aarde inslagen met een dergelijke hoeveelheid kinetische energie, dat deze wordt omgezet in schokgolven. Dit zijn bijna discontinue spanningsgolven met extreme drukken en supersonische snelheden. De resulterende spanningen zijn zo hoog dat de complete meteoriet verdampt en smelt. Ook een hemisferisch volume van doelgesteente, met een straal van 3 tot 4 keer de diameter van de meteoriet, zal smelten. Een nog grotere hoeveelheid van doelgesteente zal geëjecteerd, verplaatst, gebrecciëert en/of gebroken worden. Uiteindelijk zullen de scholgolven een inslagkrater gevormd hebben die 20 tot 30 keer groter is dan de meteoriet. De diepte gaat van 1/3 van de diameter voor kleinere inslagkraters tot 1/6 voor de grotere. Doordat op het einde van de kratervorming instortingen plaatsvinden van de kraterranden, zal de krater breccias bevatten die smelt fragmenten bevatten. Ook smelt lenzen komen voor met een hoog gehalte aan inslagsmelt. Door de oppervlakte processen van de Aarde zullen inslagkraters hun morfologie en lithologie niet behouden. De meesten zijn zelfs onherkenbaar vervormd door tektoniek of totaal geërodeerd. Wat we nu terugvinden van inslagkraters, worden inslagstructuren genoemd. Op de Aarde zijn er nu 178 gekend. Ze hebben ouderdommen van recent als 1947 tot 2.4 Ga en afmetingen van 0.015 tot 300 km. Studies hebben aangetoond dat de inslagsmelt van deze inslagstructuren een meetbare meteoriet contributie bevat, meestal niet groter dan 0.1 wt.%. Deze is gedetecteerd op basis van bepaalde chemische signaturen die afwijken van het doelgesteente. Zo zijn de siderofiele elementen verarmd in de korst omdat ze eerst zijn aangerijkt in de kern en later in de mantel. Vele meteorieten vertonen deze verarming echter niet en slechts een kleine contributie kan een duidelijk verhoging veroorzaken door de lage achtergrond concentraties. Een onderscheid wordt gemaakt tussen de gemiddeld siderofiele elementen Ni, Co and Cr, and de hoog siderofiele platina groep elementen (PGE). Er bestaan ook isotopische signaturen zoals bijvoorbeeld die van Os, die het toelaten om zeer specifiek de hoeveelheid meteoriet contributie te bepalen. Op basis van al deze signaturen kan een inslagstructuur als zodanig geïdentificeerd worden. Meteorieten vertonen ook onderlinge chemische verschillen, en op basis van de siderofiele element verhoudingen kunnen deze bepaald worden. Hierdoor kan bepaald worden welk soort meteoriet de inslagstructuur heeft veroorzaakt. De chondrieten zijn de eerste gevormde planetesimalen. Deze vertonen aquatische en thermische metamorfose, maar hebben geen opsmelting ondergaan. Ze worden onderverdeeld in de koolstofhoudende CI, CM, CR, CB, CV, CK, CO en CH groepen, de gewone H, L en LL groepen, en de enstatiet H en L groepen. Ze vertonen verschillende samenstelling naargelang hun afstand tot de zon. Zo zijn de enstatiet PAGE IV chondrieten het dichts bij de zon gevormd, de gewone iets verder en de koolstofhoudende nog verder, vermoedelijk nabij de sneeuwlijn. Alle meteorieten van een bepaalde groep zijn fragmenten van hetzelfde moederlichaam. Grotere planetesimalen vormden net als de Aarde een kern en ondervonden partieel smelten. Zo zijn er de chondrieten, welke magmatische gesteenten zijn en moeilijk te onderscheiden doordat ze een gelijke geschiedenis hebben als de korst. De ijzermeteorieten zijn fragmenten van de kernen, die zijn vrijgekomen zijn door enorme botsingen. De studie van inslag en meteoriet identificatie heeft zijn belang. Eerst en vooral hebben inslagstructuren een aanzienlijke economische waarde. Maar liefst 15 % van de inslagstructuren wordt winstgevend geëxploiteerd, waaronder een aantal van de grootste mineraalafzettingen ter wereld, maar ook voor olie, gas en/of bouwstenen. Maar inslagstructuren maken nu ook eenmaal, weliswaar een klein, deel uit van de Aarde en hun identificatie is belangrijk om ze te kunnen bestuderen en zo onze kennis van de Aarde te vervolledigen. Echter, op niet of minder actieve plaatsen in het zonnestelsel, maken inslagkraters het grootste deel van het vaste oppervlak uit. Omdat hun afstand hun studie bemoeilijkt kunnen we onze kennis van op de Aarde extrapoleren naar daar. Gezien het economisch potentieel, is hun studie ook van belang voor