Ssc16-Iii-05

Total Page:16

File Type:pdf, Size:1020Kb

Ssc16-Iii-05 SSC16-III-05 One-year Deep Space Flight Results of the World’s First Full-scale 50-kg-class Deep Space Probe PROCYON and Its Future Prospects Ryu Funase, Takaya Inamori, Satoshi Ikari, Naoya Ozaki, Shintaro Nakajima, Kaito Ariu, Hiroyuki Koizumi Department of Aeronautics and Astronautics, The University of Tokyo, Japan Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan; +81-3-5841-0742 [email protected] Shingo Kameda Department of Physics, College of Science, Rikkyo University, Japan Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan; +81-3-3985-2617 Atsushi Tomiki, Yuta Kobayashi, Taichi Ito, Yasuhiro Kawakatsu Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Japan Yoshinodai 3-1-1, Sagamihara-shi, Kanagawa 229-8510, Japan; +81-50-3362-6575 ABSTRACT This paper reports the one-year deep space flight results of the 50-kg-class deep space exploration micro-spacecraft PROCYON, which was jointly developed by the University of Tokyo and the Japan Aerospace Exploration Agency. PROCYON was developed with a very low cost (a few million dollars) and within a very short period (about 1 year), taking advantage of the heritage from Japanese Earth-orbiting micro-satellite missions. PROCYON was launched into an Earth departure trajectory together with the Japanese second asteroid sample return spacecraft Hayabusa-2 on December 3, 2014. During its one-year deep space flight, PROCYON succeeded in the demonstration of a 50-kg- class deep space exploration bus system, which includes a GaN-based SSPA (Solid-State Power Amplifier) with the world’s highest RF efficiency; the demonstration of a novel DDOR (Delta Differential One-way Range) orbit determination method; and the world’s first demonstration of a micro propulsion system with both trajectory and attitude control capabilities in deep space. Scientific observation by a Lyman alpha imager was also successfully conducted. These successes demonstrate the capability of this class of spacecraft for performing a deep space mission by itself and also demonstrated that it can be a low-cost and flexible tool for future deep space exploration. INTRODUCTION primary mission (the demonstration of a 50-kg-class deep space exploration bus system), and also achieved Recently, a number of organizations such as governmental space agencies, private companies, and some of its optional missions, which are the universities are planning to build nano-satellites (1–10 demonstration of advanced deep space exploration technologies and scientific observations. These kg) and micro-satellites (~50 kg) for deep space exploration [1,2]. This effort is expected to establish a successes demonstrated the capability of this class of low-cost and flexible tool for deep space exploration, spacecraft for performing a deep space mission by itself and also demonstrated that it can be a useful tool for and these ultra-small spacecraft will play a significant role in future solar system exploration. deep space exploration. As the first step of these attempts, the Intelligent Space MISSION OF PROCYON Systems Laboratory (ISSL) at the University of Tokyo The primary mission of PROCYON is the and the Japan Aerospace Exploration Agency (JAXA) demonstration of a micro-spacecraft bus system for developed and launched the 50-kg-class deep space deep space exploration, which is intended to show that exploration micro-spacecraft PROCYON (PRoximate a spacecraft of this scale (~50 kg) can conduct a deep Object Close flYby with Optical Navigation), which space mission by itself. The secondary missions became the world’s smallest full-scale deep space probe (advanced missions) consist of engineering and ever. PROCYON was launched together with the scientific missions to advance or utilize deep space Japanese second asteroid sample return spacecraft exploration. The engineering mission includes the low- Hayabusa-2 [3] on December 3, 2014. During its one- thrust deep space maneuver for performing an Earth year flight in deep space, PROCYON succeeded in its swing-by and changing the trajectory to flyby a Near- Funase 1 30th Annual AIAA/USU Conference on Small Satellites Earth asteroid and high-resolution observation of a Near-Earth asteroid during a close (<30 km) and fast (~10 km/s) flyby. The scientific mission is the wide- view observation of geocorona with LAICA (Lyman Rotate Alpha Imaging Camera) [4] from a vantage point outside Earth’s geocoronal