Environmental Sciences and Technology (Nijest)

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Sciences and Technology (Nijest) ISSN (Print): ISSN (Online): ISSN (Print): 2616-051X | ISSN (electronic): 2616-0501 NIGERIAN JOURNAL OF ENVIRONMENTAL SCIENCES AND TECHNOLOGY (NIJEST) https://www.nijest.com Volume 2 | Number 1 | March 2018 NIJEST / Nig. J. of Env. Sci. & Tech. 2 (1), March 2018 www.nijest.com NIGERIAN JOURNAL OF ENVIRONMENTAL SCIENCES AND TECHNOLOGY (NIJEST) https://www.nijest.com EDITORIAL BOARD EDITOR-IN-CHIEF Prof J. O. Ehiorobo Faculty of Environmental Sciences, University of Benin, Benin City, Nigeria / [email protected] EDITORS Prof. L. A. Ezemonye Prof. Olatunde Arayela Department of Animal and Environmental Biology, Department of Architecture, Federal University of University of Benin, Benin City, Nigeria Technology, Akure, Nigeria Prof. O. C. Izinyon Prof. G. C. Ovuworie Department of Civil Engineering, University of Benin, Department of Production Engineering, University of Benin City, Nigeria Benin, Benin City, Nigeria Prof. M. N. Ono Prof. C. C. Egolum Department of Surveying and Geoinformatics, Department of Estate Management, Nnamdi Azikwe Nnamdi Azikwe University, Awka University, Awka Prof. T. C. Hogbo Prof. Vladimir A. Seredovich Department of Quantity Surveying, Federal Siberian State University of Geosystems and Technologies, University of Technology, Minna Novosibirsk, Russia Prof. F. O. Ekhaise Prof. George W. K. Intsiful Department of Microbiology, University of Benin, Department of Architecture, Kwame Nkrumah University Benin City, Nigeria of Science and Technology, Kumasi, Ghana Prof. Clinton O. Aigbavboa Prof. Toshiroh Ikegami Department of Construction Management and Department of Urban Studies / School of Policy Studies, Quantity Surveying, University of Johannesburg, Kwansei Gakuin University, Yubinbango Nishinomiya, South Africa Japan Prof. Samuel Laryea Dr. (Ms) Oluropo Ogundipe School of Construction Economics and Management, Nottingham Geospatial Engineering Department, University of Witwatersrand, Johannesburg, South University of Nottingham, UK Africa Prof. Stephen Ogunlana Dr. Eugene Levin School of the Built Environment, Heriot Watt Geomatics Engineering Department, Michigan University, UK Technological University, Michigan, USA Prof. A.N. Aniekwu Prof. P. S. Ogedengbe Department of Architecture, University of Benin, Department of Estate Management, University of Benin, Benin City, Nigeria Benin City, Nigeria Dr. H.A.P. Audu Dr. Patrick Ogbu Department of Civil Engineering, University of Benin, Department of Quantity Surveying, University of Benin, Benin City, Nigeria Benin City, Nigeria JOURNAL SECRETARIAT Journal Secretary Assistant Journal Secretary Prof. Raph Irughe-Ehigiator Dr. Okiemute Roland Ogirigbo Department of Geomatics, University of Benin, Department of Civil Engineering, University of Benin, Benin City, Nigeria Benin City, Nigeria Nigerian Journal of Environmental of Environmental Sciences and Technology (NIJEST) Journal available online at http://www.nijest.com Vol 2 No. 1 March 2018 ISSN (Print): 2616-051X | ISSN (electronic): 2616-0501 Contents Article Page Stress and Environmental Health of Women in Different Neighbourhoods of Lagos Metropolis Nwokoro, I.I.C., Olayinka, D.N. and Okolie, C.J. 1 – 10 Improvement on the Strength of 6063 Aluminium Alloy by Means of Warm Rolling Operation Adekunle, N.O., Aiyedun, P.O., Kuye, S.I. and Lawal, I.O. 11 – 18 Evaluation of the Corrosion Rate of Aluminium 6063 in Petrol, Kerosene and Water Adekunle, N.O., Aiyedun, P.O., Kuye, S.I. and Adetunji, R.O. 19 – 27 Change Detection Analysis Using Surveying and Geoinformatics Techniques Onuigbo, I.C. and Jwat, J.Y. 28 – 38 Hydrogeophysical Survey of Groundwater Development at Okada Community Ovia North - East L.G.A. Edo State Ehigiator, M. O. 39 – 45 Performance Assessment of Biological Wastewater Treatment at WUPA Wastewater Treatment Plant, Abuja, Nigeria Chukwu, M.N. and Oranu, C.N. 46 – 55 Determination of Conversion Constant between Lagos Datum and Niger Delta Mean Lower Low Water Datum and their Horizontal and Vertical Accuracy Standards using GNSS Observations Ehigiator, M.O. and Oladosu, S.O. 56 – 68 Staff Satisfaction with Workplace Facilities in the School of Environmental Technology, Federal University of Technology, Akure, Nigeria Mbazor, D.N., Ajayi, M.A. and Ige, V.O. 69 – 77 Validation of