Molekulargenetische Charakterisierung Konstitutioneller Chromosomaler Translokationen Zur Positionsklonierung Krankheitsverursachender Gene

Total Page:16

File Type:pdf, Size:1020Kb

Molekulargenetische Charakterisierung Konstitutioneller Chromosomaler Translokationen Zur Positionsklonierung Krankheitsverursachender Gene Molekulargenetische Charakterisierung konstitutioneller chromosomaler Translokationen zur Positionsklonierung krankheitsverursachender Gene Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Michael Kraft aus Forchheim Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 20.02.2013 Vorsitzender der Promotionskommission: Prof. Dr. J. Barth Erstberichterstatter: Prof. Dr. Reis Zweitberichterstatter: Prof. Dr. Slany Inhaltsverzeichnis 1 Einleitung ..................................................................................................... 1 1.1 Positionsklonierung krankheitsverursachender Gene ............................. 1 1.1.1 Methoden der Positionsklonierung ......................................................... 2 1.1.2 Positionsklonierung unter Verwendung Phänotyp-assoziierter, balancierter Translokationen ................................................................. 3 1.2 Zielsetzung ............................................................................................. 6 2 Material und Methoden ................................................................................. 7 2.1 Patienten ................................................................................................ 7 2.1.1 Patient 46,XY,t(10;13) – Noonan-Syndrome-Like .................................... 8 2.1.2 Patientin 46,XX,t(1;8) – Adipositas & Hypogonadismus ...........................11 2.1.3 Patientin 46,XX,t(5;14) – Schwere Mentale Retardierung ........................14 2.1.4 Patientin 47,XXX,t(7;11) – DiGeorge-Syndrome-Like ..............................16 2.2 Methoden ............................................................................................. 18 2.2.1 Biologisches Material ..........................................................................18 2.2.2 Amplifikation gesamtgenomischer DNA (Whole Genome Amplification) .....18 2.2.3 Gelelektrophorese ..............................................................................18 2.2.4 Polymerase-Kettenreaktion (PCR) ........................................................19 2.2.5 Sequenzierung ...................................................................................23 2.2.6 Bruchpunkt-Sequenzierung .................................................................24 2.2.7 Fluoreszenz-in-situ-Hybridisierung (FISH) .............................................25 2.2.8 Reverse Transkriptase-Polymerase-Kettenreaktion (RT-PCR) ...................29 2.2.9 Quantitative “Real-Time” PCR (qPCR) ...................................................30 2.2.10 Multiplex Ligation-dependent Probe Amplification (MLPA) ........................35 2.2.11 Expressions-Array ..............................................................................36 2.2.12 Array-basierte molekulare Karyoptypisierung .........................................37 2.2.13 Zellkultur ..........................................................................................37 2.2.14 Histonacetylierungs-Assay ...................................................................40 2.2.15 Western-Blot .....................................................................................40 2.2.16 ChIP-on-chip .....................................................................................42 2.2.17 Gene ontology- (GO) und Signalweg-Analysen .......................................44 2.3 Material ................................................................................................ 45 2.3.1 Verbrauchsmaterialien ........................................................................45 2.3.2 Chemikalien ......................................................................................45 2.3.3 Antikörper .........................................................................................47 2.3.4 Lösungen ..........................................................................................47 2.3.5 Kits ..................................................................................................51 I Inhaltsverzeichnis 2.3.6 TaqMan-Sonden (pre-designed) ...........................................................51 2.3.7 Selbstentworfene TaqMan-Sonden ........................................................52 2.3.8 Oligonukleotide ..................................................................................52 2.3.9 MLPA-Sonden-Oligonukleotide .............................................................59 2.3.10 BAC-Klone .........................................................................................60 2.3.11 Arrays ..............................................................................................60 2.3.12 Software und Datenbanken .................................................................61 2.3.13 Geräte ..............................................................................................62 3 Ergebnisse .................................................................................................. 