Insect Morphology 9/18/09 12:58 PM

Total Page:16

File Type:pdf, Size:1020Kb

Insect Morphology 9/18/09 12:58 PM Insect Morphology 9/18/09 12:58 PM Ent 4015 Ornamentals and Turf Entomology Insect Morphology All arthropods possess : Exoskeleton - a hard protective covering around the outside of the body (divided by sutures into plates called sclerites) Segmented body Jointed limbs and jointed mouthparts - that allow extensive specialization Bilateral symmetry - whereby a central line can divide the body into two identical halves, left and right Ventral nerve cord - as opposed to a vertebrate nerve cord which is dorsal Dorsal blood pump Adapted from University of Sydney Five important extant classes of Arthropods are arachnids, chilopods, diplopods, crustaceans and hexapods. Class Arachnida (arachnids): spiders, scorpions, ticks, mites, etc. Arachnids possess: 2 body segments - cephalothorax and abdomen 8 legs 1 pair of chelicerae no antennae University of Sydney Class Chilopoda (centipedes) Chilipods possess: many body segments 1 pair of legs per body segment 1 pair of antennae 1st pair of legs modified into venomous “fangs” University of Sydney Class Diplopoda (millipedes) Diplopods possess: Many body segments 2 pair of legs per body segment 1 pair of antennae University of Sydney Class Crustacea (crustaceans): crabs, shrimp, barnacles, sowbugs, etc. Crustaceans possess: Several body segments - head, thorax and abdomen Segments may be fused Varied number of legs 2 pairs of antennae University of Sydney file:///private/Network/Servers/fs.umnh.utah.edu/Homes/pmaxfield/Desktop/Insect%20Morphology.webarchive Page 1 of 30 Insect Morphology 9/18/09 12:58 PM Class Insecta (Insects); beetles, bugs, wasps, moths, flies, etc. Insects possess: 3 body segments 6 legs 1 pair of antennae Diverse modifications to appendages University of Sydney Basic Insect Morphology: Head, thorax, abdomen HEAD The head of an insect is composed of mainly rigid sclerites or sclerotized segments. The insect head is a capsule that contains the compound eyes, simple eyes (ocelli), mouthparts, and antennae. Compound eyes and ocelli In most insects there is one pair of large, prominent compound eyes composed of units called ommatidia. There may be up to 30,000 ommatidia in a compound eye. This type of eye gives less resolution than the vertebrate eye, but it gives acute perception of movement. When present, ocelli (either 2 or 3), detect low light or small changes in light intensity. Horse flies (order Diptera) have spectacular compound eyes. University of Florida Drees, Texas A&M University file:///private/Network/Servers/fs.umnh.utah.edu/Homes/pmaxfield/Desktop/Insect%20Morphology.webarchive Page 2 of 30 Insect Morphology 9/18/09 12:58 PM Compound eyes and ocelli on halictid bee (order Hymenoptera). John Pascarella, Valdosta State University Mouthparts The 4 main mouthparts are the labrum, mandibles, maxillae (plural maxilla) and labium. The labrum is a simple fused sclerite, often called the upper lip, and moves longitudinally. It is hinged to the clypeus. The mandibles, or jaws, are highly sclerotized paired structures that move at right angles to the body. They are used for biting, chewing and severing food. The maxillae are paired structures that can move at right angles to the body and possess segmented palps. The labium (often called the lower lip), is a fused structure that moves longitudinally and possesses a pair of segmented palps. Mouthparts very greatly among insects of different orders but there are two main functional groups: mandibulate and haustellate. Shown above and below are mandibulate (chewing) mouthparts. Haustellate mouthparts can be further classified as piercing- sucking, sponging, and siphoning. file:///private/Network/Servers/fs.umnh.utah.edu/Homes/pmaxfield/Desktop/Insect%20Morphology.webarchive Page 3 of 30 Insect Morphology 9/18/09 12:58 PM University of Florida Mandibulate (chewing) mouthparts are used for biting and grinding solid foods (see diagram above). Examples: Dragonflies and damselflies (order Odonata), termites (order Isoptera), adult lacewings (order Neuroptera), beetles (order Coleoptera), ants (order Hymenoptera), cockroaches (order Blattaria), grasshoppers, crickets and katydids (order Orthoptera), caterpillars (order Lepidoptera). Adult Lepidoptera have siphoning University of Florida mouthparts. Order Coleoptera: Stag beetle, Jim Order Hymenoptera: Carpenter ant, Order Blattaria: Newly molted American Occi, BugPics, www.insectimages.org Camponotus sp., Jim Kalisch, cockroach, Periplaneta americana, Daniel R. Department of Entomology, University of Suiter, University of Georgia, Nebraska-Lincoln www.insectimages.org file:///private/Network/Servers/fs.umnh.utah.edu/Homes/pmaxfield/Desktop/Insect%20Morphology.webarchive Page 4 of 30 Insect Morphology 9/18/09 12:58 PM Order Neuroptera: Green lacewing Order Coleoptera: Scarab beetle grub, Order Odonata: Damselfly eating mosquito, adult, Chrysopa oculata, John Ronald F. Billings, Texas Forest Service, Richard Seaman, Nature Wallpaper Davidson, The Insects of Cedar Creek www.insectimages.org Photo Album Order Lepidoptera: Saturniid Order Orthoptera: Katydid, Edward L. Order Isoptera: Termite, Coptotermes caterpillar, Hyalophora columbia, Manigault, Clemson University Donated formosanus, Gerald J. Lenhard, Louisiana Connecticut Agricultural Experiment Collection, www.insectimages.org State University, www.insectimages.org Station, www.insectimages.org Haustellate mouthparts are primarily used for sucking liquids and can be broken down into two subgroups: those that possess stylets and those that do not. Stylets are needle-like projections used to penetrate plant and animal tissue. The modified mandibles, maxilla, and hypopharynx form the stylets and the feeding tube. After piercing solid tissue, insects use the modified mouthparts to suck liquids from the host. To the left is a diagram of cicada mouthparts. Some haustellate mouthparts lack stylets. Unable to pierce tissues, these insects must rely on easily accessible food sources such as nectar at the base of a flower. One example of nonstylate mouthparts are the long siphoning proboscis of butterflies and moths (Lepidoptera). Although the method of liquid transport differs from that of the a Lepidopteran proboscis, the rasping- sucking rostrum of some flies are also considered to be haustellate without stylets. Piercing-sucking mouthparts are used to penetrate solid tissue and then suck up liquid food. University of Florida Examples: Cicadas (see diagram), aphids, and other bugs (order Hemiptera), sucking lice (order Phthiraptera), stable flies and mosquitoes (order Diptera). file:///private/Network/Servers/fs.umnh.utah.edu/Homes/pmaxfield/Desktop/Insect%20Morphology.webarchive Page 5 of 30 Insect Morphology 9/18/09 12:58 PM Order Hemiptera: Wheel bug, Order Hemiptera: Green peach Order Diptera: Stable fly, Stomoxys Arilus cristatus, Edward L. aphid, Myzus persicae, Scott calcitrans, Manigault, Clemson University Bauer, USDA ARS, North Dakota State University Donated Collection, www.insectimages.org www.insectimages.org Order Hemiptera: Spined soldier bug, Order Diptera: Mosquito feeding on human, Jim Occi, Podisus maculiventris, attacking caterpillar, BugPics, www.insectimages.org Russ Ottens, University of Georgia, www.insectimages.org Siphoning mouthparts lack stylets and are used to suck liquids. Examples: Butterflies, moths and skippers (order Lepidoptera), bees (order Hymenoptera). Larval Lepidoptera have chewing mouthparts. University of Florida Order Lepidoptera: Hummingbird Order Lepidoptera: Crossline skipper, Order Hymenoptera: sphinx moth, James Politte, James Politte, Blueberry bee, Habropoda http://washingtondcmetroweb.com http://washingtondcmetroweb.com laboriosa, Jerry A. Payne, USDA ARS, www.insectimages.org file:///private/Network/Servers/fs.umnh.utah.edu/Homes/pmaxfield/Desktop/Insect%20Morphology.webarchive Page 6 of 30 Insect Morphology 9/18/09 12:58 PM Sponging mouthparts are used to sponge and suck liquids. Examples: House flies and blow flies (order Diptera). University of Sydney Order Diptera: House