toekomstige exploratie van de ruimte. Meteorieten worden voor vele doeleinden bestudeerd. Ze bevatten zeldzame informatie over de vorming, componenten, structuur, dynamiek, fluxen, evolutie en huidige staat van het zonnestelsel. Meteorieten die inslagkraters veroorzaken vertegenwoordigen een meer massief bereik dan andere meteorieten. Hun beter hun identificatie, hoe beter hun fluxen, verblijfsgebied, en mogelijkse relaties en moederlichamen kunnen bepaald worden. Verder hebben inslagen ook biologische en maatschappelijke effecten. Het opzet van deze masterproef is om een inslag en meteoriet identificatie toe te passen op Brent inslagstructuur. Hierbij zal nagegaan worden welke het nut is van de verschillende chemische signaturen en hoe ze kunnen ingebracht worden in een multi‐signatuur
Recommended publications
  • 3-D Seismic Characterization of a Cryptoexplosion Structure
    Cryptoexplosion structure 3-D seismic characterization of a eryptoexplosion structure J. Helen Isaac and Robert R. Stewart ABSTRACT Three-quarters of a circular structure is observed on three-dimensional (3-D) seismic data from James River, Alberta. The structure has an outer diameter of 4.8 km and a raised central uplift surrounded by a rim synform. The central uplift has a diameter of 2.4 km and its crest appears to be uplifted about 400 m above regional levels. The structure is at a depth of about 4500 m. This is below the zone of economic interest and the feature has not been penetrated by any wells. The disturbed sediments are interpreted to be Cambrian. We infer that the structure was formed in Late Cambrian to Middle Devonian time and suffered erosion before the deposition of the overlying Middle Devonian carbonates. Rim faults, probably caused by slumping of material into the depression, are observed on the outside limb of the synform. Reverse faults are evident underneath the feature and the central uplift appears to have coherent internal reflections. The amount of uplift decreases with increasing depth in the section. The entire feature is interpreted to be a cryptoexplosion structure, possibly caused by a meteorite impact. INTRODUCTION Several enigmatic circular structures, of different sizes and ages, have been observed on seismic data from the Western Canadian sedimentary basin (WCSB) (e.g., Sawatzky, 1976; Isaac and Stewart, 1993) and other parts of Canada (Scott and Hajnal, 1988; Jansa et al., 1989). The structures present startling interruptions in otherwise planar seismic features.
    [Show full text]
  • Asteroid Impact, Not Volcanism, Caused the End-Cretaceous Dinosaur Extinction
    Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction Alfio Alessandro Chiarenzaa,b,1,2, Alexander Farnsworthc,1, Philip D. Mannionb, Daniel J. Luntc, Paul J. Valdesc, Joanna V. Morgana, and Peter A. Allisona aDepartment of Earth Science and Engineering, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom; bDepartment of Earth Sciences, University College London, WC1E 6BT London, United Kingdom; and cSchool of Geographical Sciences, University of Bristol, BS8 1TH Bristol, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 21, 2020 (received for review April 1, 2020) The Cretaceous/Paleogene mass extinction, 66 Ma, included the (17). However, the timing and size of each eruptive event are demise of non-avian dinosaurs. Intense debate has focused on the highly contentious in relation to the mass extinction event (8–10). relative roles of Deccan volcanism and the Chicxulub asteroid im- An asteroid, ∼10 km in diameter, impacted at Chicxulub, in pact as kill mechanisms for this event. Here, we combine fossil- the present-day Gulf of Mexico, 66 Ma (4, 18, 19), leaving a crater occurrence data with paleoclimate and habitat suitability models ∼180 to 200 km in diameter (Fig. 1A). This impactor struck car- to evaluate dinosaur habitability in the wake of various asteroid bonate and sulfate-rich sediments, leading to the ejection and impact and Deccan volcanism scenarios. Asteroid impact models global dispersal of large quantities of dust, ash, sulfur, and other generate a prolonged cold winter that suppresses potential global aerosols into the atmosphere (4, 18–20). These atmospheric dinosaur habitats.