64 3.1 Ergebnisse Patient 46,XY,t(10;13) – Noonan-Syndrome-like ............... 64 3.1.1 Ausgangslage ....................................................................................64 3.1.2 MYST4-Knockdown in Zellmodellsystemen .............................................64 3.1.3 Analyse der Histon H3- und H4-Acetylierung ..........................................65 3.1.4 Isformspezifisches Expressionsmuster von MYST4 ..................................66 3.1.5 Expressionsanalysen auf Proteinebene mittels Westernblot ......................68 3.1.6 Genomweite Expressionsanalysen ........................................................70 3.1.7 Chromatin-Immunopräzipitation (ChIP-on-chip) .....................................75 3.1.8 Kombinierte Analyse der Ergebnisse aus der genomweiten Expressionsanalyse mit denen aus der ChIP-on-chip ...............................77 3.1.9 Phosphorylierungsstatus wichtiger Komponenten des MAP-Kinase- Signalwegs ........................................................................................79 3.1.10 Mutations-Screening ...........................................................................81 3.2 Ergebnisse Patientin 46,XX,t(1;8) – Adipositas & Hypogonadismus ..... 82 3.2.1 Bruchpunktsequenzierung ...................................................................82 3.2.2 Analyse der Bruchpunkte und der umgebenden genomischen Region ........83 3.2.3 Expressionsanalysen mittels TaqMan-basierter qPCR ..............................87 3.2.4 Molekulare Karyotypisierung ................................................................88 3.3 Ergebnisse Patientin 46,XX,t(5;14) – Schwere mentale Retardierung .. 90 3.3.1 Bruchpunktsequenzierung ...................................................................90 3.3.2 Molekulare Karyotypisierung ................................................................91 3.3.3 Untersuchung der bruchpunktumgebenden genomischen Region und Identifikation des Kandidatengens FOXG1 .............................................91 3.3.4 Nachweis einer FOXG1-Defizienz ..........................................................93 3.4 Ergebnisse Patientin 47,XXX,t(7;11) – DiGeorge-Syndrome-Like ......... 94 3.4.1 Bruchpunkteingrenzung und Sequenzierung ..........................................94 3.4.2 Bruchpunktanalysen ...........................................................................96 3.4.3 Expressionsanalysen von Kandidatengenen im Bereich der Bruchpunktregionen ...........................................................................98 3.4.4 Molekulare Karyotypisierung ................................................................99 II Inhaltsverzeichnis 4 Diskussion ................................................................................................ 101 4.1 Diskussion Patient 46,XY,t(10;13) – Noonan-Syndrome-like ............. 101 4.1.1 Phänotyp des Patienten und Identifikation des Kandidatengens .............. 101 4.1.2 Die Histon-Acetyltransferase MYST4 ................................................... 101 4.1.3 Nachweis einer kausalen MYST4-Haploinsuffizienz ................................ 103 4.1.4 Isoformspezifische Expression von MYST4 korreliert mit dem murinen und humanen Phänotyp .................................................................... 104 4.1.5 MYST4-abhängige Expressionsregulation ............................................. 104 4.1.6 Identifizierung des MAP-Kinase-Signalwegs als ein Hauptziel MYST4- vermittelter Regulation ..................................................................... 105 4.1.7 MYST4-Haploinsuffizienz stellt eine seltene Ursache für Erkrankungen des Noonan-Syndrome-Like Spektrums dar ......................................... 106 4.2 Diskussion Patientin 46,XX,t(1;8) – Adipositas & Hypogonadismus ... 108 4.2.1 Phänotyp der Patientin ...................................................................... 108 4.2.2 Bruchpunktkartierung ....................................................................... 108 4.2.3 Kandidatengene in den Bruchpunktregionen ........................................ 109 4.2.4 Translokationsunabhängige genomische Imbalance .............................. 112 4.2.5 Zusammenfassende Genotyp-Phänotyp-Korrelation .............................. 113 4.3 Diskussion Patientin 46,XX,t(5;14) – Schwere mentale Retardierung 115 4.3.1 Phänotyp der Patientin .....................................................................