Global Digital Elevation Models in Lagos State, Nigeria Arungwa, I.D., Obarafo, E.O. and Okolie, C.J. 78 – 88 Heavy metals in soil and accumulation in medicinal plants at an industrial area in Enyimba city, Abia State, Nigeria Ogbonna, P.C., Nzegbule, E.C., Obasi, K.O. and Kanu, H. 89 – 95 Soil chemical characteristics in wet and dry season at Iva long wall underground mined site, Nigeria Ogbonna, P.C., Nzegbule, E.C. and Okorie, P.E. 96 – 107 Linacre Derived Potential Evapotranspiration Method and Effect on Supplementary Irrigation Water Needs of Tomato/Cabbage/Carrot Emeribe, C.N., Isagba, E.S. and Idehen, O.F. 108 – 117 Aquifer Mapping in the Niger Delta Region: A Case Study of Edo State, Nigeria Seghosime, A., Ehiorobo, J.O., Izinyon, O.C. and Oriakhi O. 118 – 129 Non-Linear Error Functions Approach to Kinetic Study of Arsenic Removal from Soils using Proteus mirabili and Bacillus subtilis Atikpo, E., Agori, J.E., Iwema, E.R., Michael, A. and Umukoro, L.O. 130 – 136 Nigerian Journal of Environmental Sciences and Technology (NIJEST) www.nijest.com ISSN (Print): 2616-051X | ISSN (electronic): 2616-0501 Vol 2, No. 1 March 2018, pp 1 - 10 Stress and Environmental Health of Women in different Neighbourhoods of Lagos Metropolis Nwokoro, I.I.C. 1, Olayinka, D.N.2,* and Okolie, C.J.2 1Department of Urban & Regional Planning, Faculty of Environmental Sciences, University of Lagos, Nigeria 2Department of Surveying & Geoinformatics, Faculty of Engineering, University of Lagos, Nigeria Corresponding Author: *[email protected] ABSTRACT It has been established that women spend more time in the neighbourhood environment, and therefore, are more vulnerable to the observable poor conditions. The focus of this study is on neighbourhood environmental stressors that affect womens’ health in Lagos metropolis. The factors considered include access to clean water, adequate sanitation, drainage conditions, ventilation and hygiene, type of energy for cooking and nutrition. These factors are exacerbated by poverty and differ across different neighbourhoods in Lagos metropolis. 1150 respondents (high – 50; medium – 328; and low - 772) consisting of randomly selected women, aged 18 years and above were selected from all the 17 Local Government Areas (LGAs) in metropolitan Lagos to achieve 100% representation. Focus Group Discussions were held with women from selected different neighbourhoods. A 5-point likert scale was used as a measure of self-reported stress and self-reported health, with higher numbers indicating a greater self-reported stress. From the different survey methods used, results show that women in the low income neighbourhoods are more vulnerable to environmental stressors, and so their health is mostly affected negatively. Women in the other income groups also experience some form of stress but at lower severity levels. Environmental stressors and severity of chronic illness are linked to stress. An improvement in the environmental conditions will reduce the amount of stress experienced by women of different income neighbourhoods. Keywords: Stress, Environmental Stressors, Metropolitan Lagos, Neighbourhoods, Health 1.0. Introduction Women are major players in health care service provision through their roles as household managers and carers. In so doing, they spend longer hours in their household environment. All societies are divided along what we can call the fault line of gender (Moore, 1988; Papenek, 1990). This means that women and men are defined as different types of beings, each with their own opportunities, roles and responsibilities. However, WHO (1994) notes that these circumstances cause women to cope with the pressures of modernisation, which often requires them to assume additional duties and responsibilities, plus the burdens of their traditional roles. Thus women tend to have less time and energy. The social role of women may make them more vulnerable to certain hazards or exposures. Examples are the stress of womens’ multiple roles as income providers, home managers, and reproducers; or poor nutritional status which can increase susceptibility to environmental chemicals such as lead and cadmium, and exposure to harmful emissions from smoke while cooking. This was corroborated in the theory of work-family-conflict by Greenhaus and Beutell (1985). The above indices are the major reasons for exploring the interplay between the neighbourhood