United States Patent 0 ’ ICC Patented Oct

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent 0 ’ ICC Patented Oct 3,840,566 United States Patent 0 ’ ICC Patented Oct. 8, 1974 1 2 tained by ?ltration and evaporation of the solvent used 3,840,566 in the reaction. Inert solvents are normally hydrocar OXIDATION OF PRIMARY ALCOHOLS Jean Marc Lalancette, Shcrbrooke, Quebec, Canada, bons such as petroleum ether, hexane, heptane, benzene, assignor to Ventron Corporation, Beverly, Mass. toluene, xylene which are inert to oxidation by this mild No Drawing. Filed June 15, 1972, Ser. No. 263,188 oxidizing agent. There is no problem with chromium Int. Cl. C07c 45/00; C07d 5/22 salts or solvents dif?cult to eliminate, such as pyridine. U.S. Cl. 260—347.9 6 Claims The results are shown in Table I. TAB LE I _ ABSTRACT OF THE DISCLOSURE Oxidation of alcohols with (lrOa-graphite 10 Crystalline graphite, which has the normal X-ray dif Contact Yield of time aldehyde fraction pattern, and which has been intercalated with 55 Alcohol (hn) (percent) Analysis 65 percent by weight of chromic oxide based on the weight l-hexadecanol ............. .. 24 95 VPC, 2,4-d, of the graphite, is a new reagent for the selective oxidation titratioml of primary alcohols to aldehydes. The method involves Benzyl alcohoL... __ 24 98 VPC, 2,4-d. 15 Cinnamyl alcohol ......... __ 96 100 VPO, 2,4-d, re?uxing a mixture of the intercalated graphites, the pri titration. mary alcohol and a solvent for the produced aldehyde Furfuryl alcohol .......... __ 48 72 VPC, titration. Citronellol 2 ____ __ _ 24 90 Do. and recovery of the aldehyde by ?ltration and evaporation 1,6-hexanediol @ ...... -- - 24 60 VPO, 2,4-11, of the solvent. The method is characterized by its specif titration. Phenylethanediol 4 _______ __ 24. 80 Do. icity, high yields and simple procedure. 20 Cyclohexylmethanol __-__ 48 52 Do. 1 By Smith-Mitchell method. 2 This yield of aldehyde was observed where a trace of pyridine was This invention relates to the oxidation of primary added to the system, in order to prevent cyclizatiou. alcohols to their corresponding aldehydes by the use of 3 The reaction product was the monohydroxy aldehyde. graphite which has ‘been intercalated with 55—65 percent 4 The aldehyde observed was benzaldehyde. by weight of chromic oxide based on the weight of the In addition to those primary alcohols shown in Table graphite. I which are oxidized to aldehydes in good yield the fol It is well known that CrO3 is a powerful oxidizing agent lowing primary alcohols were found to be oxidized also for organic materials. Oxidization may occur violently to the corresponding aldehydes methanol, ethanol, n with the oxidation product being carbon dioxide, carbon propanol, n-‘butanol, 2-methyl propanol, the mixed pri monoxide, and water, etc. It was very surprising to ?nd 3.0 mary amyl alcohols, mixed primary hexanols, n-octyl that when graphite is intercalated with 55-65 percent of alcohol, n-decyl alcohol, lauryl alcohol, oleyl alcohol, CrO3, the product is extremely stable. No attack of the cetyl alcohol, stearyl alcohol, linolenic alcohol, propargyl graphite occurs at temperatures up to 400° C. in the ab alcohol and phenyl ethyl alcohol. sence of oxygen. Nor is the product shock sensitive. When From the results it can be noted that the graphite inter~ ignited by an open ?ame the material burns quietly and calated with chromic anhydride is a very speci?c oxidiz— without a “?ash.” ing agent for the conversion of primary alcohols to the Chromic acid can be intercalated in graphite. Several corresponding aldehydes. The yields of the reaction are methods have previously been described to achieve the always good, even with sensitive structures like terpenes insertion, calling for the use of acetic acid as solvent [N. 40 or allylic systems. With 1,2-diols, there is a rupture of Platzer and B. dela Martiniere, Bull. Soc. Chim., France, the carbon chain, giving the corresponding aldehydes. The 177 (1961)], or the diffusion of the vapors of CrOs in following secondary and tretiary alcohols were not oxi the lattice of graphite at reduced pressure and high tem dized and demonstrate the unusual selectivity of this re perature [R. C. Croft, Australian J. Chem., 9, 201 agent: 4-t-butyl cyclohexanol, Z-methyl cyclohexanol, 2 (1956)]. octanol, isopropanol, secondary and tertiary butanol, the I have found that by heating a mixture of chromic an mixed secondary and tertiary amyl and hexyl alcohols, hydride and graphite under reduced pressure, the inter cholesterol, and isopulegol. calation was easy, the end product being of relatively While I do not wish to be limited by any theory, I constant composition and without any contaminant. believe that the good selectivity of the reagent for primary Crystalline graphite suitable