Recommended publications
  • The Title of the Article
    Mechanism-Anchored Profiling Derived from Epigenetic Networks Predicts Outcome in Acute Lymphoblastic Leukemia Xinan Yang, PhD1, Yong Huang, MD1, James L Chen, MD1, Jianming Xie, MSc2, Xiao Sun, PhD2, Yves A Lussier, MD1,3,4§ 1Center for Biomedical Informatics and Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA 2State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, P.R.China 3The University of Chicago Cancer Research Center, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637 USA 4The Institute for Genomics and Systems Biology, and the Computational Institute, The University of Chicago, Chicago, IL 60637 USA §Corresponding author Email addresses: XY: [email protected] YH: [email protected] JC: [email protected] JX: [email protected] XS: [email protected] YL: [email protected] - 1 - Abstract Background Current outcome predictors based on “molecular profiling” rely on gene lists selected without consideration for their molecular mechanisms. This study was designed to demonstrate that we could learn about genes related to a specific mechanism and further use this knowledge to predict outcome in patients – a paradigm shift towards accurate “mechanism-anchored profiling”. We propose a novel algorithm, PGnet, which predicts a tripartite mechanism-anchored network associated to epigenetic regulation consisting of phenotypes, genes and mechanisms. Genes termed as GEMs in this network meet all of the following criteria: (i) they are co-expressed with genes known to be involved in the biological mechanism of interest, (ii) they are also differentially expressed between distinct phenotypes relevant to the study, and (iii) as a biomodule, genes correlate with both the mechanism and the phenotype.
    [Show full text]
  • Identification and Diagnostic Performance of a Small RNA Within the PCA3 and BMCC1 Gene Locus That Potentially Targets Mrna
    Published OnlineFirst November 12, 2014; DOI: 10.1158/1055-9965.EPI-14-0377 Research Article Cancer Epidemiology, Biomarkers Identification and Diagnostic Performance of a & Prevention Small RNA within the PCA3 and BMCC1 Gene Locus That Potentially Targets mRNA Ross M. Drayton1, Ishtiaq Rehman1, Raymond Clarke2, Zhongming Zhao3,4, Karl Pang1, Saiful Miah1, Robert Stoehr5, Arndt Hartmann5, Sheila Blizard1, Martin Lavin2, Helen E. Bryant1, Elena S. Martens-Uzunova6, Guido Jenster6, Freddie C. Hamdy7, Robert A. Gardiner2, and James W.F. Catto1 Abstract Background: PCA3 is a long noncoding RNA (lncRNA) with malignant prostatic tissues, exfoliated urinary cells from men unknown function, upregulated in prostate cancer. LncRNAs may with prostate cancer (13–273 fold change; t test P < 0.003), and be processed into smaller active species. We hypothesized this for closely correlated to PCA3 expression (r ¼ 0.84–0.93; P < 0.001). PCA3. Urinary PCA3-shRNA2 (C-index, 0.75–0.81) and PCA3 (C-index, Methods: We computed feasible RNA hairpins within the 0.78) could predict the presence of cancer in most men. PCA3- BMCC1 gene (encompassing PCA3) and searched a prostate shRNA2 knockup altered the expression of predicted target transcriptome for these. We measured expression using qRT- mRNAs, including COPS2, SOX11, WDR48, TEAD1, and Noggin. PCR in three cohorts of prostate cancer tissues (n ¼ 60), PCA3-shRNA2 expression was negatively correlated with COPS2 exfoliated urinary cells (n ¼ 484 with cancer and n ¼ 166 in patient samples (r ¼0.32; P < 0.001). controls), and in cell lines (n ¼ 22). We used in silico predictions Conclusion: We identified a short RNA within PCA3, whose and RNA knockup to identify potential mRNA targets of short expression is correlated to PCA3, which may target mRNAs transcribed RNAs.
