Cypress Hills Interprovincial Park the Hills Continue to Change

Total Page:16

File Type:pdf, Size:1020Kb

Cypress Hills Interprovincial Park the Hills Continue to Change are made from sediments which have been deltas, rivers and swamps deposited mud and Tertiary Period. During the Palaeocene Epoch, deposited by water, and then compressed and sand on top of the Bearpaw shale. Light grey rivers and swamps continued to deposit cemented into rock. The grain size of the rock and brown sandstones and interbedded dark grey sediments in the are, forming the sandstone, indicates the environment in which the shale originated in brackish fresh water, while siltstone, coal and shale of the Ravenscrag sediments were deposited. For instance, thin coal layers formed from decayed vegetation Formation. Beginning about 55 million years gravels are only deposited by fast moving in swamps. These rocks make up the thick ago major mountain building to the west formed streams, while fine clays are deposited in still Eastend Formation. As the sea receded, the thin the Rocky Mountains. Large rivers eroded the water. Most formations are predominantly a Whitemud Formation, consisting of a fine, white new mountains and deposited gravel and single rock type, with thin interbedded layers clay with some interbedded sandstone and shale, cobbles across the western plains, which a semi- of other rock types. was formed in still, fresh waters. arid environment had turned into a broad savanna. The uplift of the Sweetgrass Hills, For a relatively short time, a brackish around 50 million years ago, caused other rivers semi-marine environment returned, leaving to carry the cobbles and gravel across the behind the purple-grey shale of the thin Battle Cypress Hills area during the late Eocene, early Formation. Active volcanoes far to the west also Oligocene, and Miocene Epochs. The gravel deposited layers of ash across the area at this and cobbles formed a conglomerate rock, called time. The Kneehills Tuff, a 20 cm ash layer the Cypress Hills Formation – now the found in the Battle Formation, has been dated at uppermost sedimentary layer which caps the 66 million years old. Later, deposition stopped Cypress Hills. in the area and some erosion took place, creating an unconformity in the geological record. Divide & Erode Subsequently, large meandering rivers returned Over time, geological processes A High Plateau to the area, laying down sediments which formed slightly elevated the Cypress Hills region. The The highest point in mainland Canada the grey and brown sandstones and thin sedimentary layers remained nearly horizontal, interbedded shale of the Frenchman Formation. between Labrador and the Rocky Mountains, the but the area became a drainage divide. For Cypress Hills form a high plateau surrounded by millions of years, large rivers originating in the a rolling upland. Climbing sharply from the mountains were forced to flow around this north, the Cypress Hills reach their highest In the Beginning divide, lowering the surrounding land and elevation (1466m) at Head of the Mountain, The geological story of the Cypress Hills isolating the Cypress Hills as a high plateau. before gradually dropping back to the plains in begins during the Cretaceous Period more than Resistant to erosion, the hard conglomerate cap the south. Formed by millions of years of 70 million years ago, when most of southern protected the softer rocks of the underlying sedimentary deposition, followed by millions of Alberta was covered by the warm, shallow years of erosion, the Cypress Hills are known as Bearpaw Sea. Large rivers from the west an erosional plateau. Today, the Cypress Hills carried clay and silt which settled onto the sea expose a unique cross-section of geological floor. These sediments were compressed into a history found nowhere else in western Canada. dark grey flaky shale, now called the Bearpaw Formation, which forms the base of the Cypress Hills. A Layer Cake The Cypress Hills resemble a giant layer cake, composed of many layers of Streams, Swamps &Sediment sedimentary rocks. Each layer, called a By about 68 million years ago the Bearpaw Sea formation, formed at a different time under About 65 million years ago the had retreated to the east. The area became a dinosaurs became extinct, marking the end of the different conditions. The youngest formations forested, semi-tropical coastal region where are found higher in the hills. Sedimentary rocks Cretaceous Period and the beginning of the formations, ensuring that the area remained a The Changing Hills flat-topped upland. Even before the Ice Age, the By 10,000 years ago, the ice age was For More Information Cypress Hills had essentially developed their over. The last of the major geological