distribution. +Z Fig. 1 shows the trajectory of PROCYON, which is +X +Y launched with Hayabusa-2 and initially inserted into an Earth resonant trajectory that allows the spacecraft to return to Earth by solar electric propulsion. Within several months after launch, the primary mission (demonstration of the bus system) is conducted. Then, a DSM (Deep Space Maneuver) using its miniature ion propulsion system is conducted so that the spacecraft Figure 2: Close flyby observation of an asteroid by will return to Earth for swing-by which will direct the the onboard image feedback control spacecraft’s trajectory to its target asteroid, 2000 PROCYON SYSTEM CONFIGURATION DP107 [5]. PROCYON is intended to perform close flyby trajectory guidance by optical navigation and will The external view of PROCYON is shown in Figs. 3, 4, pass within 30 km of the asteroid. The flyby velocity and 5. Fig. 6 shows the system block diagram of will be less than 10 km/s relative to the target asteroid. PROCYON, and the specifications of the spacecraft are During the close flyby, automatic tracking observation listed in Table 1. Most of the bus system of PROCYON of the asteroid will be conducted using a camera with a is based on that of a 50-kg-class Earth-orbiting micro- scan mirror and onboard image feedback control, which satellite, excluding the communication [6] and enables a LOS (Line of Sight) maneuver while propulsion [7] systems, which were newly developed maintaining the spacecraft’s attitude (Fig. 2). for the deep space mission. Solar Array Panel X-band HGA X-band LGA for Uplink (SAP) X-band LGA for Downlink Cold Gas Jet Thruster Cold Gas Jet Thrusters +Z +Y +X X-band MGA Ion Thruster Non-spin Sun Aspect Sensor Cold Gas Jet Thrusters (NSAS) Figure 3: External view of PROCYON (top view) Cold Gas Jet Thrusters Telescope Star Tracker X-band MGA X-band LGA +Z for Downlink +X +Y X-band LGA for Uplink Cold Gas Jet Thrusters Figure 1: Trajectory design of PROCYON (Top: Sun-centered J2000 EC, Bottom: Sun–Earth fixed Figure 4: External view of PROCYON (bottom rotational frame) view) Funase 2 30th Annual AIAA/USU Conference on Small Satellites AOCS Thermal control MIPS HTR(xN) FOG STT SS(x5) RW(x4) +XeCGJ EPS HRM(x4) PDU MIR TELE SCOPE SAP(x4) PCU OBC IMG+PROC BAT (Data Handling) LAICA LGA Mission XRX Power I/F BPF XSW3 LGA XSW4 Data I/F XTRP LGA XTX BPF XSW1 LGA MGA XSW2 TX XSSPA XDIP VLBI XSW5 XHYB HGA Communication Figure 6: System block diagram of PROCYON venture companies as key development policies. The total mass of the fabricated onboard telecommunication system was only about 7.3 kg excluding the RF coaxial harness. The total power consumption during two-way operation with 15 W of RF output power at the SSPA was only about 54.3 W using a GaN SSPA with the world’s highest RF efficiency (average efficiency: 33.7%) [8]. Propulsion System for Attitude and Orbit Control A micro propulsion system named I-COUPS (Ion thruster and COld-gas thruster Unified Propulsion System) was also newly developed for PROCYON [7]. Figure 5: External view of the PROCYON flight The propulsion system unified an ion thruster and cold- model (solar array panels stowed) gas thrusters by sharing a single gas system to provide these propulsive capabilities with a limited mass and Communication System volume. The ion thruster provides 300 μN of thrust with a specific impulse of about 1000 s, which is used for a A low-cost miniaturized X-band onboard DSM. The cold-gas thrusters, which provide about 20 telecommunication system compatible with CCSDS mN of thrust with a specific impulse of 24 s, are used (The Consultative Committee for Space Data Systems) for both reaction wheel desaturation and the asteroid recommendations was newly developed. The flyby trajectory correction maneuver. The weight of the communication system of PROCYON consists of an propulsion system is less than 10 kg including about 2.5 XTRP (X-band Transponder), a high-power (15-W kg of propellant (Xenon). output) GaN-based SSPA (Solid-State Power Amplifier), a tone generator for the DDOR (Delta The components and structures of I-COUPS were based Differential One-way Range) orbit determination, on the miniature ion propulsion system MIPS [9,10], isoflux LGAs (Low-gain Antennas), flat antennas which was developed for the 60-kg LEO satellite (MGA and HGA), and other passive components Hodoyoshi-4 [11,12]. The difference from MIPS is the (switches, a diplexer, and band-pass filters). addition of a cold-gas thruster system whose gas is extracted from the existing xenon gas system. The We focused on adopting only COTS products including power consumption is 7.3 W in its standby mode, 11.5 a GaN HEMT, conducting appropriate space W during the operation of two cold-gas thrusters, and environmental testing, and balancing the in-house 40.0 W during the operation of the ion thruster. development and cooperation with competent small Funase 3 30th Annual AIAA/USU Conference on Small Satellites Table 1: Specifications of PROCYON Structure Size 0.55m × 0.55m × 0.67m + 4 SAPs (Solar Array Panels) Weight <70 kg (wet) Power SAP Triple Junction GaAs,