fly, Musca Order Diptera: Green bottle fly (blow Order Diptera: Blue bottle fly (blow domestica, L. Clunie, fly), Phaenicia sericata, Joseph fly), Calliphora vomitoria, Stratford Manaaki Whenua Landcare Research Berger, www.insectimages.org Landing Elementary School Antennae Antennae function almost exclusively in sensory perception. Some of the information that can be detected by insect antennae includes: motion and orientation, odor, sound, humidity, and a variety of chemical cues. Antennae vary greatly among insects, but all follow a basic plan: segments 1 and 2 are termed the scape and pedicel, respectively. The remaining antennal segments (flagellomeres) are jointly called the flagellum. University of Florida file:///private/Network/Servers/fs.umnh.utah.edu/Homes/pmaxfield/Desktop/Insect%20Morphology.webarchive Page 7 of 30 Insect Morphology 9/18/09 12:58 PM Aristate antennae are pouch-like with a lateral bristle. Examples: House and shore flies (order Diptera). University of Sydney Order Diptera: House fly, Musca domestica, Order Diptera: Shore fly (Typopsilopa sp.), Clemson University - USDA Cooperative The Insects of Cedar Creek Photo Album Extension Slide Series, www.insectimages.org Capitate antennae are abruptly clubbed at the end. Examples: Butterflies (order Lepidoptera). University of Sydney Order Lepidoptera: Painted beauty butterfly, Order Lepidoptera: Red-banded Order Lepidoptera: Speckled wood Vanessa virginiensis, Jerry A. Payne, USDA hairstreak, Calycopis cecrops, Jerry butterfly, Pararge
Recommended publications
  • Diptera: Syrphidae
    This is a repository copy of The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80035/ Version: Accepted Version Article: Penney, HD, Hassall, C orcid.org/0000-0002-3510-0728, Skevington, JH et al. (2 more authors) (2014) The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae). The American Naturalist, 183 (2). pp. 281-289. ISSN 0003-0147 https://doi.org/10.1086/674612 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae)1 Heather D. Penney, Christopher Hassall, Jeffrey H. Skevington, Brent Lamborn & Thomas N. Sherratt Abstract Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated, or to augment an already close morphological resemblance.
    [Show full text]
  • Uncus Shaped Akin to Elephant Tusks Defines a New Genus for Two Very Different-In-Appearance Neotropical Skippers (Hesperiidae: Pyrginae)
    The Journal Volume 45: 101-112 of Research on the Lepidoptera ISSN 0022-4324 (PR in T ) THE LEPIDOPTERA RESEARCH FOUNDATION, 29 DE C EMBER 2012 ISSN 2156-5457 (O N L in E ) Uncus shaped akin to elephant tusks defines a new genus for two very different-in-appearance Neotropical skippers (Hesperiidae: Pyrginae) Nic K V. GR ishin Howard Hughes Medical Institute and Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA 75390-9050 [email protected] Abstract. Analyses of male genitalia, other aspects of adult, larval and pupal morphology, and DNA COI barcode sequences suggest that Potamanaxas unifasciata (C. Felder & R. Felder, 1867) does not belong to Potamanaxas Lindsey, 1925 and not even to the Erynnini tribe, but instead is more closely related to Milanion Godman & Salvin, 1895 and Atarnes Godman & Salvin, 1897, (Achlyodini). Unexpected and striking similarities are revealed in the male genitalia of P. unifasciata and Atarnes hierax (Hopffer, 1874). Their genitalia are so similar and distinct from the others that one might casually mistake them for the same species. Capturing this uniqueness, a new genus Eburuncus is erected to include: E. unifasciata, new combination (type species) and E. hierax, new combination. Key words: phylogenetic classification, monophyletic taxa, immature stages, DNA barcodes,Atarnes sallei, Central America, Peru. INTRODUCT I ON 1982-1999). Most of Burns’ work derives from careful analysis of genitalia, recently assisted by morphology Comprehensive work by Evans (e.g. Evans, 1937; of immature stages and molecular evidence (e.g. 1952; 1953) still remains the primary source of Burns & Janzen, 2005; Burns et al., 2009; 2010).