Many geological features are visible present form. processes playing a part in the formation of the throughout Cypress Hills Interprovincial GEOLOGY Cypress Hills had ended, but even to this day, Park. Staff would be happy to direct you to Cypress Hills Interprovincial Park the hills continue to change. Erosion from these sites. For more information, drop by The Ice Age streams and sudden thunderstorms deepens the one of the Visitor Centres, or write to: As the climate cooled during the coulees and ravines, while slumping and Pleistocene Epoch, huge continental ice sheets landslides wear away at the edges of the Cypress Hills Interprovincial Park crept south. Glaciers flowed around the Cypress Cypress Hills. Box 12 Box 850 Hills plateau but never completely engulfed it. Elkwater, AB. Maple Creek, Sk. The top 100 meters of the plateau was left an Fossils T0J 1C0 S0N 1N0 island, called a nunatak, above the surrounding (403) 893-3777 (306) 662-4411 Throughout the geological history of ice. The surrounding land and the lower portions the Cypress Hills, living creatures have of the hills were sculpted and eroded by the ice Text: Michael Klassen, Alberta Parks flourished in the area. Some are now preserved sheets. As the ice sheet finally began to melt Illustrations: Keli Polock, Alberta Parks as fossils. Marine mollusks – ammonites and about 15 000 years ago, large amounts of till – a baculites – occur in the Bearpaw Formation, mixture of silt, sand and gravel – was dumped while Triceratops and other fossils from the into the plains and the flanks of the hills. High age of dinosaurs are occasionally found in the winds swept across the bleak landscape; Frenchman Formation. The eastern portion of blanketing the top of the unglaciated plateau with the Cypress Hills Formation contains abundant thick deposits of silt called loess. Meltwater fossils of many strange and extinct mammals, coursed between the plateau and the retreating including titanotheres, camels and sabre- ice, carving out the valleys which now dissect toothed cats. A reminder that collecting fossils Rising more than 600 meters above the many parts of the Cypress Hills. and rocks in a provincial park is prohibited. surrounding prairies, the Cypress Hills are a striking geological anomaly on the Coal, Clay & Cobbles flat plains. Unlike the Rocky Many of the formations of the Cypress Mountains, these hills do not owe their Hills contain resources of economic importance. Although of poor commercial existence to the faulting and folding of a quality, the coal seams of the Eastend geological uplift. Read this fact sheet to Formation were mined for local use in the early discover the unique geological history part of the century. The Whitemud formation of the Cypress Hills is the most important source of ceramic clay in Western Canada, supporting the local pottery, pipe, brick and clay industries for many years. The large cobbles of the Cypress Hills Fact Sheet Formation were once used for grinding phosphate in the manufacture of fertilizer. Gravel deposits were also mined for construction purposes. Mining, no longer permitted in the park, once played an important role in the development of the area..
Recommended publications
  • Summary Report of the Geological Survey for the Calendar Year 1911
    5 GEORGE V. SESSIONAL PAPER No. 26 A. 1915 SUMMARY REPORT OK THE GEOLOGICAL SURVEY DEPARTMENT OF MINES FOR THE CALENDAR YEAR 1914 PRINTED BY ORDER OF PARLIAMENT. OTTAWA PRTNTKD BY J. i»k L TAOHE, PRINTER TO THE KING'S MOST EXCELLENT IfAJESTS [No. 26—1915] [No , 15031 5 GEORGE V. SESSIONAL PAPER No. 26 A. 1915 To Field Marshal, Hit Hoi/al Highness Prince Arthur William Patrick Albert, Duke of Connaught and of Strath-earn, K.G., K.T., K.P., etc., etc., etc., Governor General and Commander in Chief of the Dominion of Canada. May it Please Youb Royal Highness.,— The undersigned has the honour to lay before Your Royal Highness— in com- pliance with t>-7 Edward YIT, chapter 29, section IS— the Summary Report of the operations of the Geological Survey during the calendar year 1914. LOUIS CODERRK, Minister of Mines. 5 GEORGE V. SESSIONAL PAPER No. 26 A. 1915 To the Hon. Louis Codebrk, M.P., Minister of Mines, Ottawa. Sir,—I have the honour to transmit, herewith, my summary report of the opera- tions of the Geological Survey for the calendar year 1914, which includes the report* of the various officials on the work accomplished by them. I have the honour to be, sir, Your obedient servant, R. G. MrCOXXFI.L, Deputy Minister, Department of Mines. B . SESSIONAL PAPER No. 28 A. 1915 5 GEORGE V. CONTENTS. Paok. 1 DIRECTORS REPORT REPORTS FROM GEOLOGICAL DIVISION Cairncs Yukon : D. D. Exploration in southwestern "" ^ D. MacKenzie '\ Graham island. B.C.: J. M 37 B.C.
