Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering and Stress-Transfer Mechanics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Magnesium Nitride (Mg3n2) Powder
Magnesium Nitride (Mg3N2) Powder US Research Nanomaterials, Inc. www.us-nano.com SAFTY DATA SHEET Revised Date 12/12/2015 1. PRODUCT AND COMPANY IDENTIFICATION 1.1 Product identifiers Product name: Magnesium Nitride (Mg3N2) Powder Product Number : US1115M Magnesium Nitride (Mg3N2) CAS#: 12057-71-5 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Research 1.3 Details of the supplier of the safety data sheet Company: US Research Nanomaterials, Inc. 3302 Twig Leaf Lane Houston, TX 77084 USA Telephone: +1 832-460-3661 Fax: +1 281-492-8628 1.4 Emergency telephone number Emergency Phone # : (832) 359-7887 2. HAZARDS IDENTIFICATION 2.1 Classification of the substance or mixture This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) 2.2 GHS Label elements, including precautionary statements Pictogram Signal word Warning Hazard statement(s) H260: In contact with water releases flammable gas. H302: Harmful if swallowed. H312: Harmful in contact with skin. H315: Causes skin irritation. H319: Causes serious eye irritation. H332: Harmful if inhaled. H335: May cause respiratory irritation. Precautionary statement(s) P223 Keep away from any possible contact with water, because of violent reaction and possible flash fire. P231+P232 Handle under inert gas. Protect from moisture. P261 Avoid breathing dust/fume/gas/mist/vapors/spray. P280 Wear protective gloves/protective clothing/eye protection/face protection. P301+P312 IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. P302+P352 IF ON SKIN: Wash with plenty of soap and water. P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. -
Investigations of Mixed-Anion Analogs of Manganite Perovskites and Bimetallic
Investigations of Mixed-Anion Analogs of Manganite Perovskites and Bimetallic Group II Nitride Fluorides By Oscar Kipruto Keino Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in the Chemistry Program YOUNGSTOWN STATE UNIVERSITY December, 2017 Investigations of Mixed-Anion Analogs of Manganite Perovskites and Bimetallic Group II Nitride Fluorides By Oscar Kipruto Keino I hereby release this thesis to the public. I understand that this thesis will be made available from the Ohio LINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: ________________________________________________________________ Oscar Kipruto Keino, Student Date Approvals: ________________________________________________________________ Dr. Timothy R. Wagner, Thesis Advisor Date ________________________________________________________________ Dr. Sherri Lovelace-Cameron, Committee Member Date ________________________________________________________________ Dr. Allen Hunter, Committee Member Date ________________________________________________________________ Dr. Salvatore A. Sanders, Date Dean, College of Graduate Studies iii ABSTRACT Lanthanum manganites are perovskite related materials known in particular for their colossal magnetoresistance (CM) properties. Manganite compositions showing CM behavior are mixed cation compounds such as (CaxLa1-x) MnO3, which contain Mn ions in mixed -
A Study of Nanostructure and Properties of Mixed Nanotube Buckypaper Materials: Fabrication, Process Modeling Characterization, and Property Modeling Cherng-Shii Yeh
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2007 A Study of Nanostructure and Properties of Mixed Nanotube Buckypaper Materials: Fabrication, Process Modeling Characterization, and Property Modeling Cherng-Shii Yeh Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ENGINEERING A STUDY OF NANOSTRUCTURE AND PROPERTIES OF MIXED NANOTUBE BUCKYPAPER MATERIALS: FABRICATION, PROCESS MODELING CHARACTERIZATION, AND PROPERTY MODELING By CHERNG-SHII YEH A Dissertation submitted to the Department of Industrial and Manufacturing Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Fall Semester, 2007 The members of the Committee approve the dissertation of Cherng-Shii Yeh defended on November 14. ______________________________ Zhiyong Liang Professor Directing Dissertation ______________________________ Jim P. Zheng Outside Committee Member __________________________________ Ben Wang Committee Member ______________________________ Chuck Zhang Committee Member ______________________________ David Jack Committee Member Approved: _____________________________________________ Chuck Zhang, Chair, Department of Industrial & Manufacturing Engineering _____________________________________________ Ching-Jen Chen, Dean, FAMU-FSU College of Engineering The Office of Graduate Studies has verified and approved the above named committee members. ii -
