History of Greek Mathematics: from Aristarchus to Diophantus: from Aristarchus to Diophantus V

Total Page:16

File Type:pdf, Size:1020Kb

History of Greek Mathematics: from Aristarchus to Diophantus: from Aristarchus to Diophantus V FREE HISTORY OF GREEK MATHEMATICS: FROM ARISTARCHUS TO DIOPHANTUS: FROM ARISTARCHUS TO DIOPHANTUS V. 2 PDF Sir Thomas L. Heath | 597 pages | 01 Nov 1981 | Dover Publications Inc. | 9780486240749 | English | New York, United States Arithmetica - Wikipedia Dimensions x x 27mm g. Publisher Dover Publications Inc. Edition Statement 2nd Revised ed. Illustrations note Illustrations, unspecified. The perspective that enabled Sir Thomas Heath to understand the Greek genius -- deep intimacy with languages, literatures, philosophy, and all the sciences -- brought him perhaps closer to his beloved subjects, and to their own ideal of educated men than is common or even possible today. Heath read the original texts with a critical, scrupulous eye and brought to this definitive two-volume history the insights of a mathematician communicated with the clarity of classically taught English. The linkage and unity of mathematics and philosophy suggest the outline for the entire history. Interspersed are sections devoted to the history and analysis of famous problems: squaring the circle, angle trisection, duplication of the cube, and an appendix on Archimedes's proof of the subtangent property of a spiral. The coverage is everywhere thorough and judicious; but Heath is not content with plain exposition: It is a defect in the History of Greek Mathematics: From Aristarchus to Diophantus: From Aristarchus to Diophantus v. 2 histories that, while they state generally the contents of, and the main propositions proved in, the great treatises of Archimedes and Apollonius, they make little attempt to describe the procedure by which the results are obtained. I have therefore taken pains, in the most significant cases, to show the course of the argument in sufficient detail to enable a competent mathematician to grasp the method used and to apply it, if he will, to other similar investigations. Mathematicians, then, will rejoice to find Heath back in print and accessible after many years. Historians of Greek culture and science can renew acquaintance with a standard reference; readers in general will find, particularly in the energetic discourses on Euclid and Archimedes, exactly what Heath means by impressive and awe-inspiring. Thomas Little Heath was unusual for an authority on many esoteric, and many less esoteric, subjects in the history of mathematics in that he was never a university professor. The son of an English farmer from Lincolnshire, Heath demonstrated his academic gifts at a young age; studied at Trinity College, Cambridge, from to ; came away with numerous awards; and obtained the top grade in the English Civil Service examination. From that foundation, he went to work in the English Treasury, rose through the ranks, and bywas permanent secretary to the Treasury, effectively the head of its operations. He left that post in at the end of the first World War, worked several years at the National Debt office, and retired in During all of that time, however, he became independently one of History of Greek Mathematics: From Aristarchus to Diophantus: From Aristarchus to Diophantus v. 2 world's leading authorities on the history of mathematics, especially on the history of ancient Greek mathematics. Heath's three-volume edition of Euclid is still the standard, it is generally accepted that it is primarily through Heath's great work on Archimedes that the accomplishments of Archimedes are known as well as they are. Dover has reprinted these and other books by Heath, preserving over several decades a unique legacy in the history of mathematical scholarship. Stahl "Indeed, seeing that so much of Greek is mathematics, it is arguable that, if one would understand the Greek genius fully, it would be a good plan to begin with their geometry. A History of Greek Mathematics, Volume II: From Aristarchus to Diophantus In this paper, after examining the relevance of various interpretations given for the famous problem II 8 in the context of modern algebra or geometry, we focus on a close reading of the ancient text of some problems of Arithmetica in order to investigate Diophantos' solving practices. This inquiry reveals certain pointers, which enable us to create History of Greek Mathematics: From Aristarchus to Diophantus: From Aristarchus to Diophantus v. 2 framework for defining the generality of Diophantos' methods. This is a preview of subscription content, log in to check access. Rent this article via DeepDyve. Acerbi, F. Ball Rouse, W. Fourth Edition. Reprinted, New