    [Show full text]
  • The Big Chill
    THE BIG CHILL Royal Saskatchewan Museum THE BIG CHILL For further information please contact: Public Programs Royal Saskatchewan Museum 2445 Albert Street Regina, Saskatchewan S4P 4W7 Email: [email protected] Website: www.royalsaskmuseum.ca © Royal Saskatchewan Museum 2012 The contents of this resource package may be reproduced for classroom use only. No portion may be duplicated for publication or sale. The following material provides teachers and students with information about the Ice Age in what is now Saskatchewan (remember, there was no such thing as Saskatchewan in those days!): • To describe Saskatchewan’s climate during the Ice Age. • To illustrate the geological effects of glaciation. • To recognize a variety of animals that lived in Saskatchewan during the Ice Age. Vocabulary advance geology climate glacier debris ice age deposit drumlin esker meltwater erratic moraine evaporation fauna retreat flora stagnant flow till fossil Laurentide Ice Sheet knob and kettle Wisconsin Glacial Period Pleistocene Epoch BACKGROUND INFORMATION Ice Ages The Ice Age or Pleistocene Epoch refers to the last two million years of our geological history when there were at least five periods of glaciation in North America. Gradual climate cooling caused huge continental ice sheets to form. Later, gradual warming caused these to melt during the interglacial periods. The last glacier began forming approximately 110,000 years ago, building until it covered all but the Cypress Hills and the Wood Mountain Plateau region of the Province. The last interglacial period started about 17,000 years ago. The ice sheet melted completely from our borders about 10,000 years ago. This last period of glaciation is called the Wisconsin Glacial Period.
    [Show full text]
  • Preliminary Geologic Map of the Galena Canyon Quadrangle, Lander County, Nevada
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY To accompany the Preliminary Geologic Map of the Galena Canyon Quadrangle, Lander County, Nevada by JeffL.Doebrich1 Open-File Report 94-664 Prepared in cooperation with Santa Fe Pacific Mining Inc. under Cooperative Research and Development Agreement 9300-1-94 1994 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North America Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. !U.S. Geological Survey, Reno Field Office, MS-176, Mackay School of Mines, University of Nevada, Reno, Nevada, 89557-0047 DESCRIPTION OF MAP UNITS Qd Mine dump (Holocene) Present around active and abandoned mining operations in the Copper Canyon, Iron Canyon, an Copper Basin areas Qfp Flood plain deposits (Quaternary) Includes sand, silt, and clay deposits in the flood plain of the Reese River in the southeast corner of the quadrangle. Contacts approximately located using large-scale color aerial photographs Qaf Younger alluvium and fanglomerate deposits (Quaternary) Clay, silt, sand, and gravel primarily in active stream channels but also covering outwash fans at the mouth of major drainages emanating from the range. Contacts of outwash fans approximately located using large-scale color aerial photographs Qc Colluvium (Quaternary) Includes talus, slope wash, and other colluvial deposits Qls Landslide deposits (Quaternary) Qoa Older alluvium (Quaternary) Poorly sorted gravel deposits with a silty to sandy matrix. Includes terrace and valley-fill deposits at higher elevations; dissected by stream channels containing younger alluvium (Qaf).