    [Show full text]
  • The Buzz About Bees: Honey Bee Biology and Behavior
    4-H Honey Bee Leaders Guide Book I The Buzz About Bees: 18 U.S.C. 707 Honey Bee Biology and Behavior Publication 380-071 2009 To the 4-H Leader: The honey bee project (Books Grade 5 1 - 4) is intended to teach young people the basic biology and behavior of honey bees in addition to Living Systems 5.5 hands-on beekeeping management skills. The honey The student will investigate and understand that bee project books begin with basic honey bee and organisms are made up of cells and have distin- insect information (junior level) and advance to guishing characteristics. Key concepts include: instruction on how to rear honey bee colonies and • vertebrates and invertebrates extract honey (senior level). These project books are intended to provide in-depth information related Grade 6 to honey bee management, yet they are written for the amateur beekeeper, who may or may not have Life Science 5 previous experience in rearing honey bees. The student will investigate and understand how organisms can be classified. Key concepts include: Caution: • characteristics of the species If anyone in your club is known to have severe Life Science 8 allergic reactions to bee stings, they should not The student will investigate and understand that participate in this project. interactions exist among members of a population. The honey bee project meets the following Vir- Key concepts include: ginia State Standards of Learning (SOLs) for the • competition, cooperation, social hierarchy, and fourth, fifth, and sixth grades: territorial imperative Grade 4 Acknowledgments Authors: Life Processes 4.4 Dini M.
    [Show full text]
  • 1 It's All Geek to Me: Translating Names Of
    IT’S ALL GEEK TO ME: TRANSLATING NAMES OF INSECTARIUM ARTHROPODS Prof. J. Phineas Michaelson, O.M.P. U.S. Biological and Geological Survey of the Territories Central Post Office, Denver City, Colorado Territory [or Year 2016 c/o Kallima Consultants, Inc., PO Box 33084, Northglenn, CO 80233-0084] ABSTRACT Kids today! Why don’t they know the basics of Greek and Latin? Either they don’t pay attention in class, or in many cases schools just don’t teach these classic languages of science anymore. For those who are Latin and Greek-challenged, noted (fictional) Victorian entomologist and explorer, Prof. J. Phineas Michaelson, will present English translations of the scientific names that have been given to some of the popular common arthropods available for public exhibits. This paper will explore how species get their names, as well as a brief look at some of the naturalists that named them. INTRODUCTION Our education system just isn’t what it used to be. Classic languages such as Latin and Greek are no longer a part of standard curriculum. Unfortunately, this puts modern students of science at somewhat of a disadvantage compared to our predecessors when it comes to scientific names. In the insectarium world, Latin and Greek names are used for the arthropods that we display, but for most young entomologists, these words are just a challenge to pronounce and lack meaning. Working with arthropods, we all know that Entomology is the study of these animals. Sounding similar but totally different, Etymology is the study of the origin of words, and the history of word meaning.
    [Show full text]
  • Morphology, Taxonomy, and Biology of Larval Scarabaeoidea
    Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/morphologytaxono12haye ' / ILLINOIS BIOLOGICAL MONOGRAPHS Volume XII PUBLISHED BY THE UNIVERSITY OF ILLINOIS *, URBANA, ILLINOIS I EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Charles Zeleny, Chairman S70.S~ XLL '• / IL cop TABLE OF CONTENTS Nos. Pages 1. Morphological Studies of the Genus Cercospora. By Wilhelm Gerhard Solheim 1 2. Morphology, Taxonomy, and Biology of Larval Scarabaeoidea. By William Patrick Hayes 85 3. Sawflies of the Sub-family Dolerinae of America North of Mexico. By Herbert H. Ross 205 4. A Study of Fresh-water Plankton Communities. By Samuel Eddy 321 LIBRARY OF THE UNIVERSITY OF ILLINOIS ILLINOIS BIOLOGICAL MONOGRAPHS Vol. XII April, 1929 No. 2 Editorial Committee Stephen Alfred Forbes Fred Wilbur Tanner Henry Baldwin Ward Published by the University of Illinois under the auspices of the graduate school Distributed June 18. 1930 MORPHOLOGY, TAXONOMY, AND BIOLOGY OF LARVAL SCARABAEOIDEA WITH FIFTEEN PLATES BY WILLIAM PATRICK HAYES Associate Professor of Entomology in the University of Illinois Contribution No. 137 from the Entomological Laboratories of the University of Illinois . T U .V- TABLE OF CONTENTS 7 Introduction Q Economic importance Historical review 11 Taxonomic literature 12 Biological and ecological literature Materials and methods 1%i Acknowledgments Morphology ]* 1 ' The head and its appendages Antennae. 18 Clypeus and labrum ™ 22 EpipharynxEpipharyru Mandibles. Maxillae 37 Hypopharynx <w Labium 40 Thorax and abdomen 40 Segmentation « 41 Setation Radula 41 42 Legs £ Spiracles 43 Anal orifice 44 Organs of stridulation 47 Postembryonic development and biology of the Scarabaeidae Eggs f*' Oviposition preferences 48 Description and length of egg stage 48 Egg burster and hatching Larval development Molting 50 Postembryonic changes ^4 54 Food habits 58 Relative abundance.