environment, stress and health of women. Pearlin and Schooler (1978) reported that the concept of stress not only refers to major life events but also encompasses ongoing minor events like electricity failure, maids not turning up, unexpected guests and childrens’ misbehaviour. Similarly, stress can be viewed as a physiological demand placed on the body when one must adapt, cope or adjust (Nevid and Rathus, 2007). Different types of stress include psychological, physical, chemical, environmental, long term and short term stress (Kelly et Nwokoro et al., 2018 1 Nigerian Journal of Environmental Sciences and Technology (NIJEST) Vol 2, No. 1 March 2018, pp 1 - 10 al., 1997). Similarly, Djuric et al. (2008) have also noted that chronic stressors (a long term form of stress) associated with health disparities include perceived discrimination, neighbourhood
Recommended publications
  • Aluminum Sheet / Plate
    Advanced Metal Technology Co.,Limited ALUMINUM PRODUCTS SERIES Advanced Metal Technology Co.,Limited 1 Hongnan Mansion, No.939 Jinqiao Road, Shanghai, China Post Code:200136 Tel: 0086-21-61623132 Fax: 0086-21-61622559 Henghua Technology Park,NAO.58dXiuvxi Raoand, WcuXei,Chdina Metal Technology Co.,Limited Post Code:214000 Tel: 0086-510-85192612 Fax: 0086-510-85192613 Flat/RM 1205, Tai Sang Bank Building, 130-132 Des Voeux Road Central, HK, China Advanced Metal Technology Co.,Limited CONTENT INTRODUCTION...............................................................................................................................3 ALUMINUM SHEET / PLATE..........................................................................................................3 1000 Series 1050 1060 1070 1100..............................................................................................6 5000 Series 5050 5054 5083 5454..............................................................................................7 6000 Series 6010 6011 6061 6062 6063.....................................................................................8 7000 Series 7005 7A04 7A09 7050 7075...................................................................................9 Aluminum Composite Sheet..................................................................................................... 10 Roof Ceiling.............................................................................................................................. 12 Air Plane Plate...........................................................................................................................14
    [Show full text]
  • Statistical Analysis of the Optical Interferometry of Pitting Process in Aluminum 3003 Sheets Exposed to Saline Environment
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 8 ( 2015 ) 82 – 90 International Congress of Science and Technology of Metallurgy and Materials, SAM - CONAMET 2013 Statistical Analysis of the Optical Interferometry of Pitting Process in Aluminum 3003 Sheets Exposed to Saline Environment Solange Y. Paredes-Dugarte, Benjamín Hidalgo-Prada Material Science Department, Materials Characterization Laboratory. Research Institute of Biomedicine and Applied Sciences “Dra. Susan Tai”, University Ave., Cumaná, Sucre 6101, Venezuela. Abstract In this study, a statistical evaluation was made of the susceptibility to pitting corrosion, using the pitting factor criteria. Specimens were cut in size of 15 cm x10 cm of AA3003 aluminium sheet of temper H14, H16 and H18 of national production. Afterwards, they were exposed to a salt spray during 72, 144, 216, 288 and 360 hours continually, according to ASTM B117 standard. After salt spray test was observed pitting attack in all specimens regardless of the exposure time and the degree of deformation (temper) of material. The surfaces of the corroded specimens were analyzed by optical interferometry. The parameters evaluated in each field were: roughness (Rms), peak-valley distance (PV) and the lowest point of all peaks (V). A pitting factor of the order of 4 was calculated, indicating a highly localized corrosion process for this commercial aluminium alloy 3003 in saline environment. © 20152014 TheThe Authors. Authors. Published Published by Elsevierby Elsevier Ltd. LtdThis. is an open access article under the CC BY-NC-ND license Selection(http://creativecommons.org/licenses/by-nc-nd/4.0/ and peer-review under responsibility).