for this invention may be 50 alcohols and the high yields of aldehydes observed with either the naturally occurring material or synthetically fatty alcohols must be related to its particular structure, produced material. It is necessary that it give the normal the access to CrO3 being restricted by the planes of X-ray diffraction pattern for crystalline graphite where graphite or the structure of the graphite crystallite. After the distance between graphite planes is about 3.35 A. oxidation, the resulting aldehyde must be desorbed and be The so-called amorphous graphites which do not give 55 less prone to enter the crystal structure, thus explaining such an X-ray diffraction pattern are not suitable for use the high yield of aldehyde, without secondary product. in the practice of this invention. The insertion of 55 to 65 The residual chromium salts remain in the lattice of percent by weight of CrOa based upon the weight of the graphite under the experimental conditions used in the graphite by this method was veri?ed by X-ray di?raction absence of water, thus eliminating cumbersome puri?ca and the concentration of CrO3 in the lattice determined 60 tion steps and undesirable secondary reactions. by titration by the method of A. I. Vogel [Quantitative Consequently, chromic anhydride intercalated in Inorganic Analysis, 3rd E., Longmans, London, 1961, graphite has proved to be a unique reagent for speci?c pp. 286, 308]. oxidation of primary alcohols to the corresponding alde I have investigated the oxidizing capacity of this re hydes. The yields are comparable to those observed with agent toward various alcohols including primary, 65 dipyridine-chromium (VI) complex by I. C. Collins, secondary and tertiary alcohols and have discovered that W. W. Hess and F. J. Frank, Tetrahedron Letters, 30, the greatly moderated oxidizing power of chromic anhy 3363 (1968). However, the dipyridine-chromium (VI) dride when intercalated in graphite is speci?c to the oxida complex is not speci?c for the oxidation of primary alco tion of primary alcohols to aldehydes. Secondary and hols but will also oxidize secondary and tertiary alcohols tertiary alcohols are not oxidized. The oxidation is very 70 as well. simple. After contacting the alcohol with the chromic an The following is a typical example of the preparation hydride-graphite in an inert solvent, the aldehyde is ob of graphite intercalated with CrO3. 3,840,566 3 4 In a thick walled Pyrex tube 4 x 30 mm. a 20 gram alcohols, mixed primary hexanols, n-octyl alcohol, n~ portion of Acheson “Type 38” synthetic graphite was decyl alcohol, lauryl alcohol, oleyl alcohol, cetyl alcohol, heated under reduced pressure at 200° C. for 24 hours in stearyl alcohol, linolenic alcohol, propargyl alcohol and order to remove any adsorbed gas. After cooling, 40 phenyl ethyl alcohol, the step which comprises re?uxing grams of CrO3 was added. The tube was then sealed a mixture of the primary alcohol, an inert solvent and under reduced pressure and heated at 200° C. for 48 graphite having chromic oxide intercalated therein until hours. After cooling, the tube was opened (carefully) the oxidation of said alcohol to aldehyde has ceased, said and the intercalated product Washed with one liter of dis graphite initially having the normal X-ray diffraction pat tilled water, 500 ml. of 10% hydrochloric acid and 500 tern of crystalline graphite. ml. of distilled water. After a last washing with one liter 10 2. The method as claimed by claim 1 wherein the reac of acetone, the product was dried at 100° C. to a constant tion mixture is ?ltered to obtain a ?ltrate which is a solu weight. By analysis by the A. I. Vogel method previously tion of said aldehyde, and said ?ltrate is evaporated to referred to, the content of CrOs in the graphite was 55 remove said solvent to isolate said aldehyde. percent in accordance with the value published by Croft 3. The method as claimed by claim 1 wherein said previously referred to. 15 alcohol is benzyl alcohol. The following describes the oxidation of a typical pri 4. The method as claimed by claim 1 where the pri mary alcohol. mary alcohol is l-hexadecanol. In a 125 ml. ?ask were added 25 ml. of toluene, 10 5. The method as claimed by claim 1 wherein the pri grams of CrO3-graphite prepared as described above, and mary alcohol is furfuryl alcohol. 0.67 grams (0.005 mole) of cinnamyl alcohol. After a 6. In the method for converting cinnamyl alcohol to re?ux of 24 hours, the cooled mixture was ?ltered on an cinnamyl aldehyde, the step which comprises re?uxing asbestos pad. Evaporation of the solvent gave a quantita a mixture of cinnamyl alcohol, an inert solvent and tive yield of cinnamaldehyde. The molar ratio of CrO3 graphite having chromic oxide intercalated therein until alcohol was 10 to 1 in this run.