Recommended publications
  • Concepts & Synthesis
    CONCEPTS & SYNTHESIS EMPHASIZING NEW IDEAS TO STIMULATE RESEARCH IN ECOLOGY Ecological Monographs, 81(3), 2011, pp. 349–405 Ó 2011 by the Ecological Society of America Regulation of animal size by eNPP, Bergmann’s rule, and related phenomena 1,3 2 MICHAEL A. HUSTON AND STEVE WOLVERTON 1Department of Biology, Texas State University, San Marcos, Texas 78666 USA 2University of North Texas, Department of Geography, Denton, Texas 76203-5017 USA Abstract. Bergmann’s rule, which proposes a heat-balance explanation for the observed latitudinal gradient of increasing animal body size with increasing latitude, has dominated the study of geographic patterns in animal size since it was first proposed in 1847. Several critical reviews have determined that as many as half of the species examined do not fit the predictions of Bergmann’s rule. We have proposed an alternative hypothesis for geographic variation in body size based on food availability, as regulated by the net primary production (NPP) of plants, specifically NPP during the growing season, or eNPP (ecologically and evolutionarily relevant NPP). Our hypothesis, ‘‘the eNPP rule,’’ is independent of latitude and predicts both spatial and temporal variation in body size, as well as in total population biomass, population growth rates, individual health, and life history traits of animals, including humans, wherever eNPP varies across appropriate scales of space or time. In the context of a revised interpretation of the global patterns of NPP and eNPP, we predict contrasting latitudinal correlations with body size in three distinct latitudinal zones. The eNPP rule explains body- size patterns that are consistent with Bergmann’s rule, as well as two distinct types of contradictions of Bergmann’s rule: the lack of latitudinal patterns within the tropics, and the decline in body size above approximately 608 latitude.
    [Show full text]
  • Institute of Astronautical Science Space
    Institute of Space and Astronautical Science 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, JAPAN http://www.isas.jaxa.jp/e/ Towards the Affluent Future Pioneered by Space Science Greetings As a core institute conducting space science researches Saku Tsuneta, Director General of ISAS Missions of ISAS The missions of ISAS aim to push ahead academic researches through the planning, development, ying experiments, operations and result production of characteristic and excellent space science missions consistently with the cooperation from universities, institutes in Japan and each foreign space institutes with the use of satellites, probes, sound rockets, big balloons and international space station. The biggest advantage of ISAS is that researchers of space engineering and space science cooperate with each other to research and develop, which means that engineers lead science missions with advanced technologies and new technologies that scientists expect can be developed efciently. ● To solutions to the fundamental problems of the modern space science and make them common intellectual properties of the society ● To create and execute new exploration programs such as landing on The Institute of Space and Astronautical Science( ISAS)is an celestial bodies like the moon, the Mars and its satellites and collecting essential part of Japan Aerospace eXploration Agency (JAXA) extraterrestrial materials and going back to the earth through the close and is as well a unique institute. ISAS becomes a hub for cooperation between space science and space engineering. universities or institutes to work together with all the researchers in Japan to realize the space science missions which are ● To continuously evolve the space transportation system to execute impossible to start for them individually.
