Bald-Faced Hornets

Total Page:16

File Type:pdf, Size:1020Kb

Bald-Faced Hornets Pest Profile Photo credit: By PiccoloNamek (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) from Wikimedia Commons Common Name: Bald Faced Hornet Scientific Name: Dolichovespula maculata Order and Family: Hymenoptera: Vespidae Size and Appearance: Bald faced hornets range in size from about 15 to over 20 mm in length with queens being up to 25% larger. They receive their common name from the unique white pattern present on the black face of the adults. The females also feature 2 stripes on the thorax and on the last 3 abdominal segments as well. The rest of the body tends to be a dull grey in color. Length (mm) Appearance Egg 1 mm 1 egg is laid per gallery cell. Larval and pupal stages take place entirely in gallery. Nests are aerial and usually contain 2,000 cells. Larva/Nymph 10-22 in length depending on White, cylindrical. Remain in instar and species cells in paper nests through pupation. Adult 15-20+ mm long Gray to black in overall coloration with white markings on face. Females have white stripes on thorax and abdominal segments. Pupa (if applicable) 10-25 mm long Light colored, made of final larval skin. Formed inside of gallery cell. Type of feeder (Chewing, sucking, etc.): Chewing Host /s: Dolichovespula maculata consume various arthropods, many of which are pests. They are considered beneficial for this reason. Description of Damage (larvae and adults): Though they do a positive service by consuming pest species, if a nest is nearby a home, their aggressive nature leads to stings for humans and pets. Those with serious allergic reactions most certainly are affected by presence of hornets. It is advised to remove the nest during dusk hours while wearing a full beekeeping suit for protection. References: Smith, E.H. and Whitman, R.C. (2007). Bees, Hornets, and Wasps-Bald-Faced Hornets. In NPMA Field Guide of Structural Pests. (2.6.1). National Pest Management Association International. Jacobs, S. (February 2015). Baldfaced Hornet. Penn State College of Agricultural Sciences, Department of Entomology. Retrieved on August 1st, 2016 from: http://ento.psu.edu/extension/factsheets/baldfaced- hornet .
Recommended publications
  • Diptera: Syrphidae
    This is a repository copy of The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80035/ Version: Accepted Version Article: Penney, HD, Hassall, C orcid.org/0000-0002-3510-0728, Skevington, JH et al. (2 more authors) (2014) The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae). The American Naturalist, 183 (2). pp. 281-289. ISSN 0003-0147 https://doi.org/10.1086/674612 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae)1 Heather D. Penney, Christopher Hassall, Jeffrey H. Skevington, Brent Lamborn & Thomas N. Sherratt Abstract Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated, or to augment an already close morphological resemblance.
    [Show full text]
  • Baldfaced Hornet & Aerial Yellowjacket
    Colorado Insect of Interest Baldfaced Hornet & Aerial Yellowjacket Scientific Names: Dolichovespula maculata (L.) (baldfaced hornet), D. arenaria (Fabricius) (aerial yellowjacket) Figure 1. Baldfaced hornet collecting honeydew from oak galls. Order: Hymenoptera (Bees, Wasps, Ants, Sawflies and Relatives) Family: Vespidae Identification and Descriptive Features: Adults are prominently marked with either black and white (baldfaced hornet) or black and yellow (aerial yellowjacket) markings. The general body form is elongate with the hind end terminating in a blunt point (with stinger) and they are only sparsely hairy, unlike bees. The baldfaced hornet is the larger species, typically over 15 mm in length. Size range within a colony varies with workers being smaller, usually within the range of 10-14 mm. Adults of the aerial yellowjacket are quite similar Figure 2. Aerial yellowjacket chewing on to the western yellowjacket, Vespula pensylvanica weathered wood. (Saussure), in both size and general coloration. The pattern of markings on the abdomen can be used to separate these insects (Figures 6-9). Distribution in Colorado: Both the baldfaced hornet and aerial yellowjacket normally nests in trees or large shrubs and are native to forested areas. However, with landscaping provided around residential areas these wasps may now commonly be found in most towns and cities, with the exception of some in the eastern plain communities. The aerial yellowjacket, in particular, has also adapted to nest on buildings. Life History and Habits: The baldfaced hornet and aerial yellowjacket, the two primary representatives of the genus Dolichovespula in Colorado, make large above ground carton nests of a papery material. These nests are produced annually, initiated in spring by a single overwintered queen and abandoned at the end of the season.