    [Show full text]
  • Supplementary Material for “Characterization of the Opossum Immune Genome Provides Insights Into the Evolution of the Mammalian Immune System”
    Supplementary material for “Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system” Katherine Belov1*, Claire E. Sanderson1, Janine E. Deakin2, Emily S.W. Wong1, Daniel Assange3, Kaighin A. McColl3, Alex Gout3,4, Bernard de Bono5, Terence P. Speed3, John Trowsdale5, Anthony T. Papenfuss3 1. Faculty of Veterinary Science, University of Sydney, Sydney, Australia 2. ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, Australia 3. Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia 4. Department of Medical Biology, The University of Melbourne, Parkville, Australia 5. Immunology Division, University of Cambridge, Cambridge, UK *Corresponding author: K. Belov, Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia ph 61 2 9351 3454, fx 61 2 9351 3957, email [email protected] MHC paralogous regions Only 36 of the 114 genes in the opossum MHC have paralogs in one of the three paralogous regions (Supplementary Table 1). Genes represented in at least three of the four paralogous regions (13 genes) were used to compare gene order, revealing rearrangements between the four regions in opossum. Table 1: MHC genes with paralogs on opossum chromosomes 1, 2 and 3, corresponding to MHC paralogous regions on human chromosomes 9, 1 and 19 respectively. MHC Chromosome 1 Chromosome 2 Chromosome 3 (Human Chr 9) (Human Chr 1) (Human Chr 19) AGPAT1 AGPAT2 AIF1 C9orf58 ATP6V1G2 ATP6V1G1 ATP6V1G3 B3GALT4 B3GALT2 BAT1 DDX39 BAT2 KIAA0515 BAT2D1 BRD2 BRD3 BRDT BRD4 C4 C5 C3 SLC44A4 SLC44A5 SLC44A2 CLIC1 CLIC3 CLIC4 COL11A2 COL5A1 COL11A1 COL5A3 CREBL1 ATF6 DDAH2 DDAH1 DDR1 DDR2 EGFL8 EGFL7 EHMT2 EHMT1 GPX5 GPX4 MHC Class I CD1 HSPA1A HSPA5 MDC1 PRG4 NOTCH4 NOTCH1 NOTCH2 NOTCH3 PBX2 PBX3 PBX1 PBX4 PHF1 MTF2 PRSS16 DPP7 PSMB9 PSMB7 RGL2 RALGDS RGL1 RGL3 RING1 RNF2 RXRB RXRA RXRG SYNGAP1 RASAL2 TAP ABCA2 TNF/LTA/LTB TNFSF8/TNFSF15 TNFSF4 CD70/TNFSF9/ TNFSF14/ TNXB TNC TNR Table 2.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Rabbit Anti-DAZAP1/FITC Conjugated Antibody-SL14200R-FITC
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-DAZAP1/FITC Conjugated antibody SL14200R-FITC Product Name: Anti-DAZAP1/FITC Chinese Name: FITC标记的无精症缺失相关蛋白1抗体 DAZ associated protein 1; DAZ-associated protein 1; Dazap1; DAZP1_HUMAN; Alias: Deleted in azoospermia associated protein 1; Deleted in azoospermia-associated protein 1. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Chicken,Dog,Pig,Cow,Horse,Sheep, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 43kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human DAZAP1 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01Mwww.sunlongbiotech.com TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: In mammals, the Y chromosome directs the development of the testes and plays an important role in spermatogenesis. A high percentage of infertile men have deletions that map to regions of the Y chromosome. The DAZ (deleted in azoospermia) gene Product Detail: cluster maps to the AZFc region of the Y chromosome and is deleted in many azoospermic and severely oligospermic men.