York: Dover. Bashmakova, I. English edition by the Mathematical Association of America, Chemla, K. Jahnke et al [eds. Christianidis, J. Google Scholar. Euler, L. Fifth Edition. Reprinted, New York: Springer-Verlag. Franci, R. Heath, Th. A Study in the History of Greek Algebra. Second Edition. Reprinted, New York: Dover Publications. II, From Aristarchus to Diophantus. New York: Springer. Klein, J. Cambridge, Mass: The M. Kline, M. New York: Oxford University Press. Knorr, W. Menger, K. Dordrecht: Reidel. Mueller, I. Cambridge, MA. Netz, R. Cambridge: Cambridge University Press. Radford, L. Rashed, R. Paris: Les Belles Lettres. Sesiano, J. Scholz [Hrsg. Mannheim: History of Greek Mathematics: From Aristarchus to Diophantus: From Aristarchus to Diophantus v. 2. Struik, D. Cambridge, Mass: Harvard University Press. Tannery, P. Stuttgart: B. Waerden, B. Berlin: Springer-Verlag. Download references. Experimental School of University of Macedonia, P. Box04, Thessaloniki, Greece. Correspondence to Yannis Thomaidis. Reprints and Permissions. Thomaidis, Y. Exact Sci. Download citation. Received : 30 May Published : 19 July Issue Date : October Search SpringerLink Search. Immediate online access to all issues from Subscription will auto renew annually. References 1. English edition by the Mathematical Association of America, 4. Rights and permissions Reprints and Permissions. About this article Cite this article Thomaidis, Y. A Framework for Defining the Generality of Diophantos' Methods in ``Arithmetica'' | SpringerLink Equations in the book are presently called Diophantine equations. The method for solving these equations is known as Diophantine analysis. Most of the Arithmetica problems lead to quadratic equations. In Book 3, Diophantus solves problems of finding values which make two linear expressions simultaneously into squares or cubes. In book 4, he finds rational powers between given numbers. Diophantus also appears to know that every History of Greek Mathematics: From Aristarchus to Diophantus: From Aristarchus to Diophantus v. 2 can be written as the sum of four squares. If he did know this result in the sense of having proved it as opposed to merely conjectured ithis doing so would be truly remarkable: even Fermat, who stated the result, failed to provide a proof of it and it was not settled until Joseph Louis Lagrange proved it using results due to Leonhard Euler. Arithmetica was originally written in thirteen books, but the Greek manuscripts that survived to the present contain no more than six books. Arithmetica became known to History of Greek Mathematics: From Aristarchus to Diophantus: From Aristarchus to Diophantus v. 2 in the Islamic world in the tenth century [5] when Abu'l-Wefa translated it into Arabic. Cum comm. C laude G aspar Bacheti et observationibus P ierre de Fermat. Tolosaedoi : From Wikipedia, the free encyclopedia. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Retrieved 11 April Dictionary of World Biography. Salem Press. Retrieved 6 July Only six of the thirteen books of the Arithmetica of Diophantus ca. The remaining books were believed to be lost, until the recent discovery of a medieval Arabic translation of four of the remaining books in a manuscript in the Shrine Library in Meshed in Iran see the catalogue [Gulchin-i Ma'anipp. The manuscript was discovered in by F. Retrieved 9 October A History of Mathematics Second ed. Note the omission of Diophantus and Pappus, authors who evidently were not at first known in Arabia, although the Diophantine Arithmetica became familiar before the end of the tenth century. Abu'l-Wefa was a capable algebraist as well as a trigonometer. He commented on al-Khwarizmi's Algebra and translated from Greek one of the last great classics, the Arithmetica of Diophantus. Ancient Greek and Hellenistic mathematics Euclidean geometry. Angle trisection Doubling the cube Squaring the circle Problem of Apollonius. Circles of Apollonius Apollonian circles Apollonian gasket Circumscribed circle Commensurability Diophantine equation Doctrine of proportionality Golden ratio Greek numerals Incircle and excircles of a triangle Method of exhaustion Parallel postulate Platonic solid Lune of Hippocrates Quadratrix of Hippias Regular polygon Straightedge and compass construction Triangle center. Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. Apollonius's theorem. Aristarchus's inequality Crossbar theorem Heron's formula Irrational numbers Menelaus's theorem Pappus's area theorem Ptolemy's inequality Ptolemy's table of chords Ptolemy's theorem Spiral of Theodorus. Cyrene Library of Alexandria Platonic Academy. Ancient Greek astronomy Greek numerals Latin translations of the 12th century Neusis construction.