    [Show full text]
  • Wisconsin Bee Identification Guide
    WisconsinWisconsin BeeBee IdentificationIdentification GuideGuide Developed by Patrick Liesch, Christy Stewart, and Christine Wen Honey Bee (Apis mellifera) The honey bee is perhaps our best-known pollinator. Honey bees are not native to North America and were brought over with early settlers. Honey bees are mid-sized bees (~ ½ inch long) and have brownish bodies with bands of pale hairs on the abdomen. Honey bees are unique with their social behavior, living together year-round as a colony consisting of thousands of individuals. Honey bees forage on a wide variety of plants and their colonies can be useful in agricultural settings for their pollination services. Honey bees are our only bee that produces honey, which they use as a food source for the colony during the winter months. In many cases, the honey bees you encounter may be from a local beekeeper’s hive. Occasionally, wild honey bee colonies can become established in cavities in hollow trees and similar settings. Photo by Christy Stewart Bumble bees (Bombus sp.) Bumble bees are some of our most recognizable bees. They are amongst our largest bees and can be close to 1 inch long, although many species are between ½ inch and ¾ inch long. There are ~20 species of bumble bees in Wisconsin and most have a robust, fuzzy appearance. Bumble bees tend to be very hairy and have black bodies with patches of yellow or orange depending on the species. Bumble bees are a type of social bee Bombus rufocinctus and live in small colonies consisting of dozens to a few hundred workers. Photo by Christy Stewart Their nests tend to be constructed in preexisting underground cavities, such as former chipmunk or rabbit burrows.
    [Show full text]
  • N E W S L E T T E R
    Entomological Society of Victoria N e w s l e t t e r No. 1 February 2014 INDEX Welcome to the Entomological Society of Victoria newsletter Welcome…………...…1 The ESV has a long and distinguished 87-year history of contributing to Visit to AgriBio, knowledge of, and the promotion of, Victorian insects, beginning in the 1920s: Bundoora (photos)…..2 “On April 5, 1927 fourteen people interested in entomology met at the East Malvern home of the late Mr F.E. Wilson for the purpose of forming an Meet your ESV Council entomological club...” (part one)…..…………3 So began The Entomologists’ Club, now known as the Entomological Society of Victorian Alps Bioscan Victoria. The focus of the early years of the club were “excursions – rambles (photos)……………….4 they are often called in the Minutes – made to places such as Heathmont, Millgrove, Frankston, Ringwood, Blackburn, Noble Park and Ferntree Gully.” For sale……………….5 “Membership of the Society in the years 1927-1940 was from 25 to 40, although Australian attendance at meetings fell to a very low ebb at times...Because of the Entomological pressures of the war the Society lapsed about 1942 and was not re-established Conferences………….5 until 1961 when Mr J.C. Le Soeuf arranged a meeting at the National Herbarium Hall for this purpose.” Around the Societies...5 Today’s membership is consistently over 100, continuing the tradition of excursions, publications, presentations and the general promotion of all things Bugs in profile………..6 entomological. Le Soeuf is commemorated with the award named in his honour, most recently awarded to Peter Marriott, the Society’s Immediate Past International President.