    [Show full text]
  • Paleosols of the Interglacial Climates in Canada
    Document generated on 09/28/2021 2:47 p.m. Géographie physique et Quaternaire Paleosols of the Interglacial Climates in Canada Les paléosols du Canada au cours des périodes interglaciaires Paläoböden zur Zeit der Interglaziale in Kanada Charles Tarnocai The Last? Interglaciation in Canada Article abstract Le dernier (?) interglaciaire au Canada Although paleosols are useful indicators of paleoclimates. it is first necessary to Volume 44, Number 3, 1990 establish the relationships between the northern limits of the various contemporary soils and the pertinent climatic parameters. It is then necessary URI: https://id.erudit.org/iderudit/032836ar to determine the age of the various paleosols and, if possible, their northern DOI: https://doi.org/10.7202/032836ar limits. Comparison of the distribution and northern limits of the contemporary soils with the distribution and northern limits of the analogous paleosols then permits the reconstruction of the paleoenvironments. For the purposes of See table of contents comparison the mean annual temperature of the Old Crow area during the Pliocene epoch was also determined (about 4°C) even though this was not an interglacial period. It was found that during the pre-lllinoian interglacial Publisher(s) periods the central Yukon had a mean annual temperature of about 7°C while during the Sangamonian interglacial period it had a mean annual temperature Les Presses de l'Université de Montréal of about - 3°C. During the Holocene epoch, the current interglacial period, the climate has been similar to or only slightly cooler than that existing during the ISSN Sangamonian interglacial period. The fluctuating position of the arctic tree line 0705-7199 (print) (and associated forest soils) during the Holocene epoch, however, indicates 1492-143X (digital) that the climate has also been fluctuating during this time.
    [Show full text]
  • A King-Size Theropod Coprolite
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232796267 A king-size theropod coprolite Article in Nature · June 1998 DOI: 10.1038/31461 CITATIONS READS 154 2,385 4 authors, including: Karen Chin Tim Tokaryk University of Colorado Boulder Royal Saskatchewan Museum 32 PUBLICATIONS 1,143 CITATIONS 39 PUBLICATIONS 488 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: The Dinosaur Park Formation of Saskatchewan View project Paleobiodiverity and the K-Pg Boundary View project All content following this page was uploaded by Tim Tokaryk on 10 June 2015. The user has requested enhancement of the downloaded file. letters to nature compositions, though the ground mass contains more silicon and aluminium (Table 2). X-ray powder-diffraction analyses indicate A king-sized theropod that carbonate fluorapatite is the predominant phosphate mineral in both the bone and the ground mass. coprolite Several factors confirm that this specimen is a coprolite. The most diagnostic feature is a phosphatic composition, which is character- Karen Chin, Timothy T. Tokaryk*, Gregory M. Erickson†‡ istic of carnivore coprolites9. As phosphorus normally constitutes & Lewis C. Calk 10 only about 0.1% of the Earth’s crustal rocks , concentrated phos- United States Geological Survey, 345 Middlefield Road, MS 975, Menlo Park, phate deposits usually indicate biotic accumulations, and the overall 8 California 94025, USA configuration of the mass is consistent with the irregular faecal * Eastend Fossil Research Station, Royal Saskatchewan Museum, Box 460, deposits produced by very large animals. The matrix-supported Eastend, Saskatchewan S0N 0T0, Canada distribution of bone fragments argues against the possibility that the † Department of Integrative Biology & Museums of Vertebrate Zoology and mass represents regurgitated material or fluvially aggregated bone Paleontology, University of California, Berkeley, California 94720, USA debris.