    [Show full text]
  • Lead Action News Lanv15n2 Combating the Silent Epidemic
    LEAD Action News vol. 15 no. 2, February 2015 ISSN 1324-6012 The newsletter of The LEAD (Lead Education and Abatement Design) Group Inc. PO Box 161 Summer Hill NSW 2130 Australia Ph: (02) 9716 0014, Email www.lead.org.au/cu.html Web:www.lead.org.au/ www.leadsafeworld.com Editor-in-Chief: Elizabeth O’Brien, Editorial Team: Rocky Huang, Mish Calvert Combating the Silent Epidemic This issue is about providing you with information to combat lead poisoning. From nutritional information to finding out how to stay lead safe by paying attention to the different sources of lead contamination and ways that lead can enter the body of you and your family and taking the appropriate action to combat these threats. It is up to us, every single one of us, to combat lead in our local environment and together we can work towards a lead-safe future. To do this, The LEAD Group aims to arm you with information as well as provide you with the tools to detect and take further action about the lead in your surroundings. If you haven't already, please visit our shop (http://www.leadsafeworld.com/shop/) and become a member / partner and join our cause for a lead-safe future. Additionally, we highly recommend that you check out our newest project 'The Blood Lead Challenge (http://www.leadsafeworld.com/wp-content/uploads/2014/10/Blood-Lead- Challenge.pdf)! You can find more information about the articles in this issue of LEAD Action News in the Editorial. VAP Entry: Our children heading for a lead-safe world.
    [Show full text]
  • Aluminium Alloys Chemical Composition Pdf
    Aluminium alloys chemical composition pdf Continue Alloy in which aluminum is the predominant lye frame of aluminum welded aluminium alloy, manufactured in 1990. Aluminum alloys (or aluminium alloys; see spelling differences) are alloys in which aluminium (Al) is the predominant metal. Typical alloy elements are copper, magnesium, manganese, silicon, tin and zinc. There are two main classifications, namely casting alloys and forged alloys, both further subdivided into heat-treatable and heat-free categories. Approximately 85% of aluminium is used for forged products, e.g. laminated plates, foils and extrusions. Aluminum cast alloys produce cost-effective products due to their low melting point, although they generally have lower tensile strength than forged alloys. The most important cast aluminium alloy system is Al–Si, where high silicon levels (4.0–13%) contributes to giving good casting features. Aluminum alloys are widely used in engineering structures and components where a low weight or corrosion resistance is required. [1] Alloys composed mostly of aluminium have been very important in aerospace production since the introduction of metal leather aircraft. Aluminum-magnesium alloys are both lighter than other aluminium alloys and much less flammable than other alloys containing a very high percentage of magnesium. [2] Aluminum alloy surfaces will develop a white layer, protective of aluminum oxide, if not protected by proper anodization and/or dyeing procedures. In a wet environment, galvanic corrosion can occur when an aluminum alloy is placed in electrical contact with other metals with a more positive corrosion potential than aluminum, and an electrolyte is present that allows the exchange of ions.