    [Show full text]
  • Terrestrial Impact Structures Provide the Only Ground Truth Against Which Computational and Experimental Results Can Be Com­ Pared
    Ann. Rev. Earth Planet. Sci. 1987. 15:245-70 Copyright([;; /987 by Annual Reviews Inc. All rights reserved TERRESTRIAL IMI!ACT STRUCTURES ··- Richard A. F. Grieve Geophysics Division, Geological Survey of Canada, Ottawa, Ontario KIA OY3, Canada INTRODUCTION Impact structures are the dominant landform on planets that have retained portions of their earliest crust. The present surface of the Earth, however, has comparatively few recognized impact structures. This is due to its relative youthfulness and the dynamic nature of the terrestrial geosphere, both of which serve to obscure and remove the impact record. Although not generally viewed as an important terrestrial (as opposed to planetary) geologic process, the role of impact in Earth evolution is now receiving mounting consideration. For example, large-scale impact events may hav~~ been responsible for such phenomena as the formation of the Earth's moon and certain mass extinctions in the biologic record. The importance of the terrestrial impact record is greater than the relatively small number of known structures would indicate. Impact is a highly transient, high-energy event. It is inherently difficult to study through experimentation because of the problem of scale. In addition, sophisticated finite-element code calculations of impact cratering are gen­ erally limited to relatively early-time phenomena as a result of high com­ putational costs. Terrestrial impact structures provide the only ground truth against which computational and experimental results can be com­ pared. These structures provide information on aspects of the third dimen­ sion, the pre- and postimpact distribution of target lithologies, and the nature of the lithologic and mineralogic changes produced by the passage of a shock wave.
    [Show full text]
  • A Study of the Brushy Creek Feature, Saint Helena Parish, Louisiana Andrew Schedl
    Open-File Series No. 18-01 Fall 2018 A Study of the Brushy Creek Feature, Saint Helena Parish, Louisiana Andrew Schedl Abstract This study was unable to determine the origin of the Brushy Creek feature. New¯ thin sections were made and new and old thin sections were examined using the opti- cal and scanning electron microscope (SEM). Powdered samples from the center of Brushy Creek were examined using X-ray diffraction (XRD). In sample 16SHPA, a half dozen new grains with probable planar deformation features (PDF) were found with orientations of {1012} and {1011}. Preliminary SEM studies of zircons showed no evidence for PDFs or reidite. Only one grain from the center of Brushy Creek structure showed possible rectangular fracture. XRD analysis found no evidence for high-pressure forms of quartz, coesite and stishovite. Suggestions for further study are included. Introduction North-south oriented ridges and ravines dominate the landscape in this part of Louisiana. The Brushy Creek is a “noticeable circular hole” in the ridge/ravine topography (Heinrich, 2003). The feature is about 2 kilometers in diameter and has a relief of 15 meters and Brushy Creek breeches the southeast rim of this feature. Exposed in the rim is the poorly lithified and highly fractured Pliocene Citronelle Formation. Near the Brushy Creek feature, the Citronelle formation consists of cross-bedded, massive, poorly sorted fine to coarse sand 9-12 meters thick underlain by 6 meters of laminated clay and silt. The Kentwood Brick and Tile Company has drilled the center of the feature and have found that the laminated clay and silt is absent.