    [Show full text]
  • Examination of the Role of the Hu Proteins, Hur and Hud, in Prostate Cancer Cells
    Examination of the Role of the Hu Proteins, HuR and HuD, in Prostate Cancer Cells. Christin Florence Down This thesis is presented for the degree of Doctor of Philosophy to the School of Medicine and Pharmacology, University of Western Australia. January 2007 i Declaration. This thesis contains published work and/or work prepared for publication, some of which has been co-authored . The bibliographic details of the works and where they appear in the thesis are set out below. (The candidate must attach to this declaration a statement detailing the percentage contribution of each author to the work. This must been signed by all authors. Where this is not possible, the statement detailing the percentage contribution of authors should be signed by the candidate’s Coordinating Supervisor). This thesis contains experimental data from the following co-authored work: Hu Proteins are Expressed and Regulate Androgen Receptor Expression and Cell Proliferation in Prostate Cancer. Christin F Down , Dianne J Beveridge, Michael R Epis, Ricky Lareu, Lisa M Stuart, Britt Granath, Dominic C Voon, Henry Furneaux, Cecily Metcalf, Jacqueline Bentel and Peter J Leedman. Submitted to Cancer Research . The relative contribution of authors is as follows: Christin Down (the Candidate): 55% Dianne J Beveridge 6 % Michael R Epis 6 % Ricky Lareu 3 % Lisa M Stuart 3 % Britt Granath 3 % Dominic Voon 3 % Henry Furneaux 3 % Cecily Metcalf 3 % Jacqueline Bentel 5 % Peter J Leedman 10 % Data from the manuscript described above are presented in this thesis in the following figures, and were performed by the investigator indicated: Figure 3.1A : Dr Cecily Metcalfe, Department of Pathology, Royal Perth Hospital.
    [Show full text]
  • Rashid Thesis 2015
    Protein Profile and Directed Gene Expression of Developing C2C12 cells By Susan Rashid Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science In the Biological Sciences Program YOUNGSTOWN STATE UNIVERSITY August 3, 2015 Protein Profile and Directed Gene Expression of Developing C2C12 cells Susan Rashid I hereby release this thesis to the public. I understand that this will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: ___________________________________________________ Susan Rashid, Student Date Approvals: ___________________________________________________ Dr. Gary Walker, Thesis Advisor 'ate ___________________________________________________ Dr. Jonathan Caguiat, Committee Member Date ___________________________________________________ Dr. David Asch, Committee Member Date ___________________________________________________ Dr. Sal Sanders, Associate Dean, Graduate Studies Date ABSTRACT Myogenesis is a tightly regulated process resulting in unique structures called myotubes or myofibers, which compose skeletal muscle. Myotubes are multi-nucleated fibers containing a functional unit composed of cytoskeletal proteins called the sarcomere. The specific arrangement of these proteins in the sarcomere works to contract and relax muscles. During embryonic and post-embryonic development, fluctuations in expression of growth factors throughout the program account for the dramatic structural changes from cell to mature muscle fiber. In vivo, these growth factors are strictly spatiotemporally regulated according to a ‘myogenic program.’ In order to assess the dynamics of protein expression throughout this program, we conducted a time course study using the mouse myoblast cell line C2C12, in which cells were allowed to differentiate and insoluble protein fractions were collected at seven time points.
    [Show full text]
  • Supplemental Figure S1 Differentially Methylated Regions (Dmrs
