Planning Guide for On-Site Greywater/ Wastewater Disposal Systems for Recreational and Administrative Sites Part II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Onsite Wastewater Treatment System (OWTS) Management in Humboldt County
Table of Contents INTRODUCTION ................................................................................................................................... 1 ELIGIBILITY ................................................................................................................................................... 1 PROHIBITIONS .............................................................................................................................................. 2 VARIANCE PROHIBITION AREAS ....................................................................................................................... 2 PART 1 ‐SITE EVALUATION ................................................................................................................... 4 1.1 SOIL PROFILES ...................................................................................................................................... 4 1.2 SOIL TESTING ....................................................................................................................................... 5 1.3 DEPTH TO GROUNDWATER DETERMINATIONS ........................................................................................... 6 1.4 REPORTING OF DATA............................................................................................................................. 8 1.5 DEH RESPONSIBILITIES FOR MONITORING WELL NOTIFICATIONS .................................................................... 8 PART 2 ‐DESIGN .................................................................................................................................. -
CHAPTER 15 Small Alternative Wastewater Systems
CHAPTER 15 Small Alternative Wastewater Systems 15.1 Preface 15.2 General Considerations 15.2.1 – Ownership 15.2.2 – Planning 15.3 Design Basis 15.3.1 – Hydraulic Loading 15.3.2 – Engineering Report 15.3.3 – Pollutant Loading 15.4 Preliminary Treatment 15.4.1 – Septic Tank Effluent Pumped (STEP) and Septic Tank Effluent Gravity (STEG) 15.4.1.1 –STEP Tanks 15.4.1.2 – STEG Tanks 15.4.2 – Grinder Pumps 15.4.3 – Grease and Oil 15.5 Secondary Treatment Design 15.5.1 Fixed Media Biological Reactors 15.5.1.1 – Granular Media Reactor 15.5.1.2 – Other Fixed Media Reactors 15.5.1.3 – Distribution and Underdrain System 15.5.1.3.1 – Spacing 15.5.1.3.2 – Sizing of Lines 15.5.1.4 – Recirculation Tank and Pump System 15.5.1.5 – Flow Splitter 15.5.1.6 – Dosing Chamber 15.6 Disinfection and Fencing 15.7 Oxidation Ponds and Artificial Wetlands 15.7.1 Oxidation Ponds) 15.7.2 Basis of Wetland Design 15.8 Lagoons 15.9 Package Activated Sludge Plants APPENDIX Appendix 15 Recirculation Tank / Pump System Example Calculation February 2016 15-1 Design Criteria Ch. 15 DECENTRALIZED DOMESTIC WASTEWATER TREATMENT SYSTEMS 15.1 Preface This chapter presents the method to determine the proper design for decentralized wastewater treatment systems (DWWTS). DWWTS are systems that are not the traditional, centralized/regionalized wastewater treatment systems. DWWTS treat domestic, commercial and industrial wastewater using water tight collection, biological treatment, filtration and disinfection. These systems typically will utilize land application with either surface or subsurface effluent dispersal. -
Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants EPA/833B-99/002 August 1999
United States Office of Wastewater EPA/833B-99/002 Environmental Protection Management August 1999 Agency Washington DC 20460 Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants EPA/833B-99/002 August 1999 Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants Office of Wastewater Management U.S. Environmental Protection Agency Washington, D.C. 20460 Notice and Disclaimer The U.S. Environmental Protection Agency, through its Office of Water, has funded, managed, and collaborated in the development of this guidance, which was prepared under order 7W-1235-NASX to Aquatic Sciences Consulting; order 5W-2260-NASA to EA Engineering, Science