    [Show full text]
  • Joel M. Stoltzfus, Editors
    STP 1197 Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: 6th Volume Dwight D. Janoff and Joel M. Stoltzfus, editors ASTM Publication Code Number (PCN) 04-011970-31 ASTM 1916 Race Street Philadelphia, PA 19103 Copyright by ASTM Int'l (all rights reserved); Tue Dec 29 00:39:23 EST 2015 Downloaded/printed by University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized. Library of Congress ISBN: 0-8031-1855-4 ISSN: 0899-6652 ASTM Publication Code Number (PCN): 04-011970-31 Copyright AMERICAN SOCIETY FOR TESTING AND MATERIALS, Philadelphia, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher. Photocopy Rights Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by the AMERICAN SOCIETY FOR TESTING AND MATERIALS for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of $2.50 per copy, plus $0.50 per page is paid directly to CCC, 27 Congress St., Salem, MA 01970; (508) 744-3350. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Service is 0-8031-1855-4/93 $2.50 + .50. Peer Review Policy Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.
    [Show full text]
  • Alloys for Aeronautic Applications: State of the Art and Perspectives
    metals Review Alloys for Aeronautic Applications: State of the Art and Perspectives Antonio Gloria 1, Roberto Montanari 2,*, Maria Richetta 2 and Alessandra Varone 2 1 Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; [email protected] 2 Department of Industrial Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; [email protected] (M.R.); [email protected] (A.V.) * Correspondence: [email protected]; Tel.: +39-06-7259-7182 Received: 16 May 2019; Accepted: 4 June 2019; Published: 6 June 2019 Abstract: In recent years, a great effort has been devoted to developing a new generation of materials for aeronautic applications. The driving force behind this effort is the reduction of costs, by extending the service life of aircraft parts (structural and engine components) and increasing fuel efficiency, load capacity and flight range. The present paper examines the most important classes of metallic materials including Al alloys, Ti alloys, Mg alloys, steels, Ni superalloys and metal matrix composites (MMC), with the scope to provide an overview of recent advancements and to highlight current problems and perspectives related to metals for aeronautics. Keywords: alloys; aeronautic applications; mechanical properties; corrosion resistance 1. Introduction The strong competition in the industrial aeronautic sector pushes towards the production of aircrafts with reduced operating costs, namely, extended service life, better fuel efficiency, increased payload and flight range. From this perspective, the development of new materials and/or materials with improved characteristics is one of the key factors; the principal targets are weight reduction and service life extension of aircraft components and structures [1].
    [Show full text]
  • Arc Welding of Nonferrous Metals Arc Welding of Nonferrous Metals
    Arc Welding of Nonferrous Metals Arc Welding of Nonferrous Metals Published by The Arc Welding of Nonferrous Metals KOBE STEEL, LTD. is a textbook for providing information to assist welding personnel study © 2015 by KOBE STEEL, LTD. the arc welding technologies commonly 5-912, Kita-Shinagawa, Shinagawa-Ku, applied in the equipment made from Tokyo, 141-8688 Japan aluminum, aluminum alloys, copper, copper alloys, nickel, and nickel alloys. All rights reserved. No part of this book may be reproduced, Reasonable care is taken in any form or by any means, without in the compilation and publication of permission in writing from this textbook to insure authenticity of the publisher the contents. No representation or warranty is made as to the accuracy or reliability of this information. Forewords Nonferrous metals are non-iron-based metals such as aluminum and aluminum alloys, copper and copper alloys, nickel and nickel alloys, titanium and titanium alloys, and magnesium and magnesium alloys. Today, nonferrous metals are used in various welding constructions for diverse industrial applications. However, their weldability is quite different from that of steel, due to specific physical and metallurgical characteristics. Therefore, the welding procedure for nonferrous metals should be thoroughly examined taking into account the inherent characteristics of the particular nonferrous metal to be welded, in order to get sound weldments. This textbook focuses on the arc welding of aluminum, aluminum alloys, copper, copper alloys, nickel, and nickel alloys that are used more extensively over other nonferrous metals for industrial applications. This textbook consists of three chapters: Chapter 1: Arc Welding of Aluminum and Aluminum Alloys Chapter 2: Arc Welding of Copper and Copper Alloys Chapter 3: Arc Welding of Nickel and Nickel Alloys iii Chapter 1 Arc Welding of Aluminum and Aluminum Alloys Contents Introduction 2 1.
