Small-Scale Natural Wastewater Treatment Systems: Principles and Regulatory Framework1 Kiara Winans, Shanin Speas-Frost, Mike Jerauld, Mark Clark, and Gurpal Toor2

Total Page:16

File Type:pdf, Size:1020Kb

Small-Scale Natural Wastewater Treatment Systems: Principles and Regulatory Framework1 Kiara Winans, Shanin Speas-Frost, Mike Jerauld, Mark Clark, and Gurpal Toor2 Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. SL365 Small-Scale Natural Wastewater Treatment Systems: Principles and Regulatory Framework1 Kiara Winans, Shanin Speas-Frost, Mike Jerauld, Mark Clark, and Gurpal Toor2 Introduction and Purpose Removing contaminants from wastewater before the effluent is released or reused will ensure that no harm is Natural systems used for treating wastewater are known caused to the environment. Untreated wastewater in the by many names, including constructed wetlands, artificial environment can cause eutrophication (algae growth in wetlands, biofilters, and various trademarked names. In water bodies), depressed oxygen levels (which will kill this article, these systems will be referred to as small-scale fish), accumulation of toxic chemicals and heavy metals in natural wastewater treatment systems (abbreviated as aquatic organisms, and human health concerns. “natural systems”). Natural systems both transform and hold on to many of the common pollutants that occur in Some conventional treatment systems with advanced household wastewater. These pollutants include disease- technologies actually use many of the principles of natural causing pathogens, suspended sediments, organic matter, systems. Examples of conventional treatment systems nutrients such as nitrogen (N) and phosphorus (P), heavy include septic tanks, aeration tanks, porous filter media, metals, and trace organic chemicals (Kadlec and Knight chemical polymers, distribution pumps, rock beds, earthen 1996). mounds, dispersion fields, and plastic chambers. However, when natural systems are incorporated into a landscape or The major natural processes occurring in natural systems building design, they can provide added benefits compared include sedimentation (settling of solids), plant uptake, to a conventional treatment system. bacterial degradation, and chemical adsorption (fixation). These processes help remove physical, biological, and Wetlands have been used numerous times to treat wastewa- chemical contaminants from wastewater. This is important ter, and they have proven to be a well-suited, cost-effective, because various contaminants found in untreated wastewa- and environmentally friendly treatment alternative to ter must be removed before the effluent can be safely reused conventional systems (DeBusk 1999). Constructed wetlands or released to the environment. Here wastewater refers to for small flows (from individual or community households wastewater prior to the removal of contaminants produced or businesses) have been a wastewater treatment option by domestic, municipal, industrial, or agricultural activities, for at least 18 years. The principles described in this article while effluent refers to wastewater following primary, apply to either vegetated submerged bed wetlands or secondary, tertiary, or advanced treatment. wetlands with an open water surface, even though there are 1. This document is SL365, one of a series of the Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date May 2012. Visit the EDIS website at http://edis.ifas.ufl.edu. 2. Kiara Winans, Ph.D. candidate, Department of Soil and Water Science; Shanin Speas-Frost, water reuse/wastewater wetlands coordinator, Florida Department of Environmental Protection, Tallahassee, FL; Mike Jerauld, research scientist 3, DB Environmental, Inc., Rockledge, FL; Mark Clark, associate professor, Department of Soil and Water Science; and Gurpal Toor, assistant professor, Department of Soil and Water Science, Gulf Coast Research and Education Center, Wimauma, FL; Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. U.S. Department of Agriculture, Cooperative Extension Service, University of Florida, IFAS, Florida A&M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Millie Ferrer-Chancy, Interim Dean Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. differences between the two. Wallace and Knight (2004) of chemical inputs and result in sludge as a byproduct of the found that vegetated submerged bed wetlands are more treatment process. The natural systems may be especially commonly used for small-scale applications than wetlands effective and practically feasible in rural areas where homes with an open water surface because of the decrease in can be clustered together (for example, one system can exposure to pathogens. (Note: Vegetated submerged bed serve a number of structures with more than one and up to wetlands are also known as submerged flow, horizontal hundreds of connections). subsurface flow wetlands, and root zone systems. These wetlands are designed to create subsurface flow through Using natural processes to treat wastewater provides added a permeable medium, usually a gravel bed that is then benefits. These systems can be designed to be aesthetically planted with wetland vegetation.) appealing and can be incorporated into the landscape or a greenhouse. Similar to a fertilizer, the high nutrient content This document briefly describes the principles and added of the wastewater supports a dense plant growth. It is best benefits of natural systems. It then focuses on the