    [Show full text]
  • Metal Acquisition in the Weaponized Ovipositors of Aculeate Hymenoptera
    Zoomorphology https://doi.org/10.1007/s00435-018-0403-1 ORIGINAL PAPER Harden up: metal acquisition in the weaponized ovipositors of aculeate hymenoptera Kate Baumann1 · Edward P. Vicenzi2 · Thomas Lam2 · Janet Douglas2 · Kevin Arbuckle3 · Bronwen Cribb4,5 · Seán G. Brady6 · Bryan G. Fry1 Received: 17 October 2017 / Revised: 12 March 2018 / Accepted: 17 March 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The use of metal ions to harden the tips and edges of ovipositors is known to occur in many hymenopteran species. However, species using the ovipositor for delivery of venom, which occurs in the aculeate hymenoptera (stinging wasps, ants, and bees) remains uninvestigated. In this study, scanning electron microscopy coupled with energy-dispersive X-ray analysis was used to investigate the morphology and metal compositional differences among aculeate aculei. We show that aculeate aculei have a wide diversity of morphological adaptations relating to their lifestyle. We also demonstrate that metals are present in the aculei of all families of aculeate studied. The presence of metals is non-uniform and concentrated in the distal region of the stinger, especially along the longitudinal edges. This study is the first comparative investigation to document metal accumulation in aculeate aculei. Keywords Scanning electron microscopy · Energy-dispersive X-ray spectroscopy · EDS · Aculeata · Aculeus · Cuticle · Metal accumulation Introduction with the most severe responses (as perceived by humans) delivered by taxa including bullet ants (Paraponera), taran- Aculeata (ants, bees, and stinging wasps) are the most con- tula hawk wasps (Pepsis), and armadillo wasps (Synoeca) spicuous of the hymenopteran insects, and are known pre- (Schmidt 2016).
    [Show full text]
  • Yellowjackets and Hornets, Vespula and Dolichovespula Spp. (Insecta: Hymenoptera: Vespidae)1 E
    EENY-081 Yellowjackets and Hornets, Vespula and Dolichovespula spp. (Insecta: Hymenoptera: Vespidae)1 E. E. Grissell and Thomas R. Fasulo2 Introduction Distribution Only two of the 18 Nearctic species of Vespula are known Vespula maculifrons is found in eastern North America, from Florida (Miller 1961). These are the two yellowjackets: while Vespula squamosa is found in the eastern United eastern yellowjacket, V. maculifrons (Buysson) and the States and parts of Mexico and Central America. The southern yellowjacket, V. squamosa (Drury). One species baldfaced hornet, Dolichovespula maculata, is found of Dolichovespula is also present: the baldfaced hornet, throughout most of the Nearctic region. D. maculata (Linnaeus). The baldfaced hornet is actually a yellowjacket. It receives its common name of baldfaced Identification from its largely black color but mostly white face, and that The three species of Florida yellowjackets are readily of hornet because of its large size and aerial nest. In general, separated by differences in body color and pattern. Identi- the term “hornet” is used for species which nest above fication is possible without a hand lens or microscope, and, ground and the term “yellowjacket” for those which make for this reason, a simple pictorial key is all that is necessary. subterranean nests. All species are social, living in colonies Color patterns are relatively stable, and their use is further of hundreds to thousands of individuals. strengthened by morphological characters (Miller 1961). Queens and workers may be separated by abdominal pat- terns; males have seven abdominal segments while females have only six. Biology Colonies are founded in the spring by a single queen that mated the previous fall and overwintered as an adult, usually under the bark of a log.