Recommended publications
  • Identification of Promising Alternative Mono-Alcohol Fuel Blend
    energies Article Identification of Promising Alternative Mono-Alcohol Fuel Blend Components for Spark Ignition Engines Saeid Aghahossein Shirazi 1, Thomas D. Foust 1,2 and Kenneth F. Reardon 1,2,* 1 Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA; [email protected] (S.A.S.); [email protected] (T.D.F.) 2 National Renewable Energy Laboratory, Golden, CO 80401, USA * Correspondence: [email protected] Received: 24 March 2020; Accepted: 12 April 2020; Published: 15 April 2020 Abstract: Alcohols are attractive fuel blendstocks for spark ignition engines due to their high octane values and potentially positive influence on performance and emission. Although methanol, ethanol, and butanol have been widely studied, other biomass-derived alcohols may have similar or better properties. However, it is not feasible to experimentally investigate the fuel potential of every molecule. The goals of this study were to develop a methodology for rapid screening of a fuel property database for mono-alcohols and to identify alcohols with the potential of blending to produce advantaged motor gasolines. A database was developed with 13 fuel properties of all saturated C1–C10 mono-alcohols. A decision framework was used to evaluate alcohols suitable for blending in gasoline for spark ignition engines in two scenarios: low-range (up to 15 vol%) blends and high-range (greater than 40 vol%) blends. The low-range blend cases resulted in the identification of 48 alcohols. In the case of high-range blending, only six alcohols were found to be suitable. This is the first study to systematically evaluate all C1–C10 saturated alcohols for blending with gasoline using relevant fuel properties.
    [Show full text]
  • Catalog Feb 2007 Final.Pmd
    Table of Contents How To Use This Catalog ............................................................................................... 2 Service Information .................................................................................................... 3-4 Placing Orders - Shipping........................................................................................................3 Miscellaneous Information......................................................................................................4 Product Information................................................................................................. 5-17 Definitions .............................................................................................................. 5 Detergent Analysis ............................................................................................. 6-7 Lipid-like Detergents.......................................................................................... 8-9 FOS-CHOLINE® Detergents .............................................................................................8 FOS-MEA® ...........................................................................................................................9 Miscellaneous ....................................................................................................................9 Nonionic Detergents ......................................................................................10-14 Sugar-based Detergents .......................................................................................