    [Show full text]
  • The Dinosaur Park - Bearpaw Formation Transition in the Cypress Hills Region of Southwestern Saskatchewan, Canada Meagan M
    The Dinosaur Park - Bearpaw Formation Transition in the Cypress Hills Region of Southwestern Saskatchewan, Canada Meagan M. Gilbert Department of Geological Sciences, University of Saskatchewan; [email protected] Summary The Upper Cretaceous Dinosaur Park Formation (DPF) is a south- and eastward-thinning fluvial to marginal marine clastic-wedge in the Western Canadian Sedimentary Basin. The DPF is overlain by the Bearpaw Formation (BF), a fully marine clastic succession representing the final major transgression of the epicontinental Western Interior Seaway (WIS) across western North America. In southwestern Saskatchewan, the DPF is comprised of marginal marine coal, carbonaceous shale, and heterolithic siltstone and sandstone grading vertically into marine sandstone and shale of the Bearpaw Formation. Due to Saskatchewan’s proximity to the paleocoastline, 5th order transgressive cycles resulted in the deposition of multiple coal seams (Lethbridge Coal Zone; LCZ) in the upper two-thirds of the DPF in the study area. The estimated total volume of coal is 48109 m3, with a gas potential of 46109 m3 (Frank, 2005). The focus of this study is to characterize the facies and facies associations of the DPF, the newly erected Manâtakâw Member, and the lower BF in the Cypress Hills region of southwestern Saskatchewan utilizing core, outcrop, and geophysical well log data. This study provides a comprehensive sequence stratigraphic overview of the DPF-BF transition in Saskatchewan and the potential for coalbed methane exploration. Introduction The Dinosaur Park and Bearpaw Formations in Alberta, and its equivalents in Montana, have been the focus of several sedimentologic and stratigraphic studies due to exceptional outcrop exposure and extensive subsurface data (e.g., McLean, 1971; Wood, 1985, 1989; Eberth and Hamblin, 1993; Tsujita, 1995; Catuneanu et al., 1997; Hamblin, 1997; Rogers et al., 2016).
    [Show full text]
  • The Forest Vegetation of the Driftless Area, Northeast Iowa Richard A
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1976 The forest vegetation of the driftless area, northeast Iowa Richard A. Cahayla-Wynne Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons, Ecology and Evolutionary Biology Commons, Other Forestry and Forest Sciences Commons, and the Plant Pathology Commons Recommended Citation Cahayla-Wynne, Richard A., "The forest vegetation of the driftless area, northeast Iowa" (1976). Retrospective Theses and Dissertations. 16926. https://lib.dr.iastate.edu/rtd/16926 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The forest vegetation of the driftless area, northeast Iowa by Richard A. Cahayla-Wynne A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of MASTER OF SCIENCE Department: Botany and Plant Pathology Major: Botany (Ecology) Signatures have been redacted for privacy Iowa State University Ames, Iowa 1976 ii TABLE OF CONTENTS Page INTRODUCTION 1 STUDY AREA 6 METHODS 11 RESULTS 17 DISCUSSION 47 SUMMARY 55 LITERATURE CITED 56 ACKNOWLEDGMENTS 59 APPENDIX A: SPECIES LIST 60 APPENDIX B: SCIENTIFIC AND COMMON NAMES OF TREES 64 APPENDIX C: TREE BASAL AREA 65 1 INTRODUCTION Iowa is generally pictured as a rolling prairie wooded only along the water courses. The driftless area of northeast Iowa is uniquely contrasted to this image; northeast Iowa is generally forested throughout, often with rugged local relief.
    [Show full text]
  • TGI Strat Column 2009.Cdr
    STRATIGRAPHIC CORRELATION CHART TGI II: Williston Basin Architecture and Hydrocarbon Potential in Eastern Saskatchewan and Western Manitoba EASTERN MANITOBA PERIOD MANITOBA SUBSURFACE SASKATCHEWAN OUTCROP ERA glacial drift glacial drift glacial drift Quaternary Wood Mountain Formation Peace Garden Peace Garden Member Tertiary Member Ravenscrag Formation CENOZOIC Formation Goodlands Member Formation Goodlands Member Turtle Mountain Turtle Mountain Turtle Frenchman Formation Whitemud Formation Boissevain Formation Boissevain Formation Eastend Formation Coulter Member Coulter Member Bearpaw Formation Odanah Member Belly River “marker” Odanah Member Belly River Formation “lower” Odanah Member Millwood Member Lea Park Formation Millwood Member MONTANA GROUP Pembina Member Pembina Member Pierre Shale Pierre Shale Milk River Formation Gammon Ferruginous Member Gammon Ferruginous Member Niobrara Formation Chalky Unit Boyne Member Boyne Member Boyne Calcareous Shale Unit Member Carlile Morden Member Carlile upper Formation Morden Member Formation Morden Member Carlile Formation Assiniboine Marco Calcarenite Assiniboine Member Member CRETACEOUS Second White Specks Laurier Limestone Beds Favel Favel Keld Keld Member Member Formation Formation Belle Fourche Formation Belle Fourche Member MESOZOIC COLORADO GROUP Belle Fourche Member upper Fish Scale Formation Fish Scale Zone upper Base of Fish Scale marker Base of Fish Scale marker Westgate Formation Westgate Member lower Westgate Member Newcastle Formation Newcastle Member lower Viking Sandstone