Nanotube Buckypaper Electrodes for PEM Fuel Cell Applications Chung-Lin Ku
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2007 Nanotube Buckypaper Electrodes for PEM Fuel Cell Applications Chung-Lin Ku Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ENGINEERING NANOTUBE BUCKYPAPER ELECTRODES FOR PEM FUEL CELL APPLICATIONS By CHUNG-LIN KU A Thesis submitted to the Department of Industrial and Manufacturing Engineering in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Fall Semester, 2007 The members of the committee approve the thesis of Chung-Lin Ku defended on November 06, 2007. ______________________________ Zhiyong Liang Professor Directing Thesis ______________________________ Jim P. Zheng Outside Committee Member __________________________________ Ben Wang Committee Member ______________________________ Chuck Zhang Committee Member Approved: __________________________________________________________ Chuck Zhang, Chair, Department of Industrial and Manufacturing Engineering __________________________________________________________ Ching-Jen Chen, Dean, FAMU-FSU College of Engineering The Office of Graduate Studies has verified and approved the above named committee members. ii BIOGRAPHICAL SKETCH Chung-Lin (Daphne) Ku is currently a master’s student in Industrial Engineering at FAMU-FSU College of Engineering and expecting graduation in December, 2007. She was born in October of 1982. She received her Bachelor’s of Engineering in Industrial Engineering in June 2005 from Tung-Hai University at Tai-Chuang, Taiwan. Her research interests include nanotube technologies, design of experiments, supply chain management, quality control, reliability, and applied optimization. Her favorite hobbies include badminton, music and movies. She is looking forward to pursue a career in the field of Industrial Engineering. -
Mechanical and Electrical Characterization of Hybrid Carbon Nanotube Sheet-Graphene Nanocomposites for Sensing Applications
Dissertations and Theses 5-2016 Mechanical and Electrical Characterization of Hybrid Carbon Nanotube Sheet-Graphene Nanocomposites for Sensing Applications Jiukun Li Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons, and the Structural Materials Commons Scholarly Commons Citation Li, Jiukun, "Mechanical and Electrical Characterization of Hybrid Carbon Nanotube Sheet-Graphene Nanocomposites for Sensing Applications" (2016). Dissertations and Theses. 223. https://commons.erau.edu/edt/223 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. i MECHANICAL AND ELECTRICAL CHARACTERIZATION OF HYBRID CARBON NANOTUBE SHEET - GRAPHENE NANOCOMPOSITES FOR SENSING APPLICATIONS A Thesis Submitted to the Faculty of Embry-Riddle Aeronautical University by Jiukun Li In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering May 2016 Embry-Riddle Aeronautical University Daytona Beach, Florida iii ACKNOWLEDGMENTS I would like to thank my family, Yongjin Li and Xiaoli Zhang and my sister Yahui Li, for their love, support and encouragement throughout so many years and specially my girlfriend, Ruojun Dai, for her support and soul company, though we are in different hemispheres with a 12-hour-difference. I would like to thank Aerospace Engineering Department of Embry-Riddle Aeronautical University and its entire staff for educating, research support, especially Dr. Virginie Rollin, Dr. Daewon Kim, Dr. David J Sypeck, Dr. Marwan Al-Haik, Mr. Michael Potash, and Mr. -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
Multi-Stage Synthesis of Magnesium Nitride Using an Atmospheric-Pressure Dielectric Barrier Discharge
Int. J. Plasma Environ. Sci. Technol. 15 (2021) e02002 (6pp) Regular Paper DOI: 10.34343/ijpest.2021.15.e02002 Multi-stage synthesis of magnesium nitride using an atmospheric-pressure dielectric barrier discharge Shungo Zen*, Yingwen Huang, Nozomi Takeuchi Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1-S3-3, Ookayama, Meguro-ku, Tokyo, Japan * Corresponding author: [email protected] (Shungo Zen) Received: 18 March 2021 Revised: 8 May 2021 Accepted: 20 May 2021 Published online: 22 May 2021 Abstract A multi-stage dielectric barrier discharge (DBD) was used to elucidate the reaction pathway for synthesizing Mg3N2 from MgO, nitrogen, and hydrogen using atmospheric pressure plasma. Recently, ammonia has been considered as a promising carbon-free material for hydrogen storage and carrier owing to its high hydrogen density. However, the extensive use of ammonia as an energy carrier has problems with respect to transportation and storage because of its toxicity, odor, and combustibility. Therefore, we consider that Mg3N2 can solve these problems and focus on Mg3N2 synthesis by nitridation of MgO using a DBD in a N2 and H2 atmosphere instead of directly synthesizing ammonia. By investigating the Mg3N2 synthesis pathway using a multi-stage atmospheric pressure plasma, it is considered that H atoms and NH radicals reduce MgO and promote nitriding. Keywords: Ammonia carrier, dielectric barrier discharge, Mg3N2 synthesis, non-thermal plasma. 