Recommended publications
  • Theorems and Postulates
    Theorems and Postulates JJJG Given AB and a number r between 0 and 180, there Postulate 1-A is exactly one JrayJJG with endpoint A , extending on Protractor Postulate either side of AB , such that the measure of the angle formed is r . ∠A is a right angle if mA∠ is 90. Definition of Right, Acute ∠A is an acute angle if mA∠ is less than 90. and Obtuse Angles ∠A is an obtuse angle if mA∠ is greater than 90 and less than 180. Postulate 1-B If R is in the interior of ∠PQS , then mPQRmRQSmPQS∠ +∠ =∠ . Angle Addition If mP∠+∠=∠QRmRQSmPQS, then R is in the interior of ∠PQS. Vertical angles are congruent. The sum of the measures of the angles in a linear pair is 180˚. The sum of the measures of complementary angles is 90˚. Two points on a line can be paired with real numbers so that, given Postulate 2-A any two points R and S on the line, R corresponds to zero, and S Ruler corresponds to a positive number. Point R could be paired with 0, and S could be paired with 10. R S -2 -1 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10 Postulate 2-B If N is between M and P, then MN + NP = MP. Segment Addition Conversely, if MN + NP = MP, then N is between M and P. Theorem 2-A In a right triangle, the sum of the squares of the measures Pythagorean of the legs equals the square of the measure of the Theorem hypotenuse.
    [Show full text]
  • Configurations on Centers of Bankoff Circles 11
    CONFIGURATIONS ON CENTERS OF BANKOFF CIRCLES ZVONKO CERINˇ Abstract. We study configurations built from centers of Bankoff circles of arbelos erected on sides of a given triangle or on sides of various related triangles. 1. Introduction For points X and Y in the plane and a positive real number λ, let Z be the point on the segment XY such that XZ : ZY = λ and let ζ = ζ(X; Y; λ) be the figure formed by three mj utuallyj j tangenj t semicircles σ, σ1, and σ2 on the same side of segments XY , XZ, and ZY respectively. Let S, S1, S2 be centers of σ, σ1, σ2. Let W denote the intersection of σ with the perpendicular to XY at the point Z. The figure ζ is called the arbelos or the shoemaker's knife (see Fig. 1). σ σ1 σ2 PSfrag replacements X S1 S Z S2 Y XZ Figure 1. The arbelos ζ = ζ(X; Y; λ), where λ = jZY j . j j It has been the subject of studies since Greek times when Archimedes proved the existence of the circles !1 = !1(ζ) and !2 = !2(ζ) of equal radius such that !1 touches σ, σ1, and ZW while !2 touches σ, σ2, and ZW (see Fig. 2). 1991 Mathematics Subject Classification. Primary 51N20, 51M04, Secondary 14A25, 14Q05. Key words and phrases. arbelos, Bankoff circle, triangle, central point, Brocard triangle, homologic. 1 2 ZVONKO CERINˇ σ W !1 σ1 !2 W1 PSfrag replacements W2 σ2 X S1 S Z S2 Y Figure 2. The Archimedean circles !1 and !2 together.