    [Show full text]
  • Comparative Morphology of the Stinger in Social Wasps (Hymenoptera: Vespidae)
    insects Article Comparative Morphology of the Stinger in Social Wasps (Hymenoptera: Vespidae) Mario Bissessarsingh 1,2 and Christopher K. Starr 1,* 1 Department of Life Sciences, University of the West Indies, St Augustine, Trinidad and Tobago; [email protected] 2 San Fernando East Secondary School, Pleasantville, Trinidad and Tobago * Correspondence: [email protected] Simple Summary: Both solitary and social wasps have a fully functional venom apparatus and can deliver painful stings, which they do in self-defense. However, solitary wasps sting in subduing prey, while social wasps do so in defense of the colony. The structure of the stinger is remarkably uniform across the large family that comprises both solitary and social species. The most notable source of variation is in the number and strength of barbs at the tips of the slender sting lancets that penetrate the wound in stinging. These are more numerous and robust in New World social species with very large colonies, so that in stinging human skin they often cannot be withdrawn, leading to sting autotomy, which is fatal to the wasp. This phenomenon is well-known from honey bees. Abstract: The physical features of the stinger are compared in 51 species of vespid wasps: 4 eumenines and zethines, 2 stenogastrines, 16 independent-founding polistines, 13 swarm-founding New World polistines, and 16 vespines. The overall structure of the stinger is remarkably uniform within the family. Although the wasps show a broad range in body size and social habits, the central part of Citation: Bissessarsingh, M.; Starr, the venom-delivery apparatus—the sting shaft—varies only to a modest extent in length relative to C.K.
    [Show full text]
  • Wasps (Vespa Crabro and Vespula Sp.)
    848 Research Article Does size matter? – Thermoregulation of ‘heavyweight’ and ‘lightweight’ wasps (Vespa crabro and Vespula sp.) Helmut Kovac* and Anton Stabentheiner Institut fu¨r Zoologie, Karl-Franzens-Universita¨t Graz, Universita¨tsplatz 2, A-8010 Graz, Austria *Author for correspondence ([email protected]) Biology Open 1, 848–856 doi: 10.1242/bio.20121156 Received 6th March 2012 Accepted 31st May 2012 Summary In insect groups with the ability of endothermy, the (Tth2Ta) above ambient air of about 5–18˚C indicates a high thermoregulatory capacity has a direct relation to body endothermic capacity in both hornets and wasps. Heat gain mass. To verify this relationship in vespine wasps, we from solar radiation elevated the temperature excess by up to compared the thermoregulation of hornets (Vespa crabro), 1˚C. Results show that hornets and wasps are able to regulate the largest species of wasps in Central Europe, with two their body temperature quite well, even during flight. A smaller wasps (Vespula vulgaris and Vespula germanica)in comparison of flight temperature with literature reports on the entire range of ambient temperature (Ta: ,0–40˚C) other vespine wasps revealed a dependence of the Tth on the where the insects exhibited foraging flights. body mass in species weighing less than about 200 mg. Despite the great difference in body weight of Vespula (V. vulgaris: 84.1619.0 mg, V. germanica: 74.169.6 mg) and ß 2012. Published by The Company of Biologists Ltd. This is Vespa (477.5659.9 mg), they exhibited similarities in the an Open Access article distributed under the terms of the dependence of thorax temperature on Ta on their arrival Creative Commons Attribution Non-Commercial Share Alike (mean Tth 5 30–40˚C) and departure (mean Tth 5 33–40˚C) License (http://creativecommons.org/licenses/by-nc-sa/3.0).
    [Show full text]
  • OTHER BEES and WASPS Advanced Level Training Texas Master Beekeeper Program
    OTHER BEES AND WASPS Advanced Level Training Texas Master Beekeeper Program Introduction • As a beekeeper, you are often treated as the expert on all things with wings or stings. • The knowledge gained from this presentation should help you to confidently field questions from the general public, identify a few of the common bees and wasps of Texas and discuss their biology and importance as beneficial insects or as pests. Bees and Wasps Bees Wasps • More body hair • Very little hair • Flattened hindlegs, usually • Rounded legs containing a pollen basket • Are predators of other insects, or will • Feed on pollen and nectar scavenge food scraps, carrion, etc. • Generally can only sting once • Can (and will) sting repeatedly • Includes hornets and yellowjackets 1 Yellowjackets and Hornets • General biology • Colonies founded in spring by a single‐mated, overwintered queen • Constructs the paper brood cells • Forage for food • Lay eggs • Feed her progeny • Defend the nest Yellowjackets and Hornets • When the first offspring emerge they assume all tasks except egg laying. • Workers progressively feed larvae • Masticated adult and immature insects • Other arthropods • Fresh carrion • Working habits apparently are not associated with age as they are with honey bees. Yellowjackets and Hornets in Texas • Eastern yellowjacket • Vespula maculifrons Buysson • Southern yellowjacket • Vespula squamosa Drury • Baldfaced hornet • Dolichovespula maculata Linnaeus 2 Yellowjackets and Hornets in Texas • Eastern yellowjacket (Vespula maculifrons) • Family: Vespidae • Mostly subterranean nests, but aerial nests do occur. • Largest recorded nest: • 8 levels of comb with over 2800 wasps present (Haviland, 1962) Yellowjackets and Hornets in Texas • Southern yellowjacket (Vespula squamosa) • Family: Vespidae • Construct both terrestrial and aerial nests.