1. Introduction Owing to significant use of fossil fuel energy, environmental problems such as the greenhouse effect, acid rain, and smog are becoming severe [1]. Recognizing these issues has led to increased attention to renewable energy sources [2]. -
Tunable Light-Emission Through the Range 1.8–3.2 Ev and P-Type Conductivity at Room Temperature for Nitride Semiconductors, Ca(Mg1−Xznx)2N2 (X = 0 – 1)”
Tunable light-emission through the range 1.8–3.2 eV and p-type conductivity at room temperature for nitride semiconductors, Ca(Mg1−xZnx)2N2 (x = 0 – 1) Masatake Tsuji,1 Hidenori Hiramatsu,1,2,a and Hideo Hosono1,2 1: Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Mailbox R3-3, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan 2: Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-1, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan a) Electronic mail: [email protected] 1 Abstract The ternary nitride CaZn2N2, composed only of earth-abundant elements, is a novel semiconductor with a band gap of ~1.8 eV. First-principles calculations predict that continuous Mg substitution at the Zn site will change the optical band gap in a wide range from ~3.3 eV to ~1.9 eV for Ca(Mg1−xZnx)2N2 (x = 0–1). In this study, we demonstrate that a solid-state reaction at ambient pressure and a high-pressure synthesis at 5 GPa produce x = 0 and 0.12, and 0.12 < x 1 polycrystalline samples, respectively. It is experimentally confirmed that the optical band gap can be continuously tuned from ~3.2 eV to ~1.8 eV, a range very close to that predicted by theory. Band-to-band photoluminescence is observed at room temperature in the ultraviolet–red region depending on x. A 2% Na doping at the Ca site of CaZn2N2 converts its highly resistive state to a p-type conducting state. -
Carbon and Boron Nitride Nanotube Fabricated Supercapacitors
Old Dominion University ODU Digital Commons Electrical & Computer Engineering Theses & Dissertations Electrical & Computer Engineering Spring 2016 Carbon and Boron Nitride Nanotube Fabricated Supercapacitors Derek Christian Demuth Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds Part of the Electrical and Computer Engineering Commons Recommended Citation Demuth, Derek C.. "Carbon and Boron Nitride Nanotube Fabricated Supercapacitors" (2016). Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/ 59m8-r065 https://digitalcommons.odu.edu/ece_etds/6 This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. CARBON AND BORON NITRIDE NANOTUBE FABRICATED SUPERCAPACITORS by Derek Christian Demuth B.A. May 2007, Virginia Polytechnic and State Institute B.S. December 2014, Old Dominion University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE ELECTRICAL AND COMPUTER ENGINEERING OLD DOMINION UNIVERSITY May 2016 Approved by: Gon Namkoong (Director) Helmut Baumgart (Member) Abdelmageed Elmustafa (Member) ABSTRACT CARBON AND BORON NITRIDE NANOTUBE FABRICATED SUPERCAPACITORS Derek Christian Demuth Old Dominion University, 2016 Director: Dr. Gon Namkoong The fabrication of supercapacitor devices consisting of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) has great theoretical capabilities of high specific capacitance, energy density, and power density. Various methods of dispersion and deposition are utilized to optimize such supercapacitors with BNNTs and CNTs, and also to produce devices with only CNTs to use as a benchmark. -
Formation, Stability and Presence of Magnesium Nitride in Magnesium Recycling Processes
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte des Institutes für Geologie und Paläontologie der Karl- Franzens-Universität Graz Jahr/Year: 2004 Band/Volume: 9 Autor(en)/Author(s): Bauer Christoph, Mogessie Aberra, Galovsky Ulrike Artikel/Article: Formation, stability and presence of magnesium nitride in magnesium recycling processes. 70-71 ©Institut f. Erdwissensch., Geol. u. Paläont., Karl-Franzens-Universität Graz; download www.biologiezentrum.at Ber. Inst. Erdwiss. K.-F.