    [Show full text]
  • THE LITTLE THINGS THAT RUN the CITY 30 AMAZING INSECTS THAT LIVE in MELBOURNE! © City of Melbourne 2017 First Published May, 2017 ISBN 978-1-74250-900-6
    THE littleTHINGS that run the city BY KATE CRANNEY, SARAH BEKESSY AND LUIS MATA In partnership with City of Melbourne 30 amazing insects that live in Melbourne! THE LITTLE THINGS THAT RUN THE CITY 30 AMAZING INSECTS THAT LIVE IN MELBOURNE! © City of Melbourne 2017 First published May, 2017 ISBN 978-1-74250-900-6 ABOUT THIS PROJECT This book is an outreach educational resource prepared by Kate Cranney, Sarah Bekessy and Luis Mata for the City of Melbourne. Kate, Sarah and Luis work as part of the Interdisciplinary Conservation Science Research Group at RMIT University in Melbourne, Australia. THE Illustrations: Kate Cranney Ink on paper, www.katecranney.com Photographs: Luis Mata flickr.com/photos/dingilingi/ Graphic Design: Kathy Holowko THANK YOU We wish to acknowledge the support of the Australian Government’s little National Environmental Science Programme - Clean Air and Urban THINGS Landscapes and Threatened Species Hubs, and the Australian Research Council Centre of Excellence for Environmental Decisions. The book was inspired by ‘The Little Things that Run the City – Insect ecology, biodiversity and conservation in the that run the city City of Melbourne’ research project (Mata et al. 2016). We are very grateful to the Australian Museum (http://australianmuseum.net.au/insects), the Museum Victoria BY KATE CRANNEY, SARAH BEKESSY AND LUIS MATA (https://museumvictoria.com.au/bugs/), the CSIRO’s ‘What Bug is That’ program (http://anic.ento.csiro.au/insectfamilies/) In partnership with City of Melbourne and ‘The Insects of Australia - A textbook for students and research workers’ book (Naumann et al. 1991). Thank you to Dr.
    [Show full text]
  • Dominant Frequency Characteristics of Calling Songs in Cicada
    Journal of Entomology and Zoology Studies 2014; 2 (6): 330-332 ISSN 2320-7078 Dominant frequency characteristics of calling songs in JEZS 2014; 2 (6): 330-332 © 2014 JEZS cicada Chloropsalta smaragdula Haupt, 1920 (Hem: www.entomoljournal.com Received: 21-10-2014 Cicadidae) and its relationship with body length, width, Accepted: 21-11-2014 and weight. Akbar Mohammadi-Mobarakeh Department of Entomology, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Akbar Mohammadi-Mobarakeh, Bijan Hatami, Alireza Jalali Zand, Iran, 00989132375720. Rassoul Amir Fattahi, Hossein Zamanian Bijan Hatami Abstract Department of Entomology, To study the calling songs in cicada Chloropsalta smaragdula and its relationship with body length, Khorasgan (Isfahan) Branch, width, and weight, a research was conducted in the Iranian city of Mobarakeh, Isfahan Province, in 2011- Islamic Azad University, Isfahan, 2012. Different sound samples were taken under field and laboratory conditions. Throughout the Iran. sampling period, the calling songs of nine male cicadas were recorded and studied. The sound of each individual cicada was separately analyzed by MATLAB Software, and the size of its main parameter Alireza Jalali Zand Department of Entomology, (i.e., dominant frequency) was determined and recorded. The results showed that this cicada species have Khorasgan (Isfahan) Branch, a mean dominant frequency of 9.121 kHz. Moreover, the correlation coefficients indicated that there is a Islamic Azad University, Isfahan, positive relationship between the dominant frequency for the audio signal of the calling songs with body Iran. width and weight, and is significant at p<0.0001 probability level, thus, indicating that dominant frequency increases as body width and weight increase.
    [Show full text]
  • A Passion for Rhinoceros and Stag Beetles in Japan
    SCARABS CZ CN MNCHEM, NBYS QCFF WIGY. Occasional Issue Number 67 Print ISSN 1937-8343 Online ISSN 1937-8351 September, 2011 A Passion for Rhinoceros and Stag Beetles WITHIN THIS ISSUE in Japan Dynastid and Lucanid Enthusiasm in Japan ........ 1 by Kentaro Miwa University of Nebraska-Lincoln Bug People XXIV ........... 10 Department of Entomology In Past Years XLVI ......... 11 [email protected] Guatemala Scarabs IV ... 20 BACK ISSUES Available At These Sites: Coleopterists Society www.coleopsoc.org/de- fault.asp?Action=Show_ Resources&ID=Scarabs University of Nebraska A large population of the general public in Japan enjoys collecting and www-museum.unl.edu/ rearing insects. Children are exposed to insects at early ages because their research/entomology/ parents are interested in insects. My son went on his first collecting trip Scarabs-Newsletter.htm on a cool day in March in Nebraska when he was four months old. EDITORS I am from Shizuoka, Japan. I am currently pursuing my Ph.D in En- Rich Cunningham tomology at the University of Nebraska-Lincoln and studying biology [email protected] and applied ecology of insets in cropping systems. Among many insect Olivier Décobert taxa I am interested in, dynastines and lucanids are my favorite groups. [email protected] I have enjoyed collecting and rearing these beetles throughout my life. Barney Streit I began collecting beetles with my parents and grandparents when barneystreit@hotmail. com I was two years old. When I was about six, I learned to successfully rear some Japanese species. Since I came to the United States, I have been enjoying working with American species.