    [Show full text]
  • General Review Processing
    General review Tjong SC,Chen H Nanocrystalline materials and coatings. MATERIALS SCIENCE & ENGINEERING R-R-ORTS.S- 30 2004,VOL 4,51-88 Zhang X, Wang H, Koch CC Mechanical behavior of bulk ultrafine-grained and nanocrystalline Zn. REVIEWS ON ADVANCED MATERIALS SCIENCE.MAY 2004,VOL 6,53-93 Kurzydlowski KJ, Garbacz H, Richert M Effect of severe plastic deformation on the microstructure and mechanical properties of Al and Cu. REVIEWS ON ADVANCED MATERIALS SCIENCE.DEC 2004,VOL 8,129-133 Processing Zhu YT, Langdon TG, The fundamentals of nanostructured materials processed by severe plastic deformation. JOM.OCT 2004,VOL 56,58-63 Raab GJ, Valiev RZ, Lowe TC, Zhu YT Continuous processing of ultrafine grained Al by ECAP-Conform. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING.S- 25 2004,VOL 382,30-34 Perez CJL On the correct selection of the channel die in ECAP processes. SCRIPTA MATERIALIA.FEB 2004,VOL 50,387-393 Park KT, Han SY, Ahn BD, Shin DH, Lee YK, Um KK Ultrafine grained dual phase steel fabricated by equal channel angular pressing and subsequent intercritical annealing. SCRIPTA MATERIALIA.NOV 2004,VOL 51,909-913 Zhu YT, Lowe TC, Langdon TG Performance and applications of nanostructured materials produced by severe plastic deformation. SCRIPTA MATERIALIA.OCT 2004,VOL 51,825-830 Nakamura K, Neishi K, Kaneko K, Nakagaki M, Horita Z Development of severe torsion straining process for rapid continuous grain refinement. MATERIALS TRANSACTIONS.DEC 2004,,VOL 45,3338-3342 Takara A, Nishikawa Y, Watanabe H, Somekawa H, Mukai T, Higashi K Secondary processing of AZ31 magnesium alloy concomitant with grain growth or dynamic recrystallization.
    [Show full text]
  • Antifreeze Concentrate Containing Inhibitors to Prevent Localized
    Europâisches Patenta mt European Patent Office (jj) Publication number: 0 042 937 Office européen des brevets B1 EUROPEAN PATENT SPECIFICATION (45) Date of publication of patent spécification: 10.10.84 (D Int. Cl.3: C 09 K 5/00 (à) Application number: 81103375.2 ® Dateoffiling: 05.05.81 (H) Antifreeze concentrate containing inhibîtors to prevent localized corrosion of aluminum and solder alloy. (§) Priority: 19.05.80 US 151069 ® Proprietor: BASF WYANDOTTE CORPORATION 1609 Biddle Avenue Wyandotte Michigan 48192 (US) (§) Date of publication of application: 06.01.82 Bulletin 82/01 (§) Inventor: Hirozawa, Stanley Tariho 174 Bassett Place (§) Publication of the grant of the patent: Birmingham Michigan 48010 (US) 10.10.84 Bulletin 84/41 (74) Représentative: Michaelis, Wolfgang, Dr. et al (S) Designated Contracting States: c/o BASF Aktiengesellschaft 38 Carl-Bosch- BE DE FR GB NL SE Strasse D-6700 Ludwigshafen (DE) (5Ï) Références cited: GB-A-945 638 GB-A-2 059432 US-A-4 085 063 Cû CM Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall CL be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been LU paid. (Art. 99(1 ) European patent convention). Courier Press, Leamington Spa, England. This invention relates to localized corrosion inhibited antifreeze concentrates in coolant compositions in contact with metals comprising aluminium and solder alloys. The use of aluminium and aluminium alloys in automobile engines has recently become of interest as a result of greater emphasis on weight reduction.