    [Show full text]
  • Chicago Wilderness Region Urban Forest Vulnerability Assessment
    United States Department of Agriculture CHICAGO WILDERNESS REGION URBAN FOREST VULNERABILITY ASSESSMENT AND SYNTHESIS: A Report from the Urban Forestry Climate Change Response Framework Chicago Wilderness Pilot Project Forest Service Northern Research Station General Technical Report NRS-168 April 2017 ABSTRACT The urban forest of the Chicago Wilderness region, a 7-million-acre area covering portions of Illinois, Indiana, Michigan, and Wisconsin, will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of urban trees and natural and developed landscapes within the Chicago Wilderness region to a range of future climates. We synthesized and summarized information on the contemporary landscape, provided information on past climate trends, and illustrated a range of projected future climates. We used this information to inform models of habitat suitability for trees native to the area. Projected shifts in plant hardiness and heat zones were used to understand how nonnative species and cultivars may tolerate future conditions. We also assessed the adaptability of planted and naturally occurring trees to stressors that may not be accounted for in habitat suitability models such as drought, flooding, wind damage, and air pollution. The summary of the contemporary landscape identifies major stressors currently threatening the urban forest of the Chicago Wilderness region. Major current threats to the region’s urban forest include invasive species, pests and disease, land-use change, development, and fragmentation. Observed trends in climate over the historical record from 1901 through 2011 show a temperature increase of 1 °F in the Chicago Wilderness region. Precipitation increased as well, especially during the summer.
    [Show full text]
  • Argops) Solution to the 2017 Astrodynamics Specialist Conference Student Competition
    AAS 17-621 THE ASTRODYNAMICS RESEARCH GROUP OF PENN STATE (ARGOPS) SOLUTION TO THE 2017 ASTRODYNAMICS SPECIALIST CONFERENCE STUDENT COMPETITION Jason A. Reiter,* Davide Conte,1 Andrew M. Goodyear,* Ghanghoon Paik,* Guanwei. He,* Peter C. Scarcella,* Mollik Nayyar,* Matthew J. Shaw* We present the methods and results of the Astrodynamics Research Group of Penn State (ARGoPS) team in the 2017 Astrodynamics Specialist Conference Student Competition. A mission (named Minerva) was designed to investigate Asteroid (469219) 2016 HO3 in order to determine its mass and volume and to map and characterize its surface. This data would prove useful in determining the necessity and usefulness of future missions to the asteroid. The mission was designed such that a balance between cost and maximizing objectives was found. INTRODUCTION Asteroid (469219) 2016 HO3 was discovered recently and has yet to be explored. It lies in a quasi-orbit about the Earth such that it will follow the Earth around the Sun for at least the next several hundred years providing many opportunities for relatively low-cost missions to the body. Not much is known about 2016 HO3 except a general size range, but its close proximity to Earth makes a scientific mission more feasible than other near-Earth objects. A Request For Proposal (RFP) was provided to university teams searching for cost-efficient mission design solutions to assist in the characterization of the asteroid and the assessment of its potential for future, more in-depth missions and possible resource utilization. The RFP provides constraints on launch mass, bus size as well as other mission architecture decisions, and sets goals for scientific mapping and characterization.
    [Show full text]
  • Planetary Defence Activities Beyond NASA and ESA
    Planetary Defence Activities Beyond NASA and ESA Brent W. Barbee 1. Introduction The collision of a significant asteroid or comet with Earth represents a singular natural disaster for a myriad of reasons, including: its extraterrestrial origin; the fact that it is perhaps the only natural disaster that is preventable in many cases, given sufficient preparation and warning; its scope, which ranges from damaging a city to an extinction-level event; and the duality of asteroids and comets themselves---they are grave potential threats, but are also tantalising scientific clues to our ancient past and resources with which we may one day build a prosperous spacefaring future. Accordingly, the problems of developing the means to interact with asteroids and comets for purposes of defence, scientific study, exploration, and resource utilisation have grown in importance over the past several decades. Since the 1980s, more and more asteroids and comets (especially the former) have been discovered, radically changing our picture of the solar system. At the beginning of the year 1980, approximately 9,000 asteroids were known to exist. By the beginning of 2001, that number had risen to approximately 125,000 thanks to the Earth-based telescopic survey efforts of the era, particularly the emergence of modern automated telescopic search systems, pioneered by the Massachusetts Institute of Technology’s (MIT’s) LINEAR system in the mid-to-late 1990s.1 Today, in late 2019, about 840,000 asteroids have been discovered,2 with more and more being found every week, month, and year. Of those, approximately 21,400 are categorised as near-Earth asteroids (NEAs), 2,000 of which are categorised as Potentially Hazardous Asteroids (PHAs)3 and 2,749 of which are categorised as potentially accessible.4 The hazards posed to us by asteroids affect people everywhere around the world.