    [Show full text]
  • Kaleidoscopic Symmetries and Self-Similarity of Integral Apollonian Gaskets
    Kaleidoscopic Symmetries and Self-Similarity of Integral Apollonian Gaskets Indubala I Satija Department of Physics, George Mason University , Fairfax, VA 22030, USA (Dated: April 28, 2021) Abstract We describe various kaleidoscopic and self-similar aspects of the integral Apollonian gaskets - fractals consisting of close packing of circles with integer curvatures. Self-similar recursive structure of the whole gasket is shown to be encoded in transformations that forms the modular group SL(2;Z). The asymptotic scalings of curvatures of the circles are given by a special set of quadratic irrationals with continued fraction [n + 1 : 1; n] - that is a set of irrationals with period-2 continued fraction consisting of 1 and another integer n. Belonging to the class n = 2, there exists a nested set of self-similar kaleidoscopic patterns that exhibit three-fold symmetry. Furthermore, the even n hierarchy is found to mimic the recursive structure of the tree that generates all Pythagorean triplets arXiv:2104.13198v1 [math.GM] 21 Apr 2021 1 Integral Apollonian gaskets(IAG)[1] such as those shown in figure (1) consist of close packing of circles of integer curvatures (reciprocal of the radii), where every circle is tangent to three others. These are fractals where the whole gasket is like a kaleidoscope reflected again and again through an infinite collection of curved mirrors that encodes fascinating geometrical and number theoretical concepts[2]. The central themes of this paper are the kaleidoscopic and self-similar recursive properties described within the framework of Mobius¨ transformations that maps circles to circles[3]. FIG. 1: Integral Apollonian gaskets.
    [Show full text]
  • Read Book Advanced Euclidean Geometry Ebook
    ADVANCED EUCLIDEAN GEOMETRY PDF, EPUB, EBOOK Roger A. Johnson | 336 pages | 30 Nov 2007 | Dover Publications Inc. | 9780486462370 | English | New York, United States Advanced Euclidean Geometry PDF Book As P approaches nearer to A , r passes through all values from one to zero; as P passes through A , and moves toward B, r becomes zero and then passes through all negative values, becoming —1 at the mid-point of AB. Uh-oh, it looks like your Internet Explorer is out of date. In Elements Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. It might also be so named because of the geometrical figure's resemblance to a steep bridge that only a sure-footed donkey could cross. Calculus Real analysis Complex analysis Differential equations Functional analysis Harmonic analysis. This article needs attention from an expert in mathematics. Facebook Twitter. On any line there is one and only one point at infinity. This may be formulated and proved algebraically:. When we have occasion to deal with a geometric quantity that may be regarded as measurable in either of two directions, it is often convenient to regard measurements in one of these directions as positive, the other as negative. Logical questions thus become completely independent of empirical or psychological questions For example, proposition I. This volume serves as an extension of high school-level studies of geometry and algebra, and He was formerly professor of mathematics education and dean of the School of Education at The City College of the City University of New York, where he spent the previous 40 years.
    [Show full text]
  • The Stoics and the Practical: a Roman Reply to Aristotle
    DePaul University Via Sapientiae College of Liberal Arts & Social Sciences Theses and Dissertations College of Liberal Arts and Social Sciences 8-2013 The Stoics and the practical: a Roman reply to Aristotle Robin Weiss DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/etd Recommended Citation Weiss, Robin, "The Stoics and the practical: a Roman reply to Aristotle" (2013). College of Liberal Arts & Social Sciences Theses and Dissertations. 143. https://via.library.depaul.edu/etd/143 This Thesis is brought to you for free and open access by the College of Liberal Arts and Social Sciences at Via Sapientiae. It has been accepted for inclusion in College of Liberal Arts & Social Sciences Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. THE STOICS AND THE PRACTICAL: A ROMAN REPLY TO ARISTOTLE A Thesis Presented in Partial Fulfillment of the Degree of Doctor of Philosophy August, 2013 BY Robin Weiss Department of Philosophy College of Liberal Arts and Social Sciences DePaul University Chicago, IL - TABLE OF CONTENTS - Introduction……………………..............................................................................................................p.i Chapter One: Practical Knowledge and its Others Technê and Natural Philosophy…………………………….....……..……………………………….....p. 1 Virtue and technical expertise conflated – subsequently distinguished in Plato – ethical knowledge contrasted with that of nature in
    [Show full text]
  • Geometry: Neutral MATH 3120, Spring 2016 Many Theorems of Geometry Are True Regardless of Which Parallel Postulate Is Used