    [Show full text]
  • Mannville Group of Saskatchewan
    Saskatchewan Report 223 Industry and Resources Saskatchewan Geological Survey Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan J.E. Christopher 2003 19 48 Printed under the authority of the Minister of Industry and Resources Although the Department of Industry and Resources has exercised all reasonable care in the compilation, interpretation, and production of this report, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Department of Industry and Resources and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this report. Cover: Clearwater River Valley at Contact Rapids (1.5 km south of latitude 56º45'; latitude 109º30'), Saskatchewan. View towards the north. Scarp of Middle Devonian Methy dolomite at right. Dolomite underlies the Lower Cretaceous McMurray Formation outcrops recessed in the valley walls. Photo by J.E. Christopher. Additional copies of this digital report may be obtained by contacting: Saskatchewan Industry and Resources Publications 2101 Scarth Street, 3rd floor Regina, SK S4P 3V7 (306) 787-2528 FAX: (306) 787-2527 E-mail: [email protected] Recommended Citation: Christopher, J.E. (2003): Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan; Sask. Industry and Resources, Report 223, CD-ROM. Editors: C.F. Gilboy C.T. Harper D.F. Paterson RnD Technical Production: E.H. Nickel M.E. Opseth Production Editor: C.L. Brown Saskatchewan Industry and Resources ii Report 223 Foreword This report, the first on CD to be released by the Petroleum Geology Branch, describes the geology of the Success Formation and the Mannville Group wherever these units are present in Saskatchewan.
    [Show full text]
  • Impact Cratering
    6 Impact cratering The dominant surface features of the Moon are approximately circular depressions, which may be designated by the general term craters … Solution of the origin of the lunar craters is fundamental to the unravel- ing of the history of the Moon and may shed much light on the history of the terrestrial planets as well. E. M. Shoemaker (1962) Impact craters are the dominant landform on the surface of the Moon, Mercury, and many satellites of the giant planets in the outer Solar System. The southern hemisphere of Mars is heavily affected by impact cratering. From a planetary perspective, the rarity or absence of impact craters on a planet’s surface is the exceptional state, one that needs further explanation, such as on the Earth, Io, or Europa. The process of impact cratering has touched every aspect of planetary evolution, from planetary accretion out of dust or planetesimals, to the course of biological evolution. The importance of impact cratering has been recognized only recently. E. M. Shoemaker (1928–1997), a geologist, was one of the irst to recognize the importance of this process and a major contributor to its elucidation. A few older geologists still resist the notion that important changes in the Earth’s structure and history are the consequences of extraterres- trial impact events. The decades of lunar and planetary exploration since 1970 have, how- ever, brought a new perspective into view, one in which it is clear that high-velocity impacts have, at one time or another, affected nearly every atom that is part of our planetary system.
    [Show full text]
  • Gazette Part I, March 26, 2021
    THIS ISSUE HAS NO PART III (REGULATIONS)/CE NUMÉRO NE THE SASKATCHEWAN GAZETTE, 26 mars 2021 793 CONTIENT PAS DE PARTIE III (RÈGLEMENTS) The Saskatchewan Gazette PUBLISHED WEEKLY BY AUTHORITY OF THE QUEEN’S PRINTER/PUBLIÉE CHAQUE SEMAINE SOUS L’AUTORITÉ DE L’IMPRIMEUR DE LA REINE PART I/PARTIE I Volume 117 REGINA, FRIDAY, MARCH 26, 2021/REGINA, vendredi 26 mars 2021 No. 12/nº 12 TABLE OF CONTENTS/TABLE DES MATIÈRES PART I/PARTIE I SPECIAL DAYS/JOURS SPÉCIAUX ................................................................................................................................................. 794 PROGRESS OF BILLS/RAPPORT SUR L’ÉTAT DES PROJETS DE LOI (First Session, Twenty-Ninth Legislative Assembly/Première session, 29e Assemblée législative) ................................................ 