    [Show full text]
  • A Chromosomal Analysis of 15 Species of Gymnopleurini, Scarabaeini and Coprini (Coleoptera: Scarabaeidae)
    A chromosomal analysis of 15 species of Gymnopleurini, Scarabaeini and Coprini (Coleoptera: Scarabaeidae) R. B. Angus, C. J. Wilson & D. J. Mann The karyotypes of one species of Gymnopleurini, two Scarabaeini, five Onitini and seven Coprini are described and illustrated. Gymnopleurus geoffroyi, Scarabaeus cristatus, S. laticollis, Bubas bison, B. bubalus, B. bubaloides, Onitis belial, O. ion, Copris lunaris, Microcopris doriae, M. hidakai and Helopcopris gigas all have karyotypes with 2n=18 + Xy. Copris hispanus and Paracopris ����������ramosiceps have karyotypes with 2n=16 + Xy and Copris sinicus has a karyotype comprising 2n=12 + Xy. Heterochromatic B-chromosomes have been found in Bubas bubalus. Spanish material of Bubas bison lacks the distal heterochromatic blocks found in most of the chromosomes of Italian specimens. The karyotype of Heliocopris gigas is unusual in that the autosomes and X chromosome are largely heterochromatic. R. B. Angus* & C. J. Wilson, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK. [email protected] D. J. Mann, Hope Entomological Collections, Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. [email protected] Introduction of chromosome preparation and C-banding are given A previous publication (Wilson & Angus 2005) gave by Wilson (2001). In some cases it has been possible information on the karyotypes of species of Oniticel- to C-band preparations after they have been photo- lini and Onthophagini studied by C. J. Wilson in her graphed plain, giving a very powerful set of data for Ph. D. research (Wilson 2002). The present paper re- preparation of karyotypes.
    [Show full text]
  • Supporting Information
    Supporting Information Campbell et al. 10.1073/pnas.1421386112 SI Materials and Methods transformed into Escherichia coli JM109 High Efficiency Com- Genome Sequencing. The following amount of data were generated petent Cells. Transformed cells were grown in 3 mL of LB broth at for each sequencing technology: 136,081,956 pairs of 100 × 2 37 °C overnight, and plasmids were purified with E.Z.N.A. plas- short insert Illumina HiSeq reads for about 27 Gb total; 50,884,070 mid DNA mini kit I. The purified plasmids were used as PCR pairs of 100 × 2 large insert HiSeq reads for about 10 Gb total; templates to for further amplification of the probe region. The and 259,593 reads averaging 1600 nt for about 421 Mb total of amplified probes were subject to nick translation (>175 ng/μL PacBio data. DNA, 1× nick-translation buffer, 0.25 mM unlabeled dNTPs, 50 μM labeled dNTPs, 2.3 U/μL DNA polymerase I, 9 mU/μL Genome Annotation. Annotation of Hodgkinia DNA was done Dnase), using either Cy3 (MAGTRE006 and MAGTRE005), or using the phmmer module of HMMER v3.1b1 (1). All ORFs Cy5 (MAGTRE001 and MAGTRE012), and size selected for beginning with a start codon that overlapped a phmmer hit sizes in the range of 100–500 bp using Ampure XP beads. Probes were searched against a database of all Hodgkinia genes using with at least seven incorporated labeled dNTPs per 1,000 nucle- BLASTX 2.2.28+. MAGTRE Hodgkinia genes were considered otides as determined by spectroscopy were used for hybridization.
    [Show full text]