use of to use native plants that will either persist throughout natural systems for treating small municipal wastewater the winter or regrow or reseed in the spring. However, it flows from commercial and residential sites (i.e., septic is possible to use multipurpose plant species, including systems or decentralized wastewater systems). This docu- ornamentals; these can provide a pleasing aesthetic and ment is not intended as a “how to” of treatment system bring a wildlife benefit (e.g., bird habitats) that conventional design. Instead it is an introduction to the use of natural systems rarely provide. processes (common in wetland ecosystems) for the purpose of treating wastewater. The target audience for this publica- Deciding which type of system to use (traditional or one tion includes community developers and city, county, or that employs a constructed wetland component) is based state personnel who may have the authority to approve use on environmental and regulatory requirements as well as of natural systems in select areas. physical constraints of the site. Natural vs. Conventional Principles of Small-Scale Natural Treatment Systems Wastewater Treatment Systems Individual residential and small commercial wastewater System Design of Small-Scale Natural flows are usually treated using an onsite wastewater treat- Wastewater Treatment Systems ment system (i.e., septic system). Septic systems typically Small-scale natural systems are designed on ecological provide adequate treatment for pathogens, and, if designed principles. The goal is to maximize the function of relevant properly, they will provide adequate treatment for both ecological processes within a limited area. The hydraulic nutrients and pathogens. In fact, several advanced onsite residence time (i.e., the amount of time the wastewater treatment systems incorporate the principles of natural remains in the system) is a key design factor. It is affected systems (i.e., aerobic and anaerobic pretreatment). For an by (1) the size of the components in the system, (2) the overview of wastewater flow and quality in septic systems, concentration of contaminants entering the system and the consult Toor et al. (2011) EDIS article “Onsite Sewage level of treatment required, and (3) the flow of wastewater Treatment and Disposal Systems: An Overview” available at through the system. There are typically two and sometimes http://edis.ifas.ufl.edu/ss549. three stages of treatment: pretreatment, biological polish- Compared to conventional onsite wastewater treatment ing, and, in some cases, effluent disinfection. Water quality systems, natural systems are generally more ecologically testing should be incorporated before and after each stage and economically efficient but are relatively more design- to ensure optimal performance and compliance. intensive. In these systems, pretreating the wastewater by The pretreatment stage involves breaking down of organic aerobic and/or anaerobic digestion allows microorganisms matter and settling of solids. Water quality testing done to biologically process the contaminants in the wastewater during the pretreatment stage measures the 5-day Biologi- so that wetland plants and algae in the water column can cal Oxygen Demand (BOD ) and total suspended solids take up and further process the contaminants. In contrast, 5 (TSS). (The 5-day Biological Oxygen Demand test is fairly conventional wastewater treatment methods used to further easy to conduct and measures the rate of oxygen uptake by reduce contaminants such as nutrients become increasingly microorganisms in water over a period of five days.) expensive to implement. These often require a large amount 2 Archival copy: for current recommendations
Recommended publications
  • 252:641 Individual and Small Public On-Site Sewage Treatment Systems
    Codification through the 2021 Legislative session Subchapters 1, 3, 12, 15; Appendix H and N Board adoption - February 19, 2021 Approved by Governor's signature on OK HB1046 on June 11, 2021 Effective date – September 15, 2021 TITLE 252. DEPARTMENT OF ENVIRONMENTAL QUALITY CHAPTER 641. INDIVIDUAL AND SMALL PUBLIC ON-SITE SEWAGE TREATMENT SYSTEMS Subchapter 1. General Provisions ..................................................................................................... 252:641-1-1 3. Soil Tests .................................................................................................................... 252:641-3-1 5. Building Sewer and Collection Systems .................................................................... 252:641-5-1 7. Septic Tanks ............................................................................................................... 252:641-7-1 9. Pump Tanks ............................................................................................................... 252:641-9-1 10. Aerobic Treatment Systems ................................................................................... 252:641-10-1 11. Subsurface Systems [REVOKED] ......................................................................... 252:641-11-1 12. Dispersal Fields ...................................................................................................... 252:641-12-1 13. Aerobic Systems [REVOKED].............................................................................. 252:641-13-1 15. Lagoons .................................................................................................................