    Geometry: Neutral MATH 3120, Spring 2016 Many theorems of geometry are true regardless of which parallel postulate is used. A neutral geom- etry is one in which no parallel postulate exists, and the theorems of a netural geometry are true for Euclidean and (most) non-Euclidean geomteries. Spherical geometry is a special case of Non-Euclidean geometries where the great circles on the sphere are lines. This leads to spherical trigonometry where triangles have angle measure sums greater than 180◦. While this is a non-Euclidean geometry, spherical geometry develops along a separate path where the axioms and theorems of neutral geometry do not typically apply. The axioms and theorems of netural geometry apply to Euclidean and hyperbolic geometries. The theorems below can be proven using the SMSG axioms 1 through 15. In the SMSG axiom list, Axiom 16 is the Euclidean parallel postulate. A neutral geometry assumes only the first 15 axioms of the SMSG set. Notes on notation: The SMSG axioms refer to the length or measure of line segments and the measure of angles. Thus, we will use the notation AB to describe a line segment and AB to denote its length −−! −! or measure. We refer to the angle formed by AB and AC as \BAC (with vertex A) and denote its measure as m\BAC. 1 Lines and Angles Definitions: Congruence • Segments and Angles. Two segments (or angles) are congruent if and only if their measures are equal. • Polygons. Two polygons are congruent if and only if there exists a one-to-one correspondence between their vertices such that all their corresponding sides (line sgements) and all their corre- sponding angles are congruent.
    [Show full text]
  • Strophoids, a Family of Cubic Curves with Remarkable Properties
    Hellmuth STACHEL STROPHOIDS, A FAMILY OF CUBIC CURVES WITH REMARKABLE PROPERTIES Abstract: Strophoids are circular cubic curves which have a node with orthogonal tangents. These rational curves are characterized by a series or properties, and they show up as locus of points at various geometric problems in the Euclidean plane: Strophoids are pedal curves of parabolas if the corresponding pole lies on the parabola’s directrix, and they are inverse to equilateral hyperbolas. Strophoids are focal curves of particular pencils of conics. Moreover, the locus of points where tangents through a given point contact the conics of a confocal family is a strophoid. In descriptive geometry, strophoids appear as perspective views of particular curves of intersection, e.g., of Viviani’s curve. Bricard’s flexible octahedra of type 3 admit two flat poses; and here, after fixing two opposite vertices, strophoids are the locus for the four remaining vertices. In plane kinematics they are the circle-point curves, i.e., the locus of points whose trajectories have instantaneously a stationary curvature. Moreover, they are projections of the spherical and hyperbolic analogues. For any given triangle ABC, the equicevian cubics are strophoids, i.e., the locus of points for which two of the three cevians have the same lengths. On each strophoid there is a symmetric relation of points, so-called ‘associated’ points, with a series of properties: The lines connecting associated points P and P’ are tangent of the negative pedal curve. Tangents at associated points intersect at a point which again lies on the cubic. For all pairs (P, P’) of associated points, the midpoints lie on a line through the node N.
    [Show full text]
  • 9 · the Growth of an Empirical Cartography in Hellenistic Greece
    9 · The Growth of an Empirical Cartography in Hellenistic Greece PREPARED BY THE EDITORS FROM MATERIALS SUPPLIED BY GERMAINE AUJAe There is no complete break between the development of That such a change should occur is due both to po­ cartography in classical and in Hellenistic Greece. In litical and military factors and to cultural developments contrast to many periods in the ancient and medieval within Greek society as a whole. With respect to the world, we are able to reconstruct throughout the Greek latter, we can see how Greek cartography started to be period-and indeed into the Roman-a continuum in influenced by a new infrastructure for learning that had cartographic thought and practice. Certainly the a profound effect on the growth of formalized know­ achievements of the third century B.C. in Alexandria had ledge in general. Of particular importance for the history been prepared for and made possible by the scientific of the map was the growth of Alexandria as a major progress of the fourth century. Eudoxus, as we have seen, center of learning, far surpassing in this respect the had already formulated the geocentric hypothesis in Macedonian court at Pella. It was at Alexandria that mathematical models; and he had also translated his Euclid's famous school of geometry flourished in the concepts into celestial globes that may be regarded as reign of Ptolemy II Philadelphus (285-246 B.C.). And it anticipating the sphairopoiia. 1 By the beginning of the was at Alexandria that this Ptolemy, son of Ptolemy I Hellenistic period there had been developed not only the Soter, a companion of Alexander, had founded the li­ various celestial globes, but also systems of concentric brary, soon to become famous throughout the Mediter­ spheres, together with maps of the inhabited world that ranean world.