    [Show full text]
  • Yellow Jackets Will Remain Behind Sects with Black & Yellow Or Black & White Licensed Pest Control Company Or Vector Control to Protect the Nest
    sealing all food containers, and locate garbage re- Mud daubers are solitary wasps who construct mud ceptacles away from eating areas. Reduce avail- nests and provision them with paralyzed spiders. Our able water for nest building and drinking, by repair- common two species are medium sized, and ing defective spigots and promote drainage in ar- shiny blue/green or black and yellow. eas where water can accumulate. These insects are non-aggressive and stinging incidents are extremely rare. Depletion Trapping These types of devices will not produce consistent If you discover a yellowjacket nest or reliable results. Some commercially available traps utilize a chemical lure to attract the insect to AVOID THE AREA! the trap. These chemicals attract not all yellow- Þ Mark the site and keep children or pets away from jacket species. Once the insect has entered the the nest. trap, they have difficulty in finding their way out and Þ Wear light colored clothing when nearby. they usually die inside from exposure. Homemade Þ Do not disturb the nest area or operate heavy traps can be constructed by suspending meat over equipment. open containers of soapy water. If the insect cuts Þ Get professional help to exterminate the nest. GENERAL INFORMATION off too large a piece of meat, it will fall into the wa- ter and drown. Traps should be placed away from If you are attacked by yellowjackets people or food. Yellowjackets are social insects that live in a Note: Inexperienced people should not attempt to LEAVE THE AREA QUICKLY! colony. Most species are medium sized in- destroy a yellowjacket nest.
    [Show full text]
  • Beneficial Insects of Utah Guide
    BENEFICIAL INSECTS OF UTAH beneficial insects & other natural enemies identification guide PUBLICATION COORDINATORS AND EDITORS Cami Cannon (Vegetable IPM Associate and Graphic Design) Marion Murray (IPM Project Leader) AUTHORS Cami Cannon Marion Murray Ron Patterson (insects: ambush bug, collops beetle, red velvet mite) Katie Wagner (insects: Trichogramma wasp) IMAGE CREDITS All images are provided by Utah State University Extension unless otherwise noted within the image caption. CONTACT INFORMATION Utah State University IPM Program Dept. of Biology 5305 Old Main Hill Logan, UT 84322 (435) 797-0776 utahpests.usu.edu/IPM FUNDING FOR THIS PUBLICATION WAS PROVIDED BY: USU Extension Grants Program CONTENTS PREFACE Purpose of this Guide ................................................................6 Importance of Natural Enemies ..................................................6 General Practices to Enhance Natural Enemies ...........................7 Plants that will Enhance Natural Enemy Populations ..................7 PREDATORS Beetles .....................................................................................10 Flies .........................................................................................24 Lacewings/Dustywings .............................................................32 Mites ........................................................................................36 Spiders .....................................................................................42 Thrips ......................................................................................44
    [Show full text]
  • Sphecos: a Forum for Aculeate Wasp Researchers
    SPHECOS Number 4 - January 1981 A Newsletter for Aculeate Wasp Researchers Arnold S. Menke, editor Systematic Entomology Laboratory, USDA c/o u. S. National Museum of Natural History washington DC 20560 Notes from the Editor This issue of Sphecos consists mainly of autobiographies and recent literature. A highlight of the latter is a special section on literature of the vespid subfamily Vespinae compiled and submitted by Robin Edwards (seep. 41). A few errors in issue 3 have been brought to my attention. Dr. Mickel was declared to be a "multillid" expert on page l. More seriously, a few typographical errors crept into Steyskal's errata paper on pages 43-46. The correct spellings are listed below: On page 43: p. 41 - Aneusmenus --- p. 108 - Zaschizon:t:x montana and z. Eluricincta On page 45: p. 940 - ----feminine because Greek mastix --- p. 1335 - AmEl:t:oEone --- On page 46: p. 1957 - Lasioglossum citerior My apologies to Dr. Mickel and George Steyskal. I want to thank Helen Proctor for doing such a fine job of typing the copy for Sphecos 3 and 4. Research News Ra:t:mond Wah is, Zoologie generale et Faunistique, Faculte des Sciences agronomiques, 5800 GEMBLOUX, Belgium; home address: 30 rue des Sept Collines 4930 CHAUDFONTAINE, Belgium (POMPILIDAE of the World), is working on a revision of the South American genus Priochilus and is also preparing an annotated key of the members of the Tribe Auplopodini in Australia (AuElOEUS, Pseudagenia, Fabriogenia, Phanagenia, etc.). He spent two weeks in London (British Museum) this summer studying type specimens and found that Turner misinterpreted all the old species and that his key (1910: 310) has no practical value.
