Acceleration and Momentum

Total Page:16

File Type:pdf, Size:1020Kb

Acceleration and Momentum ACCELERATION AND MOMENTUM WHAT IS THE SECOND LAW OF MOTION? • Newton’s Second Law of Motion- the acceleration of an object is related to the object’s mass and to the amount of force applied to the object. • 푓표푟푐푒 = 푚푎푠푠 × 푎푐푐푒푙푒푟푎푡푖표푛 • A large force on an object with a small mass results in a large acceleration. • A small force applied to an object with a large mass causes small acceleration. • When a force is applied, objects with less mass accelerate more quickly. • 2 results of Newton’s Second Law: • For a given net force, objects with a greater mass have less acceleration. • For objects of a given mass, a greater force results in a greater acceleration. WHAT IS NEWTON’S THIRD LAW OF MOTION? • Newton’s Third of Motion- For every action, there is an equal and opposite reaction. • Anytime one object exerts a force on another object, a pair of forces acts. • An action-reaction pair of forces. • The two forces have the same strength but act in opposite directions. • If the objects have different masses, the object with less mass will move more but still exert the same force. WHAT IS MOMENTUM? • Momentum- the quantity that measures both the mass of the object and how fast the object is moving. • 풎풐풎풆풏풕풖풎 = 풎풂풔풔 × 풗풆풍풐풄풊풕풚 • An object is easier to stop when it is moving slowly compared with when it is moving rapidly. • The greater the object’s momentum, the more force and time it takes to bring it to a stop. • A baseball has more momentum than a tennis ball when the 2 are traveling at the same speed because the baseball has more mass. • A tennis ball can have more momentum than a baseball if the speed of the tennis ball is great enough. HOW IS MOMENTUM CONVERTED? • Conservation of momentum- the total momentum does not change if there is no outside forces acting on the system. • Look at the picture. Before the girl pushed the boy, the total momentum of the skaters was zero. The total momentum cannot change. • The girl must have enough momentum to the left to cancel the boy’s momentum to the right. HOW DO WEIGHT AND MASS COMPARE? • The weight of an object depends on its location in the universe and how much gravity is pulling on it. • The mass of an object does not change. WHAT IS WEIGHTLESSNESS? • When something is freefalling, a scale would not be able to read its weight, so the object is weightless. • When an astronaut is in space, they are freefalling.. • Since everything in the spacecraft is falling together, the weight of any object cannot be detected. • To simulate weightlessness, you can work underwater because water reduces your weight when your submerged. • Gravity and inertia keep a satellite in orbit. • Both motions happen continuously, and they combine to keep a satellite in a curved path. • Placing a satellite in orbit requires accelerating it to a sideways velocity great enough to keep its path of motion from colliding with the surface of the Earth. .
Recommended publications
  • The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected]
    The University of Akron IdeaExchange@UAkron The Dr. Gary B. and Pamela S. Williams Honors Honors Research Projects College Fall 2017 The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects Part of the Aerospace Engineering Commons, Aviation Commons, Civil and Environmental Engineering Commons, Mechanical Engineering Commons, and the Physics Commons Recommended Citation Koken, Michael, "The Experimental Determination of the Moment of Inertia of a Model Airplane" (2017). Honors Research Projects. 585. http://ideaexchange.uakron.edu/honors_research_projects/585 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. 2017 THE EXPERIMENTAL DETERMINATION OF A MODEL AIRPLANE KOKEN, MICHAEL THE UNIVERSITY OF AKRON Honors Project TABLE OF CONTENTS List of Tables ................................................................................................................................................
    [Show full text]
  • Chapter 3 Motion in Two and Three Dimensions