    [Show full text]
  • The Moon Beyond 2002: Next Steps in Lunar Science and Exploration
    The Moon Beyond 2002: Next Steps in Lunar Science and Exploration September 12-14, 2002 Taos, New Mexico Sponsors Los Alamos National laboratory The University of California Institute of Geophysics and Planetary Physics (ICPP) Los Alamos Center for Space Science and Exploration Lunar and Planetary Institute Meeting Organizer David J. Lawrence (Los Alamos National Laboratory) Scientific Organizing Committee Mike Duke (Colorado School of Mines) Sarah Dunkin (Rutherford Appleton Laboratory) Rick Elphic (Los Alamos National Laboratory) Ray Hawke (University of Hawai’i) Lon Hood (University of Arizona) Brad Jolliff (Washington University) David Lawrence (Los Alamos National Laboratory) Chip Shearer (University of New Mexico) Harrison Schmitt (University of Wisconsin) Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1128 Compiled in 2002 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2002) Title of abstract. In The Moon Beyond 2002: Next Steps in Lunar Science and Exploration, P. XX. LPI Contribution No. 1128, Lunar and Planetary Institute, Houston. The volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail order requestors will be invoiced for the cost of shipping and handling.
    [Show full text]
  • Updated Inflight Calibration of Hayabusa2's Optical Navigation Camera (ONC) for Scientific Observations During the C
    Updated Inflight Calibration of Hayabusa2’s Optical Navigation Camera (ONC) for Scientific Observations during the Cruise Phase Eri Tatsumi1 Toru Kouyama2 Hidehiko Suzuki3 Manabu Yamada 4 Naoya Sakatani5 Shingo Kameda6 Yasuhiro Yokota5,7 Rie Honda7 Tomokatsu Morota8 Keiichi Moroi6 Naoya Tanabe1 Hiroaki Kamiyoshihara1 Marika Ishida6 Kazuo Yoshioka9 Hiroyuki Sato5 Chikatoshi Honda10 Masahiko Hayakawa5 Kohei Kitazato10 Hirotaka Sawada5 Seiji Sugita1,11 1 Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan 2 National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan 3 Meiji University, Kanagawa, Japan 4 Planetary Exploration Research Center, Chiba Institute of Technology, Chiba, Japan 5 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan 6 Rikkyo University, Tokyo, Japan 7 Kochi University, Kochi, Japan 8 Nagoya University, Aichi, Japan 9 Department of Complexity Science and Engineering, The University of Tokyo, Chiba, Japan 10 The University of Aizu, Fukushima, Japan 11 Research Center of the Early Universe, The University of Tokyo, Tokyo, Japan 6105552364 Abstract The Optical Navigation Camera (ONC-T, ONC-W1, ONC-W2) onboard Hayabusa2 are also being used for scientific observations of the mission target, C-complex asteroid 162173 Ryugu. Science observations and analyses require rigorous instrument calibration. In order to meet this requirement, we have conducted extensive inflight observations during the 3.5 years of cruise after the launch of Hayabusa2 on 3 December 2014. In addition to the first inflight calibrations by Suzuki et al. (2018), we conducted an additional series of calibrations, including read- out smear, electronic-interference noise, bias, dark current, hot pixels, sensitivity, linearity, flat-field, and stray light measurements for the ONC.
    [Show full text]
  • Global Satellite Communications Technology and Systems
    International Technology Research Institute World Technology (WTEC) Division WTEC Panel Report on Global Satellite Communications Technology and Systems Joseph N. Pelton, Panel Chair Alfred U. Mac Rae, Panel Chair Kul B. Bhasin Charles W. Bostian William T. Brandon John V. Evans Neil R. Helm Christoph E. Mahle Stephen A. Townes December 1998 International Technology Research Institute R.D. Shelton, Director Geoffrey M. Holdridge, WTEC Division Director and ITRI Series Editor 4501 North Charles Street Baltimore, Maryland 21210-2699 WTEC Panel on Satellite Communications Technology and Systems Sponsored by the National Science Foundation and the National Aeronautics and Space Administration of the United States Government. Dr. Joseph N. Pelton (Panel Chair) Dr. Charles W. Bostian Mr. Neil R. Helm Institute for Applied Space Research Director, Center for Wireless Deputy Director, Institute for George Washington University Telecommunications Applied Space Research 2033 K Street, N.W., Rm. 304 Virginia Tech George Washington University Washington, DC 20052 Blacksburg, VA 24061-0111 2033 K Street, N.W., Rm. 340 Washington, DC 20052 Dr. Alfred U. Mac Rae (Panel Chair) Mr. William T. Brandon President, Mac Rae Technologies Principal Engineer Dr. Christoph E. Mahle 72 Sherbrook Drive The Mitre Corporation (D270) Communications Satellite Consultant Berkeley Heights, NJ 07922 202 Burlington Road 5137 Klingle Street, N.W. Bedford, MA 01730 Washington, DC 20016 Dr. Kul B. Bhasin Chief, Satellite Networks Dr. John V. Evans Dr. Stephen A. Townes and Architectures Branch Vice President Deputy Manager, Communications NASA Lewis Research Center and Chief Technology Officer Systems and Research Section MS 54-2 Comsat Corporation Jet Propulsion Laboratory 21000 Brookpark Rd.