    [Show full text]
  • The Fauna from the Tyrannosaurus Rex Excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan
    The Fauna from the Tyrannosaurus rex Excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan Tim T. Tokaryk 1 and Harold N. Bryant 2 Tokaryk, T.T. and Bryant, H.N. (2004): The fauna from the Tyrannosaurus rex excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan; in Summary of Investigations 2004, Volume 1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004-4.1, CD-ROM, Paper A-18, 12p. Abstract The quarry that contained the partial skeleton of the Tyrannosaurus rex, familiarly known as “Scotty,” has yielded a diverse faunal and floral assemblage. The site is located in the Frenchman River valley in southwestern Saskatchewan and dates from approximately 65 million years, at the end of the Cretaceous Period. The faunal assemblage from the quarry is reviewed and the floral assemblage is summarized. Together, these assemblages provide some insight into the biological community that lived in southwestern Saskatchewan during the latest Cretaceous. Keywords: Frenchman Formation, Maastrichtian, Late Cretaceous, southwestern Saskatchewan, Tyrannosaurus rex. 1. Introduction a) Geological Setting The Frenchman Formation, of latest Maastrichtian age, is extensively exposed in southwestern Saskatchewan (Figure 1; Fraser et al., 1935; Furnival, 1950). The lithostratigraphic units in the formation consist largely of fluvial sandstones and greenish grey to green claystones. Outcrops of the Frenchman Formation are widely distributed in the Frenchman River valley, southeast of Eastend. Chambery Coulee, on the north side of the valley, includes Royal Saskatchewan Museum (RSM) locality 72F07-0022 (precise locality data on file with the RSM), the site that contained the disarticulated skeleton of a Tyrannosaurus rex. McIver (2002) subdivided the stratigraphic sequence at this locality into “lower” and “upper” beds.
    [Show full text]
  • The Rock Record – March 2005
    The Rock Record – March 2005 2004 Executive President Mike Gunning 787-2618 In This Issue Vice-President ¾ Speaker Program Announcements & Abstracts p. 1-3 Andre Costa 787-9104 ¾ Upcoming Events p. 4 ¾ AGM Recap & Honour Roll Citation p. 5,6 Secretary ¾ Curling Summary p. 7 Vacant Treasurer Bob Troyer 787-2562 Business Manager Wednesday, March 2nd, 2005 Jeff Coolican 787-0651 Program Chair Steve Whittaker 787-2577 Verdant, Volcanic Vistas on the Assistant Program Chair Island of St. Lucia, West Indies Kate MacLachlan 787-9059 Past President Erik Nickel 787-0169 Charlie Harper Northern Geological Survey School Liaison Committee Saskatchewan Industry and Resources Melinda Yurkowski 787-0650 Field Trip Committee Lancaster Room, Royal Canadian Legion John Lake 787-2621 Cash Bar: 11:30; Lunch: 11:50 Meeting: 12:15 – 13:00 Golf Tournament Committee Bob Troyer 787-2562 Members $7.00, Non-members $11.00 Contact: Andre Costa 787-9104 By NOON, Wednesday, January 26, 2005 Please contribute to the SGS Newsletter The SGS Newsletter is produced by the SGS executive. Wednesday, March 23, 2005 Letters, announcements, notices, comments, photos, news and information about SGS members, etc. are always T-Rex Excavation, Frenchman welcome. Call an executive member or write to us at: Formation, Southwest Saskatchewan Saskatchewan Geological Society Tim Tokaryk P.O. Box 234 Royal Saskatchewan Museum Fossil Research Station Regina, SK S4P 2Z6 Eastend, Saskatchewan SGS e-mail address: Lancaster Room, Royal Canadian Legion [email protected] Cash Bar: 11:30; Lunch: 11:50 Meeting: 12:15 – 13:00 SGS Website: Members $7.00, Non-members $11.00 www.sgshome.ca Contact: Andre Costa 787-9104 By NOON, Wednesday, January 26, 2005 All advertising inquiries should be directed to Andre Costa 1 Speakers Program; Mar.