    Chapter 3 Motion in Two and Three Dimensions 3.1 The Important Stuff 3.1.1 Position In three dimensions, the location of a particle is specified by its location vector, r: r = xi + yj + zk (3.1) If during a time interval ∆t the position vector of the particle changes from r1 to r2, the displacement ∆r for that time interval is ∆r = r1 − r2 (3.2) = (x2 − x1)i +(y2 − y1)j +(z2 − z1)k (3.3) 3.1.2 Velocity If a particle moves through a displacement ∆r in a time interval ∆t then its average velocity for that interval is ∆r ∆x ∆y ∆z v = = i + j + k (3.4) ∆t ∆t ∆t ∆t As before, a more interesting quantity is the instantaneous velocity v, which is the limit of the average velocity when we shrink the time interval ∆t to zero. It is the time derivative of the position vector r: dr v = (3.5) dt d = (xi + yj + zk) (3.6) dt dx dy dz = i + j + k (3.7) dt dt dt can be written: v = vxi + vyj + vzk (3.8) 51 52 CHAPTER 3. MOTION IN TWO AND THREE DIMENSIONS where dx dy dz v = v = v = (3.9) x dt y dt z dt The instantaneous velocity v of a particle is always tangent to the path of the particle. 3.1.3 Acceleration If a particle’s velocity changes by ∆v in a time period ∆t, the average acceleration a for that period is ∆v ∆v ∆v ∆v a = = x i + y j + z k (3.10) ∆t ∆t ∆t ∆t but a much more interesting quantity is the result of shrinking the period ∆t to zero, which gives us the instantaneous acceleration, a.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Rotational Motion of Electric Machines
    Rotational Motion of Electric Machines • An electric machine rotates about a fixed axis, called the shaft, so its rotation is restricted to one angular dimension. • Relative to a given end of the machine’s shaft, the direction of counterclockwise (CCW) rotation is often assumed to be positive. • Therefore, for rotation about a fixed shaft, all the concepts are scalars. 17 Angular Position, Velocity and Acceleration • Angular position – The angle at which an object is oriented, measured from some arbitrary reference point – Unit: rad or deg – Analogy of the linear concept • Angular acceleration =d/dt of distance along a line. – The rate of change in angular • Angular velocity =d/dt velocity with respect to time – The rate of change in angular – Unit: rad/s2 position with respect to time • and >0 if the rotation is CCW – Unit: rad/s or r/min (revolutions • >0 if the absolute angular per minute or rpm for short) velocity is increasing in the CCW – Analogy of the concept of direction or decreasing in the velocity on a straight line. CW direction 18 Moment of Inertia (or Inertia) • Inertia depends on the mass and shape of the object (unit: kgm2) • A complex shape can be broken up into 2 or more of simple shapes Definition Two useful formulas mL2 m J J() RRRR22 12 3 1212 m 22 JRR()12 2 19 Torque and Change in Speed • Torque is equal to the product of the force and the perpendicular distance between the axis of rotation and the point of application of the force. T=Fr (Nm) T=0 T T=Fr • Newton’s Law of Rotation: Describes the relationship between the total torque applied to an object and its resulting angular acceleration.
    [Show full text]
  • Summer Mass Schedule 2019 Layout 1 5/16/2019 4:18 PM Page 1
    Summer Mass Schedule 2019_Layout 1 5/16/2019 4:18 PM Page 1 MAY 23, 2014 S U M M E R M A S S S C H E D U L E CATHOLIC STAR HERALD — 9 Atlantic County: Our Lady of Sorrows, 5012 Dune Drive, Avalon Sat: 5 PM; Sun: 10 AM Wabash & Poplar Aves., Linwood Daily Mass: Mon-Fri 8:30AM (starting July Parish of St. John Neumann St. Elizabeth Ann Seton, Daily Mass: Mon-Fri 7:45 AM; Sat: 8 AM, 1), Sat: 8:30 AM; Sat: 5 PM; Sun: 7, 8:15, St. John of God Church, 591 New Jersey Ave., Absecon Tue: 6:30 PM Mass & devotion to St. 9:30, 11 AM, 12:15 PM, 5 PM; 680 Town Bank Rd., North Cape May Daily Mass: Mon-Fri: 6:45 AM; Sat: 5 PM; Anthony; Sat: 5 PM; Sun: 8 AM, 10 AM, Confessions: Following the Sat morning Daily Mass: Mon-Fri: 9 AM; Sat: 4 PM; Sun: 8 AM, 10 AM, 11:30 AM; 6:30 PM; Holy Days: 6:30 Vigil, 7:45 AM, daily Mass; & 3:45 – 4:30 PM Sat Sun: 10 AM; Holy Days: 9 AM & 7 PM on Confessions: Sat: 4 - 4:30 PM & 6 - 6:30 PM; 6:30 PM; Confessions: Sat: 3:45 PM; Sacred Heart Church, Holy Day; Confessions: Wed after 9 AM Holy Day Vigil: 7 PM; Holy Day: 6:45 AM Perpetual Adoration in church seven days 25th and First Street, Avalon Mass, Sat 2:30 – 3:30 PM; Adoration: & 9 AM a week, 24-hours a day.
    [Show full text]
  • 6. Non-Inertial Frames
    6. Non-Inertial Frames We stated, long ago, that inertial frames provide the setting for Newtonian mechanics. But what if you, one day, find yourself in a frame that is not inertial? For example, suppose that every 24