    [Show full text]
  • Sphecos: a Forum for Aculeate Wasp Researchers
    i7 FEBRUARY 1993 A FORUM FOR ACULEATE WASP RESEARCHERS RESEARCH NEWS NOTES FROM THE ARNOLD S.MENKE, Editor MUD D'AUB Tony P.Nuhn, Assistant E<fitor Systematic Entomology Laboratory Byron Alexander (Dept, of Entomol- Agricultural Research Service, USDA ogy, University of Kansas, Lawrence, History This issue includes an obituary and do National Museum ot Natural KS 66045) has developed an interest In Smithsonian Institution Washington.DC 20560 several reminiscences of Jack van der . of bembicme wasps. He FAX: <202) 786-9422 Phone:(202) 382-1803 the phytogeny Vecht, one of thelast of hisgeneration of is now waiting to learn the fate of a wasp workers. He was truly one of the pending grant proposal. In the mean- greats in hymenopterology, and Jack CLOUDY FUTURE FOR time, he has begun to borrow speci- will be missed. He was a real gentle- SPHECOS?? mens, some of which he is dissecting man, and I feel fortunate to have met and examining as time permits (which it and worked with him on several occa- USDA budgets have been shrinking rarely does). He is also rumored to be sions. steadily, and the costs of producing the collaborating with Kevin O'Neill on a In Sphecos 23 I wrote a tongue-in- newsletter come out of Menke’s yearly book about solitary wasps. His major cheek piece on left-handed labellers. I allotment. For FY 1993 I have about excuse for not writing anything so far is expected more flack from the reader- $1500 for all my expenses (travel, SEM that he is waiting for Brothers and Car- ship but so far only two people have costs,computerneeds, Sphecos, equip- penter to complete their phylogenetic responded (see p.
    [Show full text]
  • Nesting Interactions of the Social Wasp Dolichovespula Saxonica [F
    Ecological Questions 13/2010: 67 – 72 DOI: 10.2478/v10090–010–0017–9 Nesting interactions of the social wasp Dolichovespula saxonica [F.] (Hymenoptera: Vespinae) in wooden nest boxes for birds in the forest reserve „Las Piwnicki” in the Chełmno Land (Northern Poland) *Tadeusz Pawlikowski, **Krzysztof Pawlikowski *Laboratory for Biomonitoring of Terrestrial Environments, Institute of Ecology & Environmental Protection, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland, e-mail: [email protected] **Sea Fisheries Institute in Gdynia, Department of Fisheries Oceanography and Marine Ecology, Kollataja 1, 81-332 Gdynia, Poland, e-mail: [email protected] Abstract. The aim of this research was to investigate the process of colonization in wooden nest boxes for birds by the wasp Doli- chovespula saxonica [F.] in the forest reserve “Las Piwnicki” during 1986–1987. About 69% of 150 nest boxes were colonized (36% by D. saxonica) in 1986 and 35% (10% by D. saxonica) in 1987. Parasite Shecophaga vesparum Court was observed inside small cell nests (SC) and large cell nests (LC) in the ratio of 5(SC) : 3(LC). During the two seasons, the decrease in the number of paras- ited nests followed with the ratio of 10(1986) : 1(1987). Competition of the „wasp – wasp” type (VV) compared to other competition types, such as „wasp – bird” (VA) and different types with wasps (DT), was the most frequent one among the interactions and fol- lowed with the ratio 1(VV) : 7(VA) : 5(DT). The number and proportions of construction types of nests during the studied growing seasons seem to prove the regular and irregular development of the Dolichovespula saxonica colony.
    [Show full text]