    [Show full text]
  • Alberta Basin. See Western Canada Foreland Basin. Alexander Terrane
    — ♦ — Index — ♦ — Alberta basin. See Western Canada foreland basin. Cardium Formation, 33, 35, 201, 202, 265, 302 Alexander terrane, 85 Cardium reservoir unit, 177, 178 Andean-type continental margin magmatic arc, Cascade basin, 273, 274 subduction along, 10 Cascade terrane, 85 Arctic Alaska plate, 376 Cassiar terrane, 85 Arctic National Wildlife Refuge (ANWR), 363 Charlie Lake Formation, 296 Arkoma basin, 436, 437, 443 Chinook Member, 36 Asmari reservoir, 331-332 Chugach terrane, 85, 116 Chungo Member, 33, 36 Bangestan/Qamchuqa reservoir, 332-333 Clearwater Formation, 27 Barrow arch, 375 Coastal belt terrane, 116, 118 Basal Colorado Sand reservoir unit, 170, 171 Coast plutonic complex, 11, 83 Bearpaw sandstones, 236 Colony Formation, 28 Beattie Peaks Formation, 18 Colorado Assemblage, 192,196-197, 199-201, 210-212, Belloy Formation, 297 224-226 Belly River Formation, 38, 117, 272 Colorado Group, 281-286, 300-303 Belly River reservoir unit, 181, 182 Colorado Group oils, 300 Belly River sandstones, 236 Colorado Shale, 284, 286 Belt Supergroup, 275 Crescent terrane, 116 Black Warrior basin, 431, 435, 436 Cummings Member, 24 Bluesky Formation, 22, 25 Cypress Hills/Hand Hills Assemblage, 192-193, 196-197, Boulder Batholith, 238 202-203 Bow Island Formation, 31, 32 Cypress Hills Formation, 42 Bowser basin, 85 Brazeau Formation, 39 Dakota sandstone, 414 Bridge River terrane, 85 Deep basin, Rock-Eval pyrolysis and TOC data, 283 Brookian sequence, 369-370, 370-374 Deformed belt, 84, 268-269 Dezful embayment. See Zagros foreland basin. Cache Creek
    [Show full text]
  • The Hell Creek Formation, Montana: a Stratigraphic Review and Revision Based on a Sequence Stratigraphic Approach
    Review The Hell Creek Formation, Montana: A Stratigraphic Review and Revision Based on a Sequence Stratigraphic Approach Denver Fowler 1,2 1 Badlands Dinosaur Museum, Dickinson Museum Center, Dickinson, ND 58601, USA; [email protected] 2 Museum of the Rockies, Montana State University, Bozeman, MT 59717, USA Received: 12 September 2020; Accepted: 30 October 2020; Published: date Supporting Information 1. Methods: Lithofacies Descriptions Facies descriptions follow methodology laid out in Miall (1985). Descriptions mostly follow those of Flight (2004) for the Bearpaw Shale and Fox Hills Sandstone. Additional lithofacies are described for the Colgate sandstone, ?Battle Formation, an undivided Hell Creek Formation, and the lowermost 5–10 m of the Fort Union Formation. It was desirable to stay as close to Flight's (2004) definitions as possible in order to facilitate cross comparison between measured sections and interpretation; however I have also chosen to remain true to the intentions of Brown (1906) in keeping the Basal Sandstone (and associated basal scour) as the first unit of the Hell Creek Formation, rather than the tidal flats identified by Flight (2004). This analysis is not as concerned with the nature of the basal contacts as much as internal stratigraphy within the Hell Creek Formation itself, hence some of the stratal and facies relationships described by Flight (2004) were not directly observed by myself, but I have included them here to ease comparisons. 1.1. Bearpaw Shale The Bearpaw Shale is the basalmost formation considered in this study; as such only the uppermost 10–20 m have been observed in outcrop. In this upper 20 m or so, the Bearpaw Shale generally coarsens upwards, predominantly comprising shale with occasional interbedded sandstone.
    [Show full text]