    Supplemental Figure S1 '$$#0#,2'**7+#2&7*2#"0#%'-,11 #25##,"'1#1#122#1 '!2-0'*"#.'!2'-,-$122&#20,1'2'-,$0-+2- !"Q !"2-$%," $ 31',% 25-$-*" !&,%# ," ' 0RTRW 1 !32V-$$ !0'2#0'T - #.0#1#,22'-, -$ "'$$#0#,2'**7+#2&7*2#"%#,#11',.0#,2&#1#1,"2&#'0 #&4'-022&#20,1'2'-, #25##,"'$$#0#,2"'1#1#122#1T-*!)00-51',"'!2#&7.#0+#2&7*2#"%#,#1Q%0700-51 &7.-+#2&7*2#"%#,#1Q31',%25-$-*"!&,%#,"'0RTRW1!32V-$$!0'2#0'T-%#,#1 +#22&# -4#!0'2#0'22&#20,1'2'-,$0-+$%2-$Q5#2&#0#$-0#*1-',!*3"#" %#,#15'2&V4*3#0RTRWT$$#!2#"%#,10#&'%&*'%&2#" 712#0'1)1#T Supplemental Figure S2 Validation of results from the HELP assay using Epityper MassarrayT #13*21 $0-+ 2&# 1$ 117 5#0# !-00#*2#" 5'2& /3,2'22'4# +#2&7*2'-, ,*78#" 7 '13*$'2#11007$-04V-,"6U-%#,#.0-+-2#00#%'-,1T11007 51.#0$-0+#"31',%**4'* *#1+.*#1T S Supplemental Fig. S1 A unique hypermethylated genes (methylation sites) 454 (481) 5693 (6747) 120 (122) NLMGUS NEWMM REL 2963 (3207) 1338 (1560) 5 (5) unique hypomethylated genes (methylation sites) B NEWMM 0 (0) MGUS 454 (481) 0 (0) NEWMM REL NL 3* (2) 2472 (3066) NEWMM 2963 REL (3207) 2* (2) MGUS 0 (0) REL 2 (2) NEWMM 0 (0) REL Supplemental Fig. S2 A B ARID4B DNMT3A Methylation by MassArray Methylation by MassArray 0 0.2 0.4 0.6 0.8 1 1.2 0.5 0.6 0.7 0.8 0.9 1 2 0 NL PC MGUS 1.5 -0.5 NEW MM 1 REL MM -1 0.5 -1.5 0 -2 -0.5 -1 -2.5 -1.5 -3 Methylation by HELP Assay Methylation by HELP Methylation by HELP Assay Methylation by HELP -2 -3.5 -2.5 -4 Supplemental tables "3..*#+#,2*6 *#"SS 9*','!*!&0!2#0'12'!1-$.2'#,21+.*#1 DZ_STAGE Age Gender Ethnicity MM isotype PCLI Cytogenetics
    [Show full text]
  • Improving the Yeast Two-Hybrid System with Permutated Fusion Proteins: the Varicella Zoster Virus Protein Interaction Network
    Improving the Yeast two-hybrid system with permutated fusion proteins: The Varicella zoster virus protein interaction network Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) - Universitätsbereich vorgelegte DISSERTATION von Diplom-Biologe Thorsten Stellberger aus Rauenberg Dekan: Prof. Dr. Stefan Bräse Referent: Prof. Dr. Jonathan Sleeman Korreferent: Prof. Dr. Jörg Kämper Tag der mündlichen Prüfung: 20.10.2010 Die vorliegende Arbeit wurde in der Zeit von Januar 2007 bis September 2010 in der Arbeitsgruppe von PD Dr. Peter Uetz im Institut für Toxikologie und Genetik des Karlsruher Instituts für Technologie (KIT), Campus Nord, angefertigt. Zusammenfassung Die vorliegende Studie beschreibt den ersten Versuch zur Erstellung eines vergleichenden Protein-Protein Interaktionsnetzwerks mit dem Yeast two-hybrid (Y2H) System. Viele Studien bestätigen, dass Interaktionsnetzwerke aus proteomweiten Screens unvollständig sind. Dies stützt sich auf die Beobachtung, dass Interaktionsdaten, die mit unterschiedlichen Methoden erhoben wurden, nur geringe Überlappungen zeigen. Dies betrifft auch unterschiedliche Systeme innerhalb einer Methode, wie verschiedene Y2H-Systeme. Dadurch wurde die Frage aufgeworfen, welche Rolle strukturelle Unterschiede, insbesondere sterische Bedingungen im Testsystem spielen, verursacht durch die Orientierung der verwendeten Fusionsdomänen. In dieser Arbeit untersuche ich deren Einfluss auf die Detektierbarkeit
    [Show full text]
  • Article Association of Systemic Lupus Erythematosus
    Article Association of Systemic Lupus Erythematosus Susceptibility Genes with IgA Nephropathy in a Chinese Cohort Xu-Jie Zhou, Fa-Juan Cheng, Li Zhu, Ji-Cheng Lv, Yuan-Yuan Qi, Ping Hou, and Hong Zhang Abstract Background and objectives One hypothesis states that IgA nephropathy (IgAN) is a syndrome with an Renal Division, Peking University First autoimmune component. Recent studies strongly support the notion of shared genetics between immune-related Hospital; Peking diseases. This study investigated single-nucleotide polymorphisms (SNPs) reported to be associated with University Institute of systemic lupus erythematosus (SLE) in a Chinese cohort of patients with IgAN and in controls. Nephrology; Key Laboratory of Renal Disease, Ministry of Design, setting, participants, & measurements This study investigated whether SNP markers that had been Health of China; and reported to be associated with SLE were also associated with IgAN in a Chinese population. The study cohort Key Laboratory of consisted of 1194 patients with IgAN and 902 controls enrolled in Peking University First Hospital from 1997 to Chronic Kidney 2008. Disease Prevention and Treatment (Peking University), Ministry , 3 25 Results Ninety-six SNPs mapping to 60 SLE loci with reported P values 1 10 were investigated. CFH of Education, Beijing, 2 2 2 2 2 (P=8.41310 6), HLA-DRA (P=4.91310 6), HLA-DRB1 (P=9.46310 9), PXK (P=3.62310 4), BLK (P=9.32310 3), People’s Republic of and UBE2L3 (P=4.0731023) were identified as shared genes between IgAN and SLE. All associations reported China herein were corroborated by associations at neighboring SNPs.