    [Show full text]
  • Mathematical Modeling of the Performance of a Rotating Biological Contactor for Process Optimisation in Wastewater Treatment
    Mathematical Modeling of the Performance of a Rotating Biological Contactor for Process Optimisation in Wastewater Treatment Zur Erlangung des akademischen Grades eines DOKTOR-INGENIEURS von der Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften der Universität Fridericiana zu Karlsruhe (TH) genehmigte DISSERTATION von Sanjay Dutta, M.Tech. aus Kalkutta, Indien Tag der mündlichen Prüfung: 14. Februar, 2007 Hauptreferent: Prof. Dr. Ing. E.h. Hermann H. Hahn, Ph.D., Karlsruhe Korreferent: Prof. Dr. rer. nat. habil. Josef Winter, Karlsruhe Karlsruhe 2007 Dissertation genehmigt von der Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften Universität Fridericiana zu Karlsruhe (TH) 2007 Hauptreferent: Prof. Dr. Ing. E.h. Hermann H. Hahn, Ph.D., Karlsruhe Korreferent: Prof. Dr. rer. nat. habil. Josef Winter, Karlsruhe Dutta, Sanjay Mathematical Modeling of the Performance of a Rotating Biological Contactor for Process Optimisation in Wastewater Treatment Karlsruhe: Universität Karlsruhe – Verlag Siedlungswasserwirtschaft Karlsruhe, 2007 (Schriftenreihe SWW – Band 126) Zugl.: Karlsruhe, Univ., Diss., 2007 ISBN 978-3-9809383-9-6 ISBN 978-3-9809383-9-6 Alle Rechte vorbehalten Satz: Institut für Wasser und Gewässerentwicklung Bereich Siedlungswasserwirtschaft Universität Karlsruhe (TH) Druck: E&B printware, Digital- und Schnelldruck GmbH, 76131 Karlsruhe Printed in Germany Vorwort 3 Vorwort des Herausgebers Scheibentauchkörper als biologische Reinigungselemente haben sich bislang einer eher auf spezifische Anschlussgrößen (im mittleren
    [Show full text]
  • Maricopa County Environmental Health Code
    Maricopa County Environmental Health Code January 27, 2021 MARICOPA COUNTY ENVIRONMENTAL HEALTH CODE CHAPTER I GENERAL PROVISIONS REGULATION 1. Definitions The following definitions shall apply throughout this Environmental Health Code, unless a different meaning is clearly indicated by the context or is stated in another chapter. a. “Approved” or "approval" means acceptable to the Department and so stated in writing. b. “Board” means the Maricopa County Board of Supervisors. c. “Board of Health" means the Board of Health of Maricopa County. d. “Chairman” means the Chairman of the Maricopa County Board of Supervisors. e. “Clerk” means the Clerk of the Maricopa County Board of Supervisors. f. “Counsel” means an attorney licensed to practice law in the State of Arizona. g. “County” means Maricopa County. h. “Department” means the Maricopa County Environmental Services Department. i. “Environmental Health Code” means all of the rules and regulations which are adopted by the Board of Health and the Board of Supervisors pursuant to A.R.S. 36-183.02 through 36-183.07, 36-184, 36-187(C), 11-251 Paragraphs 17 and 31, 11-251.05, 11- 251.08, 49-106, and 49-107, and which remain in force. j. “Environmental Health Officer” means the Director of the Maricopa County Environmental Services Department or his/her authorized Agents. k. “Municipality” means an incorporated area within Maricopa County. l. “Notice" means an enforcement Notice issued by the Environmental Health Officer. m. “Parties” means the Defendant and the County. n. “Permit” means a written permit to operate, issued by the Maricopa County Environmental Services Department.