    [Show full text]
  • Volume 6 (2006) 1–16
    FORUM GEOMETRICORUM A Journal on Classical Euclidean Geometry and Related Areas published by Department of Mathematical Sciences Florida Atlantic University b bbb FORUM GEOM Volume 6 2006 http://forumgeom.fau.edu ISSN 1534-1178 Editorial Board Advisors: John H. Conway Princeton, New Jersey, USA Julio Gonzalez Cabillon Montevideo, Uruguay Richard Guy Calgary, Alberta, Canada Clark Kimberling Evansville, Indiana, USA Kee Yuen Lam Vancouver, British Columbia, Canada Tsit Yuen Lam Berkeley, California, USA Fred Richman Boca Raton, Florida, USA Editor-in-chief: Paul Yiu Boca Raton, Florida, USA Editors: Clayton Dodge Orono, Maine, USA Roland Eddy St. John’s, Newfoundland, Canada Jean-Pierre Ehrmann Paris, France Chris Fisher Regina, Saskatchewan, Canada Rudolf Fritsch Munich, Germany Bernard Gibert St Etiene, France Antreas P. Hatzipolakis Athens, Greece Michael Lambrou Crete, Greece Floor van Lamoen Goes, Netherlands Fred Pui Fai Leung Singapore, Singapore Daniel B. Shapiro Columbus, Ohio, USA Steve Sigur Atlanta, Georgia, USA Man Keung Siu Hong Kong, China Peter Woo La Mirada, California, USA Technical Editors: Yuandan Lin Boca Raton, Florida, USA Aaron Meyerowitz Boca Raton, Florida, USA Xiao-Dong Zhang Boca Raton, Florida, USA Consultants: Frederick Hoffman Boca Raton, Floirda, USA Stephen Locke Boca Raton, Florida, USA Heinrich Niederhausen Boca Raton, Florida, USA Table of Contents Khoa Lu Nguyen and Juan Carlos Salazar, On the mixtilinear incircles and excircles,1 Juan Rodr´ıguez, Paula Manuel and Paulo Semi˜ao, A conic associated with the Euler line,17 Charles Thas, A note on the Droz-Farny theorem,25 Paris Pamfilos, The cyclic complex of a cyclic quadrilateral,29 Bernard Gibert, Isocubics with concurrent normals,47 Mowaffaq Hajja and Margarita Spirova, A characterization of the centroid using June Lester’s shape function,53 Christopher J.
    [Show full text]
  • Curriculum Management System
    Curriculum Management System MONROE TOWNSHIP SCHOOLS Course Name: Dynamics of Geometry Grade: High School Grades 10-12 For adoption by all regular education programs Board Approved: November 2014 as specified and for adoption or adaptation by all Special Education Programs in accordance with Board of Education Policy # 2220. Table of Contents Monroe Township Schools Administration and Board of Education Members Page 3 Mission, Vision, Beliefs, and Goals Page 4 Core Curriculum Content Standards Page 5 Scope and Sequence Pages 6-9 Goals/Essential Questions/Objectives/Instructional Tools/Activities Pages 10-102 Quarterly Benchmark Assessment Pages 103-106 Monroe Township Schools Administration and Board of Education Members ADMINISTRATION Mr. Dennis Ventrillo, Interim Superintendent Ms. Dori Alvich, Assistant Superintendent BOARD OF EDUCATION Ms. Kathy Kolupanowich, Board President Mr. Doug Poye, Board Vice President Ms. Amy Antelis Ms. Michele Arminio Mr. Marvin I. Braverman Mr. Ken Chiarella Mr. Lew Kaufman Mr. Tom Nothstein Mr. Anthony Prezioso Jamesburg Representative Mr. Robert Czarneski WRITERS NAME Ms. Samantha Grimaldi CURRICULUM SUPERVISOR Ms. Susan Gasko Mission, Vision, Beliefs, and Goals Mission Statement The Monroe Public Schools in collaboration with the members of the community shall ensure that all children receive an exemplary education by well-trained committed staff in a safe and orderly environment. Vision Statement The Monroe Township Board of Education commits itself to all children by preparing them to reach their full potential and to function in a global society through a preeminent education. Beliefs 1. All decisions are made on the premise that children must come first. 2. All district decisions are made to ensure that practices and policies are developed to be inclusive, sensitive and meaningful to our diverse population.