    [Show full text]
  • Molecularly Imprinted Polymers for the Analysis of Protein Phosphorylation and the Role of Htra2/Omi Protein in Parkinson's Disease
    Molecularly Imprinted Polymers for the Analysis of Protein Phosphorylation and the Role of HtrA2/Omi Protein in Parkinson's Disease by Jing Chen Dissertation Submitted to the Faculty of Chemistry and Biochemistry In Candidacy for the Degree of Doctor Rerum Naturalium (Dr. rer. nat) Accomplished at Medizinisches Proteom-Center Ruhr-Universität Bochum, Germany 03. 2015, Bochum Statement in Lieu of Oath I hereby declare that I have accomplished the thesis independently and did not submit to any other faculty or refer to more than the publications listed in the references. The digital figures contain only original data and no modification was added. There are altogether 5 identical copies of my dissertation. __________________________ Jing Chen I Referee: Prof. Dr. Katrin Marcus Co-referee: Dr. Dirk Wolters II Acknowledgement I would like to express my deep and sincere gratitude to Prof. Dr. Katrin Marcus, director of the Medizinische Proteom-Center, for her friendly invitation to the working group, for the great opportunity working in the interesting research field, for her dedication in supervising of my project execution and her unconditional help at the end of my Ph.D. I am very grateful to Dr. Dirk Wolters for his kind acceptance of attending and co- judging my dissertation. I owe my sincere gratitude to Dr. Stefan Helling, for his outstanding mentoring to this work. His valuable advice is deciding. Hadn’t for his endeavor in discussing and clearing my confusion at all times, I wouldn’t have managed to accomplish the work. I know Prof. Dr. Börje Sellergren, my collaboration partner at biomedical science in Malmö University, Sweden the longest.
    [Show full text]
  • Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller Or Filler for Male (In)Fertility?
    Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 2010, Article ID 936569, 18 pages doi:10.1155/2010/936569 Review Article Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? Paulo Navarro-Costa,1, 2, 3 Carlos E. Plancha,2 and Joao˜ Gonc¸alves1 1 Departamento de Gen´etica, Instituto Nacional de Saude´ Dr. Ricardo Jorge, 1649-016 Lisboa, Portugal 2 Faculdade de Medicina de Lisboa, Instituto de Histologia e Biologia do Desenvolvimento, 1649-028 Lisboa, Portugal 3 Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, 1649-028 Lisboa, Portugal Correspondence should be addressed to Paulo Navarro-Costa, [email protected] Received 17 December 2009; Accepted 23 April 2010 Academic Editor: Brynn Levy Copyright © 2010 Paulo Navarro-Costa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The azoospermia factor (AZF) regions consist of three genetic domains in the long arm of the human Y chromosome referred to as AZFa, AZFb and AZFc. These are of importance for male fertility since they are home to genes required for spermatogenesis. In this paper a comprehensive analysis of AZF structure and gene content will be undertaken. Particular care will be given to the molecular mechanisms underlying the spermatogenic impairment phenotypes associated to AZF deletions. Analysis of the 14 different AZF genes or gene families argues for the existence of functional asymmetries between the determinants; while some are prominent players in spermatogenesis, others seem to modulate more subtly the program.
    [Show full text]