and Technology, Inc.; and contracts 68-03-3431, 68-C8-002, and 68-C2-0102 to Parsons Engineering Science, Inc. It has been subjected to the Agency's peer and administrative review and has been approved for publication. The statements in this document are intended solely as guidance. This document is not intended, nor can it be relied on, to create any rights enforceable by any party in litigation with the United States. EPA and State officials may decide to follow the guidance provided in this document, or to act at variance with the guidance, based on an analysis of site-specific circumstances. This guidance may be revised without public notice to reflect changes in EPA policy. ii Foreword This document is intended to provide guidance to permittees, permit writers, and consultants on the general approach and procedures for conducting toxicity reduction evaluations (TREs) at municipal wastewater treatment plants. TREs are important tools for Publicly Owned Treatment Works (POTWs) to use to identify and reduce or eliminate toxicity in a wastewater discharge. -
252:641 Individual and Small Public On-Site Sewage Treatment Systems
Codification through the 2021 Legislative session Subchapters 1, 3, 12, 15; Appendix H and N Board adoption - February 19, 2021 Approved by Governor's signature on OK HB1046 on June 11, 2021 Effective date – September 15, 2021 TITLE 252. DEPARTMENT OF ENVIRONMENTAL QUALITY CHAPTER 641. INDIVIDUAL AND SMALL PUBLIC ON-SITE SEWAGE TREATMENT SYSTEMS Subchapter 1. General Provisions ..................................................................................................... 252:641-1-1 3. Soil Tests .................................................................................................................... 252:641-3-1 5. Building Sewer and Collection Systems .................................................................... 252:641-5-1 7. Septic Tanks ............................................................................................................... 252:641-7-1 9. Pump Tanks ............................................................................................................... 252:641-9-1 10. Aerobic Treatment Systems ................................................................................... 252:641-10-1 11. Subsurface Systems [REVOKED] ......................................................................... 252:641-11-1 12. Dispersal Fields ...................................................................................................... 252:641-12-1 13. Aerobic Systems [REVOKED].............................................................................. 252:641-13-1 15. Lagoons ................................................................................................................. -
Mathematical Modeling of the Performance of a Rotating Biological Contactor for Process Optimisation in Wastewater Treatment
Mathematical Modeling of the Performance of a Rotating Biological Contactor for Process Optimisation in Wastewater Treatment Zur Erlangung des akademischen Grades eines DOKTOR-INGENIEURS von der Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften der Universität Fridericiana zu Karlsruhe (TH) genehmigte DISSERTATION von Sanjay Dutta, M.Tech. aus Kalkutta, Indien Tag der mündlichen Prüfung: 14. Februar, 2007 Hauptreferent: Prof. Dr. Ing. E.h. Hermann H. Hahn, Ph.D., Karlsruhe Korreferent: Prof. Dr. rer. nat. habil. Josef Winter, Karlsruhe Karlsruhe 2007 Dissertation genehmigt von der Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften Universität Fridericiana zu Karlsruhe (TH) 2007 Hauptreferent: Prof. Dr. Ing. E.h. Hermann H. Hahn, Ph.D., Karlsruhe Korreferent: Prof. Dr. rer. nat. habil. Josef Winter, Karlsruhe Dutta, Sanjay Mathematical Modeling of the Performance of a Rotating Biological Contactor for Process Optimisation in Wastewater Treatment Karlsruhe: Universität Karlsruhe – Verlag Siedlungswasserwirtschaft Karlsruhe, 2007 (Schriftenreihe SWW – Band 126) Zugl.: Karlsruhe, Univ., Diss., 2007 ISBN 978-3-9809383-9-6 ISBN 978-3-9809383-9-6 Alle Rechte vorbehalten Satz: Institut für Wasser und Gewässerentwicklung Bereich Siedlungswasserwirtschaft Universität Karlsruhe (TH) Druck: E&B printware, Digital- und Schnelldruck GmbH, 76131 Karlsruhe Printed in Germany Vorwort 3 Vorwort des Herausgebers Scheibentauchkörper als biologische Reinigungselemente haben sich bislang einer eher auf spezifische Anschlussgrößen (im mittleren -