    [Show full text]
  • Technical Review and Advisory Panel (Trap) Meeting
    T ECHNICAL R EVIEW AND A DVISORY P ANEL ONSITE SEWAGE TREATMENT AND DISPOSAL SYSTEMS ADVISORY TO THE DEPARTMENT OF HEALTH AUTHORITY: SECTION 381.0068, FLORIDA STATUTES TECHNICAL REVIEW AND ADVISORY PANEL (TRAP) MEETING DATE: Thursday, October 16, 2014 TIME: 10:00 a.m. PLACE: Conference call meeting Teleconference Phone Number: 888-670-3525 At the prompt, enter the Participant Code: 2980 214 500 For those who wish to attend the meeting in person, the conference call will originate from: Capital Circle Office Complex Conference Room 110 F 4025 Bald Cypress Way, Tallahassee, Florida 32399 THIS MEETING IS OPEN TO THE PUBLIC. Agenda 1. Introductions 2. Review minutes of last meeting 3. Old Business Rule Issues 12-07 ATU Maintenance Versus Drainfield Maintenance 14-01 Rule Reduction (continued from 9/25/2014) 4. New Business 5. Other items of interest to the Technical Review and Advisory Panel 6. Public Comment Scott Johnson Pam Tucker Martin Guffey Robert Baker PROFESSIONAL ENGINEER REAL ESTATE INDUSTRY SEPTIC TANK INDUSTRY SEPTIC TANK MANUFACTURER Glenn Bryant Russ Melling Scott Franz Sonia Cruz COUNTY HEALTH DEPARTMENT CONSUMER SOIL SCIENTIST ENVIRONMENTAL HEALTH Victor Godlewski Ken Odom, Chair Roy Pence, Vice Chair LOCAL GOVERNMENT HOME BUILDING INDUSTRY HOME BUILDING INDUSTRY T ECHNICAL R EVIEW AND A DVISORY P ANEL ONSITE SEWAGE TREATMENT AND DISPOSAL SYSTEMS ADVISORY TO THE DEPARTMENT OF HEALTH AUTHORITY: SECTION 381.0068, FLORIDA STATUTES TECHNICAL REVIEW AND ADVISORY PANEL (TRAP) MEETING MINUTES DATE: Thursday, September 25, 2014 PLACE:
    [Show full text]
  • Treatment of Domestic Waste Water Using Natural Flocculants
    Int. J. LifeSc. Bt & Pharm. Res. 2012 Narmadha D and Mary Selvam Kavitha V J, 2012 ISSN 2250-3137 www.ijlbpr.com Vol. 1, No. 3, July 2012 © 2012 IJLBPR. All Rights Reserved Research Paper TREATMENT OF DOMESTIC WASTE WATER USING NATURAL FLOCCULANTS Narmadha D1* and Mary Selvam Kavitha V J1 *Corresponding Author: Narmadha D, [email protected] Wastewater generated from wastewater treatment plant contains odors some non pathogens, fecal Coliforms, fungus etc., and chemicals such as phenols, nitrate, chloride etc., in addition to usual constituents such as urine and faeces. The present investigation was hence made in wastewater treatment plant situated in Kallaraimedu of Kodaikanal. Presently the waste water is passing through an underground system to the wastewater plant. In this study analyze the Physio-chemical parameters and biological parameters of septic water before and after treatment with horse and cow dung; and portable water. Isolate and identify the microbes present in horse and cow dung by using biochemical tests. Keywords: Waste water, microbial treatment of waste, Flocculants INTRODUCTION such as urea, fruit sugars, soluble proteins, drugs, Wastewater can be defined as the flow of use pharmaceuticals, etc.; Inorganic particles such water discharged from homes, businesses, as sand, grit, metal particles, ceramics, etc.; industries, commercial activities and institutions Soluble inorganic material such as ammonia, which are directed to treatment plants by a road-salt, sea-salt, cyanide, hydrogen sulfide, carefully designed and engineered network of thiocyanates, thiosulfates, etc.; Animals such as pipes. This wastewater is further categorized and protozoa, insects, arthropods, small fish, etc.; defined according to its sources of origin as 1.