    [Show full text]
  • USP Excipient Reference Standards Catalog
    Last Updated On: March 15, 2021 USP Excipient Reference Standards Catalog Catalog # Description Current Lot Previous CAS # NDC # Unit Price Special Restriction Lot(Valid Use Date) 1002505 Acesulfame G0H082 F0C136 (30-JUN- 55589-62-3 N/A $410.00 Potassium (200 mg) 2009) 1005706 Glacial Acetic Acid R038A0 I0M342 (31-JUL- 64-19-7 N/A $280.00 (1.5 mL/ampule; 3 2017) ampules) 1006801 Acetone (1.5 R095B0 I0M548 (28-FEB- 67-64-1 N/A $265.00 mL/ampule; 3 2022) ampules) 1009005 Acetylcysteine (200 R10200 K0K294 (30- 616-91-1 N/A $245.00 mg) NOV-2019) 1009901 Acetyltributyl Citrate R053A0 H0I337 (31-AUG- 77-90-7 N/A $275.00 (3 x 200 mg) 2017) 1009923 Acetyltriethyl Citrate R041M0 H0I339 (31-JAN- 77-89-4 N/A $275.00 (500 mg) 2017) 1012190 Adipic Acid (100 mg) F1D318 F0D318 (31- 124-04-9 N/A $265.00 MAR-2018) 1012214 Agar (500 mg) F0K137 N/A N/A $253.00 1012595 rAlbumin Human (6 R04600 G0M268 (31- N/A N/A $314.00 Cold Shipment mg) (Recombinant DEC-2016) Required Human Albumin) (COLD SHIPMENT REQUIRED) 1012688 Alcohol R05900 G0M024 (31- 64-17-5 N/A $265.00 Determination-- OCT-2018) Alcohol (5 Page 1 Last Updated On: March 15, 2021 USP Excipient Reference Standards Catalog Catalog # Description Current Lot Previous CAS # NDC # Unit Price Special Restriction Lot(Valid Use Date) mL/ampule; 5 ampules) 1012768 Alcohol (1.2 R127S0 R087W0 (31- 64-17-5 N/A $245.00 mL/ampule; 5 MAY-2020) ampules) 1012772 Dehydrated Alcohol R119J0 G0M292 (31- 64-17-5 N/A $245.00 (1.2 mL/ampule; 5 MAY-2020) ampules) 1012799 Aleuritic Acid (50 F02300 533-87-9 N/A $278.00 mg)
    [Show full text]
  • Development of Sustainable Catalytic Systems for Oxidation Reactions
    DOCTOR OF PHILOSOPHY Development of Sustainable Catalytic Systems For Oxidation Reactions Hughes, Nicola Award date: 2017 Awarding institution: Queen's University Belfast Link to publication Terms of use All those accessing thesis content in Queen’s University Belfast Research Portal are subject to the following terms and conditions of use • Copyright is subject to the Copyright, Designs and Patent Act 1988, or as modified by any successor legislation • Copyright and moral rights for thesis content are retained by the author and/or other copyright owners • A copy of a thesis may be downloaded for personal non-commercial research/study without the need for permission or charge • Distribution or reproduction of thesis content in any format is not permitted without the permission of the copyright holder • When citing this work, full bibliographic details should be supplied, including the author, title, awarding institution and date of thesis Take down policy A thesis can be removed from the Research Portal if there has been a breach of copyright, or a similarly robust reason. If you believe this document breaches copyright, or there is sufficient cause to take down, please contact us, citing details. Email: [email protected] Supplementary materials Where possible, we endeavour to provide supplementary materials to theses. This may include video, audio and other types of files. We endeavour to capture all content and upload as part of the Pure record for each thesis. Note, it may not be possible in all instances to convert analogue formats to usable digital formats for some supplementary materials. We exercise best efforts on our behalf and, in such instances, encourage the individual to consult the physical thesis for further information.