Maricopa County Environmental Health Code
Maricopa County Environmental Health Code January 27, 2021 MARICOPA COUNTY ENVIRONMENTAL HEALTH CODE CHAPTER I GENERAL PROVISIONS REGULATION 1. Definitions The following definitions shall apply throughout this Environmental Health Code, unless a different meaning is clearly indicated by the context or is stated in another chapter. a. “Approved” or "approval" means acceptable to the Department and so stated in writing. b. “Board” means the Maricopa County Board of Supervisors. c. “Board of Health" means the Board of Health of Maricopa County. d. “Chairman” means the Chairman of the Maricopa County Board of Supervisors. e. “Clerk” means the Clerk of the Maricopa County Board of Supervisors. f. “Counsel” means an attorney licensed to practice law in the State of Arizona. g. “County” means Maricopa County. h. “Department” means the Maricopa County Environmental Services Department. i. “Environmental Health Code” means all of the rules and regulations which are adopted by the Board of Health and the Board of Supervisors pursuant to A.R.S. 36-183.02 through 36-183.07, 36-184, 36-187(C), 11-251 Paragraphs 17 and 31, 11-251.05, 11- 251.08, 49-106, and 49-107, and which remain in force. j. “Environmental Health Officer” means the Director of the Maricopa County Environmental Services Department or his/her authorized Agents. k. “Municipality” means an incorporated area within Maricopa County. l. “Notice" means an enforcement Notice issued by the Environmental Health Officer. m. “Parties” means the Defendant and the County. n. “Permit” means a written permit to operate, issued by the Maricopa County Environmental Services Department. -
Technical Review and Advisory Panel (Trap) Meeting
T ECHNICAL R EVIEW AND A DVISORY P ANEL ONSITE SEWAGE TREATMENT AND DISPOSAL SYSTEMS ADVISORY TO THE DEPARTMENT OF HEALTH AUTHORITY: SECTION 381.0068, FLORIDA STATUTES TECHNICAL REVIEW AND ADVISORY PANEL (TRAP) MEETING DATE: Thursday, October 16, 2014 TIME: 10:00 a.m. PLACE: Conference call meeting Teleconference Phone Number: 888-670-3525 At the prompt, enter the Participant Code: 2980 214 500 For those who wish to attend the meeting in person, the conference call will originate from: Capital Circle Office Complex Conference Room 110 F 4025 Bald Cypress Way, Tallahassee, Florida 32399 THIS MEETING IS OPEN TO THE PUBLIC. Agenda 1. Introductions 2. Review minutes of last meeting 3. Old Business Rule Issues 12-07 ATU Maintenance Versus Drainfield Maintenance 14-01 Rule Reduction (continued from 9/25/2014) 4. New Business 5. Other items of interest to the Technical Review and Advisory Panel 6. Public Comment Scott Johnson Pam Tucker Martin Guffey Robert Baker PROFESSIONAL ENGINEER REAL ESTATE INDUSTRY SEPTIC TANK INDUSTRY SEPTIC TANK MANUFACTURER Glenn Bryant Russ Melling Scott Franz Sonia Cruz COUNTY HEALTH DEPARTMENT CONSUMER SOIL SCIENTIST ENVIRONMENTAL HEALTH Victor Godlewski Ken Odom, Chair Roy Pence, Vice Chair LOCAL GOVERNMENT HOME BUILDING INDUSTRY HOME BUILDING INDUSTRY T ECHNICAL R EVIEW AND A DVISORY P ANEL ONSITE SEWAGE TREATMENT AND DISPOSAL SYSTEMS ADVISORY TO THE DEPARTMENT OF HEALTH AUTHORITY: SECTION 381.0068, FLORIDA STATUTES TECHNICAL REVIEW AND ADVISORY PANEL (TRAP) MEETING MINUTES DATE: Thursday, September 25, 2014 PLACE: -
A Case Study of a Small Diameter Gravity Sewerage System in Zolkiewka Commune, Poland