    [Show full text]
  • Small Scale Treatment Systems
    SMALL SCALE TREATMENT SYSTEMS . Paper presented at the Seminar on "Urban Wastewater a Lost Resource or an Opportunity" at Perth, Western Australia Kuruvilla Mathew and Goen Ho Environmental Science, Murdoch University August 1993 149 2 SMALL SCALE TREATMENT SYSTEMS Kuruvilla Mthew and Goen Ho Environmental Science, Murdoch University, Murdoch, Western Austarlia. 1. INTRODUCTION Inadequate or improper collection and disposal of liquid waste leads to pollution of surface and groundwater and pose major threats to public health and community well being. The emergence of big cities and industries has typically demanded centralised collection, treatment and disposal systems for liquid wastes. Most cities in developed countries have reticulated sewerage systems which collect and treat the wastes to acceptable standards. In fact a majority of municipal authorities and public health engineers consider the reticulated sewerage system with a modern high technology treatment system and disposal facility as the only suitable approach to liquid waste for a municipal area. Such systems require continuous and plentiful supply of water along with all the capital intensive infrastructure necessary for treatment and these conditions are not always easily fulfilled. Developing countries and smaller more isolated communities find the cost of providing such facilities to achieve the necessary public health requirements prohibitively high. In rural and semi-rural and particularly remote areas a centralised system generally costs much more on a per capita basis than a locally based independent system of liquid waste .disposal. In this context there are now a variety of options for wastewater treatment, disposal and reuse. Such systems can produce an effluent quality equal to or better than a conventional treatment plant.
    [Show full text]
  • Wastewater Treatment Technologies List.Cdr
    GK.TAMILGOD.ORG List Of Wastewater Treatment TECHNOLOGIES TECHNOLOGIES G K . T A M I L G O D . O R G G K . TA M I L G O D . O R G A Ta m i l Q A P o r t a l . Wastewater Treatment Technologies Activated sludge model Activated sludge systems Adsorption/Bio-oxidation process Advanced oxidation process Aerated lagoon Aerobic granular reactor Aerobic granular sludge technology Aerobic granulation Aerobic treatment system Anaerobic clarigester Anaerobic digester types Anaerobic digestion Anaerobic filter Anaerobic lagoon Anammox API oil-water separator Belt filter Bioconversion of biomass to mixed alcohol fuels Biofilters Bioreactor Bioretention Biorotor Capacitive deionization Carbon filtering Cesspit Chemical addition wastewater treatment Clarifier Coarse bubble diffusers Composting toilet Constructed wetland Cross-flow filtration Dark fermentation Decentralized wastewater system Diffuser (sewage) Page 01 G K . TA M I L G O D . O R G A Ta m i l Q A P o r t a l . G K . TA M I L G O D . O R G A Ta m i l Q A P o r t a l . Wastewater Treatment Technologies Dissolved air flotation Dissolved gas flotation Desalination Distillation EcocyclET systems Electrocoagulation Electrodeionization Electrodialysis Electrolysis Enhanced biological phosphorus removal Expanded granular sludge bed digestion Extended aeration Facultative lagoon Fenton's reagent Filtration Fine bubble diffusers Flocculation & sedimentation Flotation process Forward osmosis Froth flotation Hydrocyclone Imhoff tank Induced gas flotation Ion exchange Lamella clarifier (inclined plate clarifier)[1] Living machines Maceration (sewage) Media filter Membrane bioreactor Membrane distillation Membrane fouling Microbial fuel cell Microflotation Moving bed biofilm reactor Page 02 G K .