    [Show full text]
  • Planet Earth Taken by Hayabusa-2
    Space Science in JAXA Planet Earth May 15, 2017 taken by Hayabusa-2 Saku Tsuneta, PhD JAXA Vice President Director General, Institute of Space and Astronautical Science 2017 IAA Planetary Defense Conference, May 15-19,1 Tokyo 1 Brief Introduction of Space Science in JAXA Introduction of ISAS and JAXA • As a national center of space science & engineering research, ISAS carries out development and in-orbit operation of space science missions with other directorates of JAXA. • ISAS is an integral part of JAXA, and has close collaboration with other directorates such as Research and Development and Human Spaceflight Technology Directorates. • As an inter-university research institute, these activities are intimately carried out with universities and research institutes inside and outside Japan. ISAS always seeks for international collaboration. • Space science missions are proposed by researchers, and incubated by ISAS. ISAS plays a strategic role for mission selection primarily based on the bottom-up process, considering strategy of JAXA and national space policy. 3 JAXA recent science missions HAYABUSA 2003-2010 AKARI(ASTRO-F)2006-2011 KAGUYA(SELENE)2007-2009 Asteroid Explorer Infrared Astronomy Lunar Exploration IKAROS 2010 HAYABUSA2 2014-2020 M-V Rocket Asteroid Explorer Solar Sail SUZAKU(ASTRO-E2)2005- AKATSUKI 2010- X-Ray Astronomy Venus Meteorogy ARASE 2016- HINODE(SOLAR-B)2006- Van Allen belt Solar Observation Hisaki 2013 4 Planetary atmosphere Close ties between space science and space technology Space Technology Divisions Space
    [Show full text]
  • Modeling Raccoon (Procyon Lotor) Habitat Connectivity to Identify Potential Corridors for Rabies Spread
    Tropical Medicine and Infectious Disease Article Modeling Raccoon (Procyon lotor) Habitat Connectivity to Identify Potential Corridors for Rabies Spread Timothy P. Algeo 1,*,†, Dennis Slate 1, Rosemary M. Caron 2, Todd Atwood 3,‡ ID , Sergio Recuenco 4,§, Mark J. Ducey 5, Richard B. Chipman 1 and Michael Palace 6 1 USDA, APHIS, Wildlife Services, National Rabies Management Program, Concord, NH 03301, USA; [email protected] (D.S.); [email protected] (R.B.C.) 2 Department of Health Management and Policy, University of New Hampshire, Durham, NH 03824, USA; [email protected] 3 USDA, APHIS, Wildlife Services, National Wildlife Research Center, Fort Collins, CO 80521, USA; [email protected] 4 National Center for Public Health (Insitituto Nacional de Salud), Av, Colombia 247, Department 803, Pueblo Libre, Lima 15170, Peru; [email protected] 5 Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA; [email protected] 6 Department of Earth Sciences, University of New Hampshire, Durham, NH 03824, USA; [email protected] * Correspondence: [email protected]; Tel: +1-603-520-8946 † Current address: USDA, APHIS, Wildlife Services, Concord, NH 03301, USA. ‡ Current address: USGS, Alaska Science Center, Polar Bear Project, Anchorage, AK 99508, USA. Received: 31 May 2017; Accepted: 10 August 2017; Published: 28 August 2017 Abstract: The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Wildlife Services National Rabies Management Program has conducted cooperative oral rabies vaccination (ORV) programs since 1997. Understanding the eco-epidemiology of raccoon (Procyon lotor) variant rabies (raccoon rabies) is critical to successful management.