    [Show full text]
  • In Chemistry, an Alcohol Is Any Organic Compound in Which a Hydroxyl Group (-OH) Is Bound to a Carbon Atom, Which in Turn Is B
    ALCOHOLS, PHENOLS, ETHERS AND EPOXIDES Prof. S.C. Jain Department of Chemistry University of Delhi University Road, Delhi - 110007 CONTENTS Monohydric Alcohols Preparation of Alcohols Acidic nature of alcohols Distinction between Primary, Secondary and Tertiary Alcohols Individual Alcohols Methyl Alcohol Ethyl Alcohol Glycerol Phenols Ethers Epoxides Alcohols are compounds having general formula ROH, where R is alkyl or a substituted alkyl group. The group may be primary, secondary or tertiary. Alcohol may be open chain, or cyclic. It may also contain a double bond, a halogen atom or an aromatic ring. For example: OH CH2OH H2CCH2 Cl OH CH3OH H2C CH CH2OH Methyl alcohol Allyl alcohol Cyclohexanol Benzyl alcohol Ethylene chlorohydrin All alcohols contain hydroxyl (-OH) group which is a functional group and determines the properties of the family. Alcohols as derivatives of water The most familiar covalent compound is water. Replacement of one of the hydrogens in the water molecule by an alkyl group leads to the formation of alcohol. However, when the substituted alkyl group is an phenyl group (C6H5-), the resultant compound is phenol. -H -H ROH HOH Ph O H +R +C H -(Ph) Alcohol Water 6 5 Phenol Alcohols as expected, show some of the properties of water. They are neutral substances. The lower ones are liquids and soluble in water. The structure of an alcohol resembles that of water having sp³ hybridized oxygen atom. 1 1.4A0 O 0.96A0 H O 0.96A0 H H C H 104.50 H H 108.90 Water Methanol (a) (b) Figures (a) & (b) shows the difference in H-O-H and C-O-H bond angle, in water and alcohol respectively.
    [Show full text]
  • Aldrich Alcohols and Phenols
    Aldrich Alcohols and Phenols Library Listing – 1,200 spectra Subset of Aldrich FT-IR Library related to alcohols and phenols. The Aldrich Material-Specific FT-IR Library collection represents a wide variety of the Aldrich Handbook of Fine Chemicals' most common chemicals divided by similar functional groups. These spectra were assembled from the Aldrich Collection of FT-IR Spectra and the data has been carefully examined and processed by Thermo. The molecular formula, CAS (Chemical Abstracts Services) registry number, when known, and the location number of the printed spectrum in The Aldrich Library of FT-IR Spectra are available. Aldrich Alcohols and Phenols Index Compound Name Index Compound Name 306 ((1S)-ENDO)-(-)-BORNEOL, 99% 310 (1S,2S,3S,5R)-(+)- 1044 (+)-(4,6-O-BENZYLIDENE)METHYL- ISOPINOCAMPHEOL, 98% ALPHA-D- GLUCOPYRANOSIDE, 351 (2-ENDO, 3-EXO)-5-NORBORNENE- 97% 2,3- DIMETHANOL 1042 (+)-2,3-O-BENZYLIDENE-D- 355 (2-ENDO,3-EXO)- THREITOL, 99% BICYCLO(2.2.2)OCT-5-ENE- 2,3- 528 (+)-ARABINOGALACTAN DIMETHANOL, 96% 305 (+)-BORNEOL, 98% 1130 (2R,3R)-(+)-2-METHYL-3- 1198 (+)-CATECHIN HYDRATE, 98% PHENYLGLYCIDOL, 97% 284 (+)-CIS-P-MENTHANE-3,8-DIOL, 1166 (2R,3R)-(+)-3-(4- 97% BROMOPHENYL)GLYCIDOL, 97% 334 (+)-ISOPULEGOL, 99% 1128 (2R,3R)-(+)-3-PHENYLGLYCIDOL, 340 (+)-LIMONEN-10-OL, 95% 97% 330 (+)-P-MENTH-1-EN-9-OL, 97%, 121 (2R,3R)-(-)-2,3-BUTANEDIOL, 97% MIXTURE OF ISOMERS 129 (2R,4R)-(-)-PENTANEDIOL, 99% 445 (+)-PERSEITOL 122 (2S,3S)-(+)-2,3-BUTANEDIOL, 99% 332 (+)-TERPINEN-4-OL, 96% 1131 (2S,3S)-(-)-2-METHYL-3- 958 (+/-)-4-FLUORO-ALPHA-(N-
    [Show full text]
  • Chemsampco Catalogue December 2003 Final Version