-Univ. Graz ISSN 1608-8166 Band 9 Graz 2004 FORMATION, STABILITY AND PRESENCE OF MAGNESIUM NITRIDE IN MAGNESIUM RECYCLING PROCESSES Christoph BAUER1, Aberra MOGESSIE1 & Ulrike GALOVSKY2 1 Karl-Franzens Universität Graz 2 Leichtmetall Kompetenzzentrum Ranshofen In this study an attempt has been made to find methods of detecting magnesium nitride and to investigate in which part of the magnesium recycling process it is concentrated. As a light metal, magnesium has several interesting properties which enable it to be used in the automotive industry. Among the most important properties are its density and strength. Molten magnesium is unstable when exposed to air, and the usage of cover gases like SO2 or SF6 is necessary. For purifying the alloys, nitrogen is blown through the melt, so that impurities adhere to the bubbles’ surface and form compounds, which can be easily separated by gravitation. To produce high quality magnesium alloys, it is necessary to investigate the nitrogen compounds and their disposition. In moisture bearing environment, exothermic reactions take place when magnesium nitride reacts to ammonium and brucite and also when aluminium nitride reacts to ammonium and gibbsite. -
Mg3n2 Nanocrystallites Formation During the Gan:Mg Layers Growth by the NH3-MBE Technique
Journal of Crystal Growth 554 (2021) 125963 Contents lists available at ScienceDirect Journal of Crystal Growth journal homepage: www.elsevier.com/locate/jcrysgro Mg3N2 nanocrystallites formation during the GaN:Mg layers growth by the NH3-MBE technique T.V. Malin a, V.G. Mansurov a, Yu.G. Galitsyn a, D.S. Milakhin a, D.Yu. Protasov a,c, B.Ya. Ber b, D. Yu. Kazantsev b, V.V. Ratnikov b, M.P. Shcheglov b, A.N. Smirnov b, V.Yu. Davydov b, K. S. Zhuravlev a,d,* a Physics and Engineering of Semiconductor Structures Department, Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia b Ioffe Institute, St. Petersburg 194021, Russia c Novosibirsk State Technical University, Novosibirsk 630087, Russia d Novosibirsk State University, Novosibirsk 630090, Russia ARTICLE INFO ABSTRACT Communicated by H. Asahi The work is devoted to the study of p-GaN: Mg epitaxial layers grown by the ammonia MBE technique. We find that the conductivity of GaN layers doped with Mg does not change with a postgrowth heat treatment. Formation Keywords: of Mg3N2 nanocrystallites on GaN surface during epitaxial growth of the GaN layer with a high magnesium A1. Mg3N2-crystallites doping level was detected by the RHEED technique for the first time. It was shown that the Mg3N2 nano A3. Ammonia-MBE crystallites formation competes with the acceptor states formation process. It has been proposed that the growth B1. p-GaN temperature can be applied as an additional “tuning” mechanism which affects the Mg incorporation into the B1. GaN:Mg A1. RHEED growing GaN:Mg layers. -
Composites Part a 113 (2018) 132–140
Composites Part A 113 (2018) 132–140 Contents lists available at ScienceDirect Composites Part A journal homepage: www.elsevier.com/locate/compositesa Research on high electromagnetic interference shielding effectiveness of a foldable buckypaper/polyacrylonitrile composite film via interface T reinforcing ⁎ Qianshan Xiaa, Zhichun Zhanga, Hetao Chua, Yanju Liub, Jinsong Lenga, a Center for Composite Materials and Structures, No. 2 YiKuang Street, Science Park of Harbin Institute of Technology (HIT), Harbin 150080, PR China b Department of Aerospace Science and Mechanics, No. 92 West DaZhi Street, Harbin Institute of Technology (HIT), Harbin 150001, PR China ARTICLE INFO ABSTRACT Keywords: Herein, a series of foldable buckypaper/polyacrylonitrile (BP/PAN) composite films were developed in a facile Buckypaper strategy. This strategy was based on electrospun and vacuum pressurized filtration methods. The composite film Polymer-matrix composites had better mechanical properties than pristine BP via interface reinforcing, but not deprived of excellent con- Electromagnetic interference shielding ductivity. The maximum tensile strength and elongation at break of BP/PAN films were 1.45 and 11.65 times than pristine BP, respectively. Moreover, BP/PAN film had higher electromagnetic interference (EMI) shielding effectiveness (63.7–65 dB) in the Ku band (12–18 GHz) than pristine BP (34.3–42.9 dB), due to interfaces forming between PAN fibers and CNTs. The BP/PAN composite as a promising EMI shielding material could be utilized in military and civil applications, such as flexible antenna, EMI shielding clothes and soft portable electronic products. 1. Introduction In recent decades, carbon materials [11–15] and their composites [16,17], owing to their low density, anti-corrosion, excellent electrical With the rapid development of information and communications and thermal properties [18], play important roles in development of technology, advanced electrical and electronic devices have played shielding materials.