    [Show full text]
  • The Study of Intermetallic Particles in Aluminium Alloy AA3104 Can-Body Stock During Homogenisation
    University of Cape Town Submitted is partial fulfilment of the requirements for the master’s degree Masters Dissertation The study of intermetallic particles in aluminiumTown alloy AA3104 can- body stock during homogenisation Cape Livhuwaniof Tessa Magidi Supervisor: Dr Sarah L. George Co-supervisor: Prof Robert D. Knutsen March 2017 University The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town PLAGARISM DECLARATION 1. "I know the meaning of plagiarism and declare that all the work in the document, save for that which is properly acknowledged, is my own. This thesis/dissertation has been submitted to the Turnitin module (or equivalent similarity and originality checking software) and I confirm that my supervisor has seen my report and any concerns revealed by such have been resolved with my supervisor." 2. Each significant contribution to, and quotation in, this project from the work, or works of other people has been attributed and has cited and referenced. 3. This project is my own work. 4. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as his or her own work. 5. I acknowledge that copying someone else's assignment or project, or part of it, is wrong, and declare that this is my own work.
    [Show full text]
  • Linking Science and Technology for Global Solutions
    Linking Science and Technology for Global Solutions March 9-13, 2008 Ernest Morial Convention Center 2008 New Orleans, Louisiana, USA 137th Annual Meeting & Exhibition Register before February 11 at www.tms.org/annualmeeting.html March 9-13, 2008 Ernest Morial Convention Center 2008 New Orleans, Louisiana, USA 137th Annual Meeting & Exhibition TMS 2008 is bringing top materials scientists and engineers from around the world together to address some of today’s global challenges: Resolving technology and techno-management issues for the production of aluminum, metal castings, steel, automotive and electronic materials Optimizing energy utilization and addressing enviromental impacts Developing materials for high-performance applications Achieving process improvement for a variety of materials under a variety of conditions Preparing future materials scientists and engineers These issues and more are presented in 56 symposia covering four major themes: Light Metals Extraction, Processing, Structure and Properties Emerging Materials Materials and Society TMS 2008 addresses these global challenges with traditional programming presenting new developments, such as . 9th Global Innovations Symposium Aluminum Reduction Technology Bulk Metallic Glasses Magnesium Technology 2008 Materials in Clean Power Systems III Ultrafine Grained Materials . with new partnerships represented . American Physical Society and TMS present Integrated Computational Materials Engineering symposia. The Chinese Society for Metals delegation, led by Professor Liu Yongcai,
    [Show full text]
  • A Review on Similar and Dissimilar Aluminium Alloys Jointed by Friction Stir Welding
    IJSART - Volume 6 Issue 12 –DECEMBER 2020 ISSN [ONLINE]: 2395-1052 A Review On Similar And Dissimilar Aluminium Alloys Jointed By Friction Stir Welding Noorullah D1, Dr.K. Venkatesan2, Aravinthan S3 1Professor, Dept of Metallurgical Engineering 2Assistant Professor, Dept of Metallurgical Engineering 3Dept of Metallurgical Engineering 1, 2, 3 Government College Of Engineering, Salem-11 Abstract- Aluminium alloy composites are the fastest used in many industries like aerospace, transportation and developing materials for structural applications due to their several structural applications because of their high specific high specific weight, modulus, and resistance to corrosion and strength, good formability and good corrosion resistance [4, wear, and high temperature strength. A Friction Stir Welding 5]. Friction stir welding (FSW) is one of them and its current Exploits its solid state process behaviour of join aluminium applications are mainly on aluminum alloys, in particular alloys. As a solid state joining process, friction stir welding those known to be difficult to weld. Experience has has proven to be a promising approach for joining aluminium demonstrated that welding without reaching the melting point alloys. However, challenges still remains in using FSW to join makes it possible to assemble these aluminium alloys. In aluminium alloys. This review investigates the distinction and addition, phenomena such as hot cracking or volatile solute characteristic of aluminium and its alloys and also specific loss can be avoided [6]. A non-consumable rotating tool attention and critical assessment have given to: (a) the harder than the base material is plunged into the abutting macrostructure and microstructure of al alloys joints, (b) the edges of the plates to be joined under sufficient axial force and evaluation of mechanical properties of joints.
    [Show full text]