    Catalogue Chemical Name CAS 0001.00 ACENAPHTHYLENE 208-96-8 0014.00 1-ACETONAPHTHONE 941-98-0 0014.04 2-ACETONAPHTHONE 93-08-3 0015.27 ACETONE 67-64-1 0015.75 ACETOPHENONE 98-86-2 0015.90 2-ACETYLFURAN 1192-62-7 0025.77 ALLYL ALCOHOL 107-18-6 0028.85 ALLYLCYCLOHEXANE 2144-42-3 0029.00 1-ALLYLCYCLOHEXANOL 1123-34-8 0040.60 ALLYLCYCLOPENTANE 3524-75-2 0041.00 1-ALLYL-3,4-DIMETHYOXYBENZENE 93-15-2 0041.50 ALLYL ETHYL CARBONATE 1469-70-1 0042.30 ALLYL ETHYL ETHER 557-31-3 0047.30 ALLYLIDENECYCLOHEXANE 05664-10-8 0048.00 ALLYL METHALLYL ETHER 14289-96-4 0048.50 1-ALLYL-4-METHOXYBENZENE 140-67-0 0052.92 1-ALLYL-4-METHYLBENZENE 3333-13-9 0057.90 1-ALLYLNAPHTHALENE 2489-86-3 0063.10 ALLYL PHENYL ETHER 1746-13-0 0065.00 ALLYLPROPYL ETHER 1471-03-0 0068.00 ALLYL VINYL ETHER 3917-15-5 0152.00 ANTHRACENE 120-12-7 0160.84 BENZENE 71-43-2 0179.75 BICYCLO(4.4.0)-2-DECANOL N/A 0180.00 BICYCLO(4.4.0)-2-DECANONE 1579-21-1 0182.54 BICYCLO[2.2.1]-2,5-HEPTADIENE 121-46-0 0182.70 BICYCLO(2.2.1)HEPTANE 279-23-2 0183.40 BICYCLO[2.2.1]HEPTANE-2-METHANOL 5240-72-2 0183.74 BICYCLO(2.2.1)-2-HEPTANONE 497-38-1 0184.80 BICYCLO(2.2.1)-2-HEPTENE 498-66-8 0185.90 BICYCLO(2.2.1)-5-HEPTEN-2-YL METHANAL N/A 0186.00 BICYCLO(2.2.1)-5-HEPTEN-2,3-DIMETHANOIC ANHDRIDE N/A 0187.20 BICYCLOHEXYL 92-51-3 0188.25 BICYCLO[4.3.0]NONANE 496-10-6 0188.30 cis-BICYCLO(4.3.0)NONANE 4551-51-3 0188.32 cis-BICYCLO(3,3,0)-2-OCTENE N/A 0188.32 cis-BICYCLO(3,3,0)-2-OCTENE 4551-51-3 0188.35 trans-BICYCLO(4.3.0)NONANE 3296-50-2 0189.62 BICYCLO(3.3.0)OCTANE 694-72-4 0191.00 BICYCLO(2,2,2)-2-OCTENE
    [Show full text]
  • Mimicking Transition Metals in Borrowing Hydrogen from Alcohols†‡ Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Mimicking transition metals in borrowing hydrogen from alcohols†‡ Cite this: Chem. Sci.,2021,12,8353 All publication charges for this article Ananya Banik, Jasimuddin Ahmed, Swagata Sil and Swadhin K. Mandal * have been paid for by the Royal Society of Chemistry Borrowing hydrogen from alcohols, storing it on a catalyst and subsequent transfer of the hydrogen from the catalyst to an in situ generated imine is the hallmark of a transition metal mediated catalytic N-alkylation of amines. However, such a borrowing hydrogen mechanism with a transition metal free catalytic system which stores hydrogen molecules in the catalyst backbone is yet to be established. Herein, we demonstrate that a phenalenyl ligand can imitate the role of transition metals in storing and transferring hydrogen molecules leading to borrowing hydrogen mediated alkylation of anilines by alcohols including a wide range of substrate scope. A close inspection of the mechanistic pathway by characterizing several Received 24th March 2021 intermediates through various spectroscopic techniques, deuterium labelling experiments, and DFT study Accepted 7th May 2021 concluded that the phenalenyl radical based backbone sequentially adds H+,Hc and an electron through DOI: 10.1039/d1sc01681d a dearomatization process which are subsequently used as reducing equivalents to the C–N double Creative Commons Attribution-NonCommercial 3.0 Unported Licence. rsc.li/chemical-science bond in a catalytic fashion. Introduction
    [Show full text]
  • On the Prediction of Thermodynamic Properties by Atomistic Simulation. from Vapor-Liquid Equilibrium of Alcohols to Self-Assembly in Mixed Solvents