    [Show full text]
  • Apollonian Circles Patterns in Musical Scales Posing Problems Triangles
    Summer/Autumn 2017 A Problem Fit for a PrincessApollonian Apollonian Circles Gaskets Polygons and PatternsPrejudice in Exploring Musical Social Scales Issues Daydreams in MusicPosing Patterns Problems in Scales ProblemTriangles, Posing Squares, Empowering & Segregation Participants A NOTE FROM AIM #playwithmath Dear Math Teachers’ Circle Network, In this issue of the MTCircular, we hope you find some fun interdisciplinary math problems to try with your Summer is exciting for us, because MTC immersion MTCs. In “A Problem Fit for a Princess,” Chris Goff workshops are happening all over the country. We like traces the 2000-year history of a fractal that inspired his seeing the updates in real time, on Twitter. Your enthu- MTC’s logo. In “Polygons and Prejudice,” Anne Ho and siasm for all things math and problem solving is conta- Tara Craig use a mathematical frame to guide a con- gious! versation about social issues. In “Daydreams in Music,” Jeremy Aikin and Cory Johnson share a math session Here are some recent tweets we enjoyed from MTC im- motivated by patterns in musical scales. And for those mersion workshops in Cleveland, OH; Greeley, CO; and of you looking for ways to further engage your MTC San Jose, CA, respectively: participants’ mathematical thinking, Chris Bolognese and Mike Steward’s “Using Problem Posing to Empow- What happens when you cooperate in Blokus? er MTC Participants” will provide plenty of food for Try and create designs with rotational symmetry. thought. #toocool #jointhemath – @CrookedRiverMTC — Have MnMs, have combinatorial games Helping regions and states build networks of MTCs @NoCOMTC – @PaulAZeitz continues to be our biggest priority nationally.
    [Show full text]
  • The Postulates of Neutral Geometry Axiom 1 (The Set Postulate). Every
    1 The Postulates of Neutral Geometry Axiom 1 (The Set Postulate). Every line is a set of points, and the collection of all points forms a set P called the plane. Axiom 2 (The Existence Postulate). There exist at least two distinct points. Axiom 3 (The Incidence Postulate). For every pair of distinct points P and Q, there exists exactly one line ` such that both P and Q lie on `. Axiom 4 (The Distance Postulate). For every pair of points P and Q, the distance from P to Q, denoted by P Q, is a nonnegative real number determined uniquely by P and Q. Axiom 5 (The Ruler Postulate). For every line `, there is a bijective function f : ` R with the property that for any two points P, Q `, we have → ∈ P Q = f(Q) f(P ) . | − | Any function with these properties is called a coordinate function for `. Axiom 6 (The Plane Separation Postulate). If ` is a line, the sides of ` are two disjoint, nonempty sets of points whose union is the set of all points not on `. If P and Q are distinct points not on `, then both of the following equivalent conditions are satisfied: (i) P and Q are on the same side of ` if and only if P Q ` = ∅. ∩ (ii) P and Q are on opposite sides of ` if and only if P Q ` = ∅. ∩ 6 Axiom 7 (The Angle Measure Postulate). For every angle ∠ABC, the measure of ∠ABC, denoted by µ∠ABC, isa real number strictly between 0 and 180, determined uniquely by ∠ABC. Axiom 8 (The Protractor Postulate).
    [Show full text]