    [Show full text]
  • Chaptert 64E-6, Florida Administrative Code, Standards for Onsite Treatment and Disposal Systems
    STATE OF FLORIDA DEPARTMENT OF HEALTH CHAPTER 64E-6, FLORIDA ADMINISTRATIVE CODE STANDARDS FOR ONSITE SEWAGE TREATMENT AND DISPOSAL SYSTEMS EFFECTIVE APRIL 28, 2010 PART I 64E-6.001 GENERAL --------------------------------------------------------------------------------------------------------------- 1 64E-6.002 DEFINITIONS ---------------------------------------------------------------------------------------------------------- 2 64E-6.003 PERMITS ---------------------------------------------------------------------------------------------------------------- 7 64E-6.004 APPLICATION FOR SYSTEM CONSTRUCTION PERMIT --------------------------------------------------- 8 64E-6.005 LOCATION AND INSTALLATION -------------------------------------------------------------------------------- 11 64E-6.006 SITE EVALUATION CRITERIA ------------------------------------------------------------------------------------ 13 64E-6.008 SYSTEM SIZE DETERMINATIONS ------------------------------------------------------------------------------- 14 64E-6.009 ALTERNATIVE SYSTEMS ------------------------------------------------------------------------------------------ 18 64E-6.010 SEPTAGE AND FOOD ESTABLISHMENT SLUDGE ---------------------------------------------------------- 23 64E-6.0101 PORTABLE RESTROOMS AND PORTABLE OR STATIONARY HOLDING TANKS ------------------ 27 64E-6.011 ABANDONMENT OF SYSTEMS ----------------------------------------------------------------------------------- 31 64E-6.012 STANDARDS FOR THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF AEROBIC
    [Show full text]
  • 1 Terms Commonly Associated with Septic Systems
    Terms commonly associated with septic systems: Please note: some of the following terms are generic while some are precise legal definitions in the State of Washington. Please consult specific rules and regulations of your State and/or local jurisdiction other definitions regarding these and other terms associated with septic systems. A Anaerobic wastewater process: a three step bacterial respiration process that occurs Absorption Area - an area to which in the absence of oxygen. Heterotrophic wastewater is distributed for infiltration to bacteria (which do not require oxygen) the soil. oxidize material to form CO2 and water. The process is more complex than described Absorption Field – see Drainfield. here, involving also autotrophic bacteria and chemical processes in three stages: acid fermentation, acid regression, and alkaline Absorption Trench - a long narrow area fermentation. (excavation) which includes a pipe for the distribution of septic tank effluent. B Additive or septic additive, septic chemical, septic treatment, septic tank additive: A Baffle - a flow deflecting device used in septic additive is a chemical, bacteria, or septic tanks and distribution boxes to inhibit other product sold to be placed into a septic the discharge of floating solids, reduce the tank or septic absorption system, amount of settleable solids that exit, and purportedly to improve the function of the reduce the exit velocity of the wastewater. system, improve drainfield performance, avoid septic tank pumping, or other repair Basal area – the effective surface area or maintenance need. In a normal available to transmit the treated effluent conventional septic system additives are not from the filter media in a mound system into required, are illegal in some jurisdictions, the original receiving soils.
    [Show full text]
  • Aerobic Septic System for a Residential Apartments
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 AEROBIC SEPTIC SYSTEM FOR A RESIDENTIAL APARTMENTS B. Aravindhan1, J. Arniha2, S. Ganeshkumar3, C. Gayathri4, S. Mohanasundari5 1,2,3,4UG Student, Department of Civil Engineering, Valliammai Engineering College, Tamilnadu, India 5Assistant professor (S.G), Department of Civil Engineering, Valliammai Engineering College, Tamilnadu, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract - Aerobic septic treatment is a process used to convert domestic sewage into effluent that can be recycled with minimum impact on the environment, or directly reused. The latter is called water reclamation because treated sewage can be used for other purposes and it can be achieved by aerobic septic tank. An aerobic septic system collects influent from residential apartment similar to a septic tank system, but uses an aerobic process for digestion rather than just the anaerobic process used in septic system. The system consists of sedimentation tank, aeration tank, clarifier and a storage tank. Key words: Aeration process, Higher quality effluent, Pre-treatment stage, Aeration stage, settling stage, disinfecting stage, Sodium hypochlorite (NaOCl). 1. INTRODUCTION In our country water scarcity will be the major threatening to future generation. This water scarcity can be reduced by reusing the waste water by adopting various waste water treatment systems. When suitable for the site and soil conditions, a traditional septic tank and soil absorption field is the ideal onsite wastewater system choice because of low cost, simplicity, no energy requirement, and low maintenance. Site limitations such as small lot, poor soil, high groundwater, shallow soil depth to rock.