    On the Prediction of Thermodynamic Properties by Atomistic Simulation. From Vapor-Liquid Equilibrium of Alcohols to Self-Assembly in Mixed Solvents Von der Fakult¨atEnergie-, Verfahrens- und Biotechnik der Universit¨at Stuttgart und dem Stuttgart Center for Simulation Science (SC SimTech) zur Erlangung der W¨urdeeines Doktors der Ingenieurwissenschaft (Dr.-Ing.) genehmigte Abhandlung Vorgelegt von J¨orgBaz aus Bietigheim-Bissingen Hauptberichter: Apl. Prof. Dr.-Ing. habil. Niels Hansen Mitberichter: Prof. Dr.-Ing. Ulrich Nieken Prof. Dr. Lars Sch¨afer Tag der m¨undlichen Pr¨ufung:2. April 2020 Institut f¨urTechnische Thermodynamik und Thermische Verfahrenstechnik der Universit¨atStuttgart 2020 Eidesstattliche Erkl¨arung Hiermit versichere ich, dass ich die vorliegende Arbeit mit dem Titel "On the Prediction of Thermodynamic Properties by Atomistic Simulation. From Vapor-Liquid Equilibrium of Alcohols to Self-Assembly in Mixed Solvents" selbstst¨andigverfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, dass alle Stellen der Arbeit, die w¨ortlich oder sinngem¨aßaus anderen Quellen ¨ubernommen wurden, als solche kenntlich gemacht sind. Ich versichere außerdem, dass die vorliegende Dissertation nur in diesem und keinem anderen Promotionsverfahren eingereicht wurde und dass diesem Promotionsverfahren keine endg¨ultiggescheiterten Promotionsverfahren vorausgegangen sind. I herewidth duly declare that I have authored the dissertation "On the Prediction of Thermodynamic Properties by Atomistic Simulation. From Vapor-Liquid Equilibrium of Alcohols to Self-Assembly in Mixed Solvents" independently and only with use of specified aids. I have mentioned all sources used and cited correctly according to scientific rules. Stuttgart, October 6th, 2019 J¨orgBaz Contents 1 Introduction 19 1.1 Molecular Simulations for Condensed Phase Systems .
    [Show full text]
  • United States Patent to 11, 4,006,218 Sipos (45) Feb
    United States Patent to 11, 4,006,218 Sipos (45) Feb. 1, 1977 54) POTENTIATED MEDICAMENTS organic halogen derivatives and iodophores derived from nonionic surface active agents and from polyvi 75) Inventor: Tibor Sipos, Jackson, N.J. nylpyrrolidone by combining the antimicrobial agent 73 Assignee: Johnson & Johnson, New Brunswick, with an effective amount of a potentiator. The potenti N.J. ator is an alcohol or phenol derivative selected from the group consisting of (a) aliphatic straight or 22 Filed: July 14, 1975 branched chain primary, secondary and tertiary mono 21 Appl. No.: 595,986 hydric alcohols wherein the straight chain alcohols have from about 5 to about 10 carbon atoms; and the branched chain alcohols have up to about 17 carbon Related U.S. Application Data atoms, their longest straight chain of carbon to carbon 63 Continuation of Ser. No. 486,287, July 8, 1974, bonds having from about 5 to about 10 carbon atoms; abandoned, which is a continuation-in-part of Ser. No. (b) a primary, secondary or tertiary cyclohexylalkanol 285,682, Sept. 1, 1972, abandoned. or alkylcyclohexylalkanol where the alkanol is as more 52 U.S. Cl. ................................. 424/54; 424/249; fully defined hereinafter; (c) a primary, secondary or 424/258; 424/263; 424/329; 424/343 tertiary phenylalkanol, halophenylalkanol or C to Ca (51 Int. Cl.’................. A61K 7/22; A61K 3 1/O45; alkylphenylalkanol where the alkanol has from about 3 A61 K. 3 1/14; AOlN 9/24 to about 9 carbon atoms; and (d) a cyclohexyl phenol 58 Field of Search ............ 424/54, 329, 343, 249, which may have a substituent on the phenyl ring se 424/258, 263 lected from the group consisting of C to Ca alkyl and alkoxy, hydroxy, halo, amino and alkyl and dialkyl (56) References Cited amino-substituents.