794 ACTS NOT YET IN FORCE/LOIS NON ENCORE EN VIGUEUR ............................................................................................... 795 ACTS IN FORCE ON ASSENT/LOIS ENTRANT EN VIGUEUR SUR SANCTION (First Session, Twenty-Ninth Legislative Assembly/Première session, 29e Assemblée législative) ................................................ 799 ACTS IN FORCE BY ORDER OF THE LIEUTENANT GOVERNOR IN COUNCIL/ LOIS EN VIGUEUR PAR DÉCRET DU LIEUTENANT-GOUVERNEUR EN CONSEIL (2020) ........................................ 799 ACTS IN FORCE BY ORDER OF THE LIEUTENANT GOVERNOR IN COUNCIL/ LOIS EN VIGUEUR PAR DÉCRET DU LIEUTENANT-GOUVERNEUR EN CONSEIL (2021) ........................................ 800 ACTS PROCLAIMED/LOIS PROCLAMÉES
    [Show full text]
  • Introduction
    Introduction Introduction Doing Science Science & Society Our Environmental Heritage The Science of Global Change Summary The materials of science are the material of life itself. Science is part of the reality of living; it is the what, the how, and the why of everything in our experience. It is impossible to understand man without understanding his environment and the forces that have molded him physically and mentally. The aim of science is to discover and illuminate truth. Rachel Carson Whatever knowledge is attainable, must be obtained by scientific methods, and what science cannot discover, mankind cannot know. Bertrand Russell Introduction • Earth science, geology and environmental geology involve the study of the Earth and the processes that shape its surface but have different emphases. • The Earth System is composed of four principal components: atmosphere, hydrosphere, biosphere, and the solid Earth. • The science of Earth becomes relevant to society when we examine the interaction between human beings and the planet we share. The Good Earth represents an attempt to introduce students to Earth Science with an emphasis on our interaction with our environment. Consequently, this text includes components from two common undergraduate courses, Earth Science and Environmental Geology. These courses have more elements in common than they have differences. • Geology is the study of the Earth. That includes how the planet was formed, what it is made from, and how it has changed over time. Geologists study the processes that occur on Earth's surface and others taking place within the planet's interior. • Environmental geology views geology through the prism of the human experience.
    [Show full text]
  • Impact Structures and Events – a Nordic Perspective
    107 by Henning Dypvik1, Jüri Plado2, Claus Heinberg3, Eckart Håkansson4, Lauri J. Pesonen5, Birger Schmitz6, and Selen Raiskila5 Impact structures and events – a Nordic perspective 1 Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, NO 0316 Oslo, Norway. E-mail: [email protected] 2 Department of Geology, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. 3 Department of Environmental, Social and Spatial Change, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark. 4 Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark. 5 Division of Geophysics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland. 6 Department of Geology, University of Lund, Sölvegatan 12, SE-22362 Lund, Sweden. Impact cratering is one of the fundamental processes in are the main reason that the Nordic countries are generally well- the formation of the Earth and our planetary system, as mapped. reflected, for example in the surfaces of Mars and the Impact craters came into the focus about 20 years ago and the interest among the Nordic communities has increased during recent Moon. The Earth has been covered by a comparable years. The small Kaalijärv structure of Estonia was the first impact number of impact scars, but due to active geological structure to be confirmed in northern Europe (Table 1; Figures 1 and processes, weathering, sea floor spreading etc, the num- 7). First described in 1794 (Rauch), the meteorite origin of the crater ber of preserved and recognized impact craters on the field (presently 9 craters) was proposed much later in 1919 (Kalju- Earth are limited.