    [Show full text]
  • FIVE DIAMONDS Barn 2 Hip No. 1
    Consigned by Three Chimneys Sales, Agent Barn Hip No. 2 FIVE DIAMONDS 1 Dark Bay or Brown Mare; foaled 2006 Seattle Slew A.P. Indy............................ Weekend Surprise Flatter................................ Mr. Prospector Praise................................ Wild Applause FIVE DIAMONDS Cyane Smarten ............................ Smartaire Smart Jane........................ (1993) *Vaguely Noble Synclinal........................... Hippodamia By FLATTER (1999). Black-type-placed winner of $148,815, 3rd Washington Park H. [G2] (AP, $44,000). Sire of 4 crops of racing age, 243 foals, 178 starters, 11 black-type winners, 130 winners of 382 races and earning $8,482,994, including Tar Heel Mom ($472,192, Distaff H. [G2] (AQU, $90,000), etc.), Apart ($469,878, Super Derby [G2] (LAD, $300,000), etc.), Mad Flatter ($231,488, Spend a Buck H. [G3] (CRC, $59,520), etc.), Single Solution [G3] (4 wins, $185,039), Jack o' Lantern [G3] ($83,240). 1st dam SMART JANE, by Smarten. 3 wins at 3 and 4, $61,656. Dam of 7 registered foals, 7 of racing age, 7 to race, 5 winners, including-- FIVE DIAMONDS (f. by Flatter). Black-type winner, see record. Smart Tori (f. by Tenpins). 5 wins at 2 and 3, 2010, $109,321, 3rd Tri-State Futurity-R (CT, $7,159). 2nd dam SYNCLINAL, by *Vaguely Noble. Unraced. Half-sister to GLOBE, HOYA, Foamflower, Balance. Dam of 6 foals to race, 5 winners, including-- Taroz. Winner at 3 and 4, $26,640. Sent to Argentina. Dam of 2 winners, incl.-- TAP (f. by Mari's Book). 10 wins, 2 to 6, 172,990 pesos, in Argentina, Ocurrencia [G2], Venezuela [G2], Condesa [G3], General Lavalle [G3], Guillermo Paats [G3], Mexico [G3], General Francisco B.
    [Show full text]
  • Possibilities and Future Vision of Micro/Nano/Pico-Satellites - from Japanese Experiences
    CanSat & Rocket Experiment(‘99~) Hodoyoshiハイブリッド-1 ‘14 ロケット Possibilities and Future Vision of Micro/nano/pico-satellites - From Japanese Experiences Shinichi Nakasuka University of Tokyo PRISM ‘09 CubeSat 03,05 Nano-JASMINE ‘15 Contents • Features of Micro/nano/pico-satellites • Japanese History and Lessons Learned – CanSat to CubeSat “First CubeSat on orbit” – From education to practical applications – Important tips for development • Visions on Various Applications of Micro/nano/pico-satellites • University Space Engineering Consortium (UNISEC) and International Collaborations Micro/nano/pico-satellite “Lean Satellite” Micro-satellite: 20-100kg Nano-satellite: 2-20kg Pico-satellite: 0.5-2kg Japanese Governmental Satellites ALOS-1: 4 ton ASNARO: 500 kg Kaguya: 3 ton Hayabusa: 510 kg Motivation of Smaller Satellites Current Problem of Mid-large Satellites ALOS 4.0 (4t) Trend towards 3.5 larger satellites Weight SELENE ・Enormous cost >100M$ 3.0 (3t) ・Development period >5-10 years 2.5 ・Conservative design (ton 2.0 ・Almost governmental use ・No new users and utilization ideas ) ・Low speed of innovation 1.5 10-50M$ Micro 1.0 Small-sat /Nano /Pico 0.5 Sat 0 1975 1980 1985 1990 1995 2000 2005 <50kg Introduce more variedGEO new players intoOTHERS space. 1-5M$ Innovation by Micro/nano/pico satellites (<100kg) 超小型衛星革命 Education Remote sensing Telescope Weather Bio-engineering Re-entry Rendezvous/ Communication Space Science Atmosphere Exploration High Resolution. docking Universty/venture companies’ innovative idea and development process <10M$
    [Show full text]