    [Show full text]
  • United States Patent (19) 11) 4,260,845 Shioyama 45 Apr
    United States Patent (19) 11) 4,260,845 Shioyama 45 Apr. 7, 1981 (54) ALCOHOL DEHYDRATION EMPLOYING A (56) References Cited ZINC ALUMINATE CATALYST U.S. PATENT DOCUMENTS 1,859,529 1/1933 Taylor et al. ........................ 585/640 (75) Inventor: Tod K. Shioyama, Bartlesville, Okla. 2,963,524 12/1960 Shackelford et al. ............... 585/640 3,668,151 6/1972 Walker ................................. 252/466 (73) Assignee: Phillips Petroleum Company, OTHER PUBLICATIONS Bartlesville, Okla. Kirk-Othmer Ency. of Chem. Tech., 2nd Ed., vol. 14, 1967, pp. 325, 326. (21) Appl. No.: 113,948 Primary Examiner-Curtis R. Davis 57 ABSTRACT 22 Filed: Jan. 21, 1980 A zinc aluminate dehydration catalyst, suitably acti vated, as by heating in air, is employed to dehydrate a (51) Int. Cl. ................................................ C07C 1/00 saturated alcohol to produce an olefin. (52) U.S. Cl. .................................................... 585/640 58) Field of Search ......................................... 585/640 15 Claims, 1 Drawing Figure DEHYDRATION OF 2-METHYL--BUTANO OWER 2INC AUMINATE OR ALUMINA 2-METHYL-1- BUTENE YIELO (MOLE 2) SO i 80 ZINC AUMINATE 2 70 i SO 50 40 SALUMINA 30 2O . -- - - ---------------------- 28O 29O 3OO 31 O 320 330 34O 350 360 TEMPERATURE C U.S. Patent Apr. 7, 1981 4,260,845 DEHYDRATION OF 2-METHY-1-BUTANOL OVER ZINC ALUMINATE OR ALUMINA 2-METHYL-1- BUTENE YIELD (MOLE 2.) 90 8O ZINC ALUMINATE 2 - 28O 29O 3OO 31 O 32O 33O 34O 3SO 36O TEMPERATURE C 4,260,845 2 lar portions of alumina (Al2O3) and zinc oxide (ZnO), ALCOHOL DEHYDRATION EMPLOYING A ZINC producing the desired catalyst shape, and calcining the ALUMINATE CATALYST mixture.
    [Show full text]
  • Dehydration of 2-Methyl-1-Cyclohexanol: New Findings from a Popular Undergraduate Laboratory Experiment J
    LABORATORY EXPERIMENT pubs.acs.org/jchemeduc Dehydration of 2-Methyl-1-cyclohexanol: New Findings from a Popular Undergraduate Laboratory Experiment J. Brent Friesen* and Robert Schretzman Department of Natural Sciences, Dominican University, River Forest, Illinois 60305, United States bS Supporting Information ABSTRACT: The mineral acid-catalyzed dehydration of 2-methyl-1-cyclohex- anol has been a popular laboratory exercise in second-year organic chemistry for several decades. The dehydration experiment is often performed by organic chemistry students to illustrate Zaitsev’s rule. However, sensitive analytical techniques reveal that the results do not entirely corroborate with Zaitsev’s rule. Previous reports pertaining to this experiment have been limited by two factors: (i) it is difficult to separate 3- and 4-methyl-1-cyclohexene on a standard gas chromatography (GC) column and (ii) methods of accurate detection, identification, and quantification of trace minor products have been lacking. The current study uses gas chromatographyÀelectron impact mass spectrometry (GCÀMS) and quantitative nuclear magnetic resonance (qNMR) to identify and quantify not only the putative 1-, 3-, and 4-methyl-1-cyclohexene products but also several minor products such as methylenecyclohexane and ethylidenecyclopentane. Performing the dehydration with a single diastereomer of 2-methyl-1-cyclohexanol reveals a striking difference between the product distributions associated with cis and trans isomers. Some evidence continues to point towards an E2-like mechanism
    [Show full text]