    [Show full text]
  • Geological Survey Research 1961 Synopsis of Geologic and Hydrologic Results
    Geological Survey Research 1961 Synopsis of Geologic and Hydrologic Results GEOLOGICAL SURVEY PROFESSIONAL PAPER 424-A Geological Survey Research 1961 THOMAS B. NOLAN, Director GEOLOGICAL SURVEY PROFESSIONAL PAPER 424 A synopsis ofgeologic and hydrologic results, accompanied by short papers in the geologic and hydrologic sciences. Published separately as chapters A, B, C, and D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 FOEEWOED The Geological Survey is engaged in many different kinds of investigations in the fields of geology and hydrology. These investigations may be grouped into several broad, inter­ related categories as follows: (a) Economic geology, including engineering geology (b) Eegional geologic mapping, including detailed mapping and stratigraphic studies (c) Eesource and topical studies (d) Ground-water studies (e) Surface-water studies (f) Quality-of-water studies (g) Field and laboratory research on geologic and hydrologic processes and principles. The Geological Survey also carries on investigations in its fields of competence for other Fed­ eral agencies that do not have the required specialized staffs or scientific facilities. Nearly all the Geological Survey's activities yield new data and principles of value in the development or application of the geologic and hydrologic sciences. The purpose of this report, which consists of 4 chapters, is to present as promptly as possible findings that have come to the fore during the fiscal year 1961 the 12 months ending June 30, 1961. The present volume, chapter A, is a synopsis of the highlights of recent findings of scientific and economic interest. Some of these findings have been published or placed on open file during the year; some are presented in chapters B, C, and D ; still others have not been pub­ lished previously.
    [Show full text]
  • The Tennessee Meteorite Impact Sites and Changing Perspectives on Impact Cratering
    UNIVERSITY OF SOUTHERN QUEENSLAND THE TENNESSEE METEORITE IMPACT SITES AND CHANGING PERSPECTIVES ON IMPACT CRATERING A dissertation submitted by Janaruth Harling Ford B.A. Cum Laude (Vanderbilt University), M. Astron. (University of Western Sydney) For the award of Doctor of Philosophy 2015 ABSTRACT Terrestrial impact structures offer astronomers and geologists opportunities to study the impact cratering process. Tennessee has four structures of interest. Information gained over the last century and a half concerning these sites is scattered throughout astronomical, geological and other specialized scientific journals, books, and literature, some of which are elusive. Gathering and compiling this widely- spread information into one historical document benefits the scientific community in general. The Wells Creek Structure is a proven impact site, and has been referred to as the ‘syntype’ cryptoexplosion structure for the United State. It was the first impact structure in the United States in which shatter cones were identified and was probably the subject of the first detailed geological report on a cryptoexplosive structure in the United States. The Wells Creek Structure displays bilateral symmetry, and three smaller ‘craters’ lie to the north of the main Wells Creek structure along its axis of symmetry. The question remains as to whether or not these structures have a common origin with the Wells Creek structure. The Flynn Creek Structure, another proven impact site, was first mentioned as a site of disturbance in Safford’s 1869 report on the geology of Tennessee. It has been noted as the terrestrial feature that bears the closest resemblance to a typical lunar crater, even though it is the probable result of a shallow marine impact.
    [Show full text]
  • The Recognition of Terrestrial Impact Structures
    Bulletin of the Czech Geological Survey, Vol. 77, No. 4, 253–263, 2002 © Czech Geological Survey, ISSN 1210-3527 The recognition of terrestrial impact structures ANN M. THERRIAULT – RICHARD A. F. GRIEVE – MARK PILKINGTON Natural Resources Canada, Booth Street, Ottawa, Ontario, KIA 0ES Canada; e-mail: [email protected] Abstract. The Earth is the most endogenically active of the terrestrial planets and, thus, has retained the poorest sample of impacts that have occurred throughout geological time. The current known sample consists of approximately 160 impact structures or crater fields. Approximately 30% of known impact structures are buried and were initially detected as geophysical anomalies and subsequently drilled to provide geologic samples. The recognition of terrestrial impact structures may, or may not, come from the discovery of an anomalous quasi-circular topographic, geologic or geo- physical feature. In the geologically active terrestrial environment, anomalous quasi-circular features, however, do not automatically equate with an impact origin. Specific samples must be acquired and the occurrence of shock metamorphism, or, in the case of small craters, meteoritic fragments, must be demonstrated before an impact origin can be confirmed. Shock metamorphism is defined by a progressive destruction of the original rock and mineral structure with increasing shock pressure. Peak shock pressures and temperatures produced by an impact event may reach several hundreds of gigaPascals and several thousand degrees Kelvin, which are far outside the range of endogenic metamorphism. In addition, the application of shock- wave pressures is both sudden and brief. Shock metamorphic effects result from high strain rates, well above the rates of norma l tectonic processes.
    [Show full text]