    [Show full text]
  • For Domestic Wastewater
    Chapter 6: Wastewater Treatment and Discharge CHAPTER 6 WASTEWATER TREATMENT AND DISCHARGE 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 6.1 Volume 5: Waste Authors Deborah Bartram (USA), Michael D. Short (Australia), Yoshitaka Ebie (Japan), Juraj Farkaš (Slovakia), Céline Gueguen (France), Gregory M. Peters (Sweden), Nuria Mariana Zanzottera (Argentina), M. Karthik (India) Contributing Authors Shuhei Masuda (Japan) 6.2 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Chapter 6: Wastewater Treatment and Discharge Contents 6 Wastewater Treatment and Discharge ....................................................................................................... 6.7 6.1 Introduction ......................................................................................................................................... 6.7 6.1.1 Centralised treatment systems ...................................................................................................... 6.10 6.1.2 Decentralised treatment systems of domestic wastewater (onsite sanitation) ............................... 6.11 6.1.3 Emissions from receiving waters .................................................................................................. 6.12 6.1.4 Changes compared to 1996 Guidelines and Good Practice Guidance ......................................... 6.12 6.1.5 Changes compared to 2006 IPCC Guidelines ............................................................................... 6.12 6.2
    [Show full text]
  • Effectiveness of Selected Onsite Wastewater- Treatment Systems in Removing Pharmaceutical and Personal-Care Products
    EFFECTIVENESS OF SELECTED ONSITE WASTEWATER- TREATMENT SYSTEMS IN REMOVING PHARMACEUTICAL AND PERSONAL-CARE PRODUCTS 05-04/319 CONDUCTED 2006-2007 PREPARED BY BARNSTABLE COUNTY DEPARTMENT OF HEALTH AND THE ENVIRONMENT SUPERIOR COURTHOUSE, ROUTE 6A BARNSTABLE, MASSACHUSETTS 02630 PREPARED FOR MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF RESOURCE PROTECTION AND THE ENVIRONMENTAL PROTECTION AGENCY REGION I APRIL, 2010 Effectiveness of Selected Onsite Wastewater-Treatment Systems in Removing PPCPs Page 1 of 11 EFFECTIVENESS OF SELECTED ONSITE WASTEWATER- TREATMENT SYSTEMS IN REMOVING PHARMACEUTICAL AND PERSONAL-CARE PRODUCTS PROJECT NUMBER 05-04/319 PREPARED BY GEORGE R. HEUFELDER, M.S., R.S. BARNSTABLE COUNTY DEPARTMENT OF HEALTH AND ENVIRONMENT SUPERIOR COURTHOUSE, ROUTE 6A BARNSTABLE, MASSACHUSETTS 02630 PREPARED FOR MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF RESOURCE PROTECTION AND THE ENVIRONMENTAL PROTECTION AGENCY REGION I MASSACHUSETTS EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS Ian Bowles, Secretary DEPARTMENT OF ENVIRONMENTAL PROTECTION Laurie Burt, Commissioner Effectiveness of Selected Onsite Wastewater-Treatment Systems in Removing PPCPs Page 2 of 11 EFFECTIVENESS OF SELECTED ONSITE WASTEWATER- TREATMENT SYSTEMS IN REMOVING PHARMACEUTICAL AND PERSONAL-CARE PRODUCTS Executive Summary A preliminary survey was conducted to determine the efficacy of selected advanced onsite septic systems for the removal of selected pharmaceuticals and personal care products (PPCPs). The following technologies were chosen for this survey: standard “Title 5” system comprised of a stone trench overlying 60 inches of sand, an aerobic treatment system that combined fixed film surfaced with activated sludge, a recirculating filter unit containing fibrous peat, a single pass filter with open-cell foam, an upflow sulfur-filled filter following an aerobic treatment unit and a recirculating sand filter designed in accordance with standard practice.
    [Show full text]