water Article A Case Study of a Small Diameter Gravity Sewerage System in Zolkiewka Commune, Poland Tadeusz Nawrot *, Radosław Matz, Ryszard Błazejewski˙ and Marcin Spychała Department of Hydraulic and Sanitary Engineering, Poznan University of Life Sciences, Pi ˛atkowskaSt. 94A, 60-649 Pozna´n,Poland; [email protected] (R.M.); [email protected] (R.B.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +48-61-848-77-29 Received: 31 July 2018; Accepted: 27 September 2018; Published: 29 September 2018 Abstract: This article presents a small diameter gravity sewerage system in a rural area. In this system, domestic wastewater was preliminarily treated in septic tanks equipped with outlet filters, so the effluent features were similar to those of clear water. Additionally, some outlets were equipped with floating-ball check valves to avoid backflow. One of the pressure mains was used as a gravity collector conveying septic tank effluent in the direction of the pumping station during pump idle time. The operation of the system was simulated using SWMM computer code. The simulation results were validated for data obtained from part of a sewerage system in Kolonia Zolkiew and Rozki village consisting of two pumping stations and 86 serviced households using polyethylene pipes of outer diameter 50–63 mm. The results of the measurement of the outflows from one pumping station are presented. The simulation results showed good agreement with the empirical data, especially after several simulation days. The greatest discrepancy during the start-up period was the consequence of the initial conditions describing the empty pipework. -
Saskatchewan Onsite Watewater Disposal Guide
Saskatchewan Onsite Wastewater Disposal Guide Third Edition November 2018 saskatchewan.ca TABLE OF CONTENTS Table of Contents ......................................................................................................................................... i Table of Figures ......................................................................................................................................... viii List of Tables ............................................................................................................................................... ix 1 Definitions and Abbreviations ............................................................................................................. x 2 Introduction ........................................................................................................................................ 1 2.1 Disclaimer ................................................................................................................................ 1 2.2 Acknowledgments ................................................................................................................... 1 2.3 Special Acknowledgments ...................................................................................................... 2 3 Goals & Objectives ............................................................................................................................. 3 4 Other Regulations/Bylaws ................................................................................................................. -
Sewer System Management Plan
SEWER SYSTEM MANAGEMENT PLAN Marshall Community Wastewater System March 2016 Updated March 2018 Updated August 2018 Prepared by Environmental Health Services Staff and Questa Engineering Corporation Marin County Environmental Health Services 3501 Civic Center Drive, Suite 236 San Rafael, CA 94913 1 TABLE OF CONTENTS INTRODUCTION 1 I. GOALS 1 II. ORGANIZATION 1 III. LEGAL AUTHORITY 2 IV. OPERATION AND MAINTENANCE PROGRAM 3 V. DESIGN AND PERFORMANCE PROVISIONS 3 VI. OVERFLOW EMERGENCY RESPONSE PLAN 3 VII. FATS, OILS, AND GREASE CONTROL PROGRAM 4 VIII. SYSTEM EVALUATION AND CAPACITY ASSURANCE PLAN 4 IX. MONITORING, MEASUREMENT AND PROGRAM MODIFICATIONS 5 X. SSMP PROGRAM AUDITS 5 XI. COMMUNICATION PROGRAM 5 Attachment A: Spill Prevention and Emergency Response Plan Attachment B: Summary of Monitoring and Reporting Program Requirements 2 Marshall Community Wastewater System SEWER SYSTEM MANAGEMENT PLAN INTRODUCTION This document constitutes the Sewer System Management Plan (SSMP) for the Marshall Community Wastewater Treatment System (Facility.) It has been prepared pursuant to State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ, Statewide General Waste Discharge Requirements for Sanitary Sewer Systems, and Order No. WQ-2013-0058- EXEC, Amending Monitoring and Reporting Program for Statewide General Waste Discharge Requirements for Sanitary Sewer Systems. The Facility serves approximately 50 homes and a few commercial properties in the community of Marshall, an unincorporated area of Marin County located along the eastern shore of Tomales Bay. The Facility includes wastewater collection, treatment, and subsurface disposal of effluent. Wastewater is collected from septic tanks serving and located at individual residential and commercial properties, conveyed by approximately two miles of 2 to 3-inch pressurized pipelines to a community treatment system, and then discharged to a community leachfield. -
Why Do Onsite Wastewater Septic Systems Fail
Why Do Onsite Wastewater (Septic) Systems Fail? Ask yourself: Under normal water use (wastewater be achieved without maintenance, including removal of flow) conditions … accumulated solids. • Are sewage drains sluggish? The breakdown of wastes, especially solids, begins in • Does sewage back up into the facility? the septic tank. However, wastewater treatment requires a • Have you had a wet, smelly spot in your yard? properly functioning absorption field. The field typically • Does your septic system discharge at the surface is either rock-filled trenches with perforated pipe or such as road ditch, draw, storm sewer, or stream? gravelless trenches, usually with chambers. • Is the system connected to a drain tile? The correct system size is determined by the amount of wastewater flow and the soil properties in the dispersal If you answered yes to any of these questions, your field. If the wastewater flow is greater than the soil can onsite wastewater system is failing. It is not treating accept, it often surfaces in the field or backs up into the and dispersing sewage in a safe, sanitary manner. Other house. A properly designed, constructed, maintained, evidences of onsite systems not working effectively and protected onsite system should treat wastewater include persistent bacteria or excess nitrate in nearby effectively for 20 to 40 years or more. However, wells and excessive aquatic plant growth in surface water. premature failure sometimes occurs. In Kansas, wastewater can legally be discharged only to a permitted community sewer and treatment facility or to a Causes of Septic System Failure permitted onsite wastewater system. Onsite systems must Common causes of system failure are inappropriate be located, designed, and operated in compliance with system selection, improper design, construction mistakes, the local sanitary code or the minimum state standards in physical damage, inadequate maintenance, and hydraulic Kansas Department of Health and Environment (KDHE), or organic overload. -
Treatment of Domestic Waste Water Using Natural Flocculants
Int. J. LifeSc. Bt & Pharm. Res. 2012 Narmadha D and Mary Selvam Kavitha V J, 2012 ISSN 2250-3137 www.ijlbpr.com Vol. 1, No. 3, July 2012 © 2012 IJLBPR. All Rights Reserved Research Paper TREATMENT OF DOMESTIC WASTE WATER USING NATURAL FLOCCULANTS Narmadha D1* and Mary Selvam Kavitha V J1 *Corresponding Author: Narmadha D, [email protected] Wastewater generated from wastewater treatment plant contains odors some non pathogens, fecal Coliforms, fungus etc., and chemicals such as phenols, nitrate, chloride etc., in addition to usual constituents such as urine and faeces. The present investigation was hence made in wastewater treatment plant situated in Kallaraimedu of Kodaikanal. Presently the waste water is passing through an underground system to the wastewater plant. In this study analyze the Physio-chemical parameters and biological parameters of septic water before and after treatment with horse and cow dung; and portable water. Isolate and identify the microbes present in horse and cow dung by using biochemical tests. Keywords: Waste water, microbial treatment of waste, Flocculants INTRODUCTION such as urea, fruit sugars, soluble proteins, drugs, Wastewater can be defined as the flow of use pharmaceuticals, etc.; Inorganic particles such water discharged from homes, businesses, as sand, grit, metal particles, ceramics, etc.; industries, commercial activities and institutions Soluble inorganic material such as ammonia, which are directed to treatment plants by a road-salt, sea-salt, cyanide, hydrogen sulfide, carefully designed and engineered network of thiocyanates, thiosulfates, etc.; Animals such as pipes. This wastewater is further categorized and protozoa, insects, arthropods, small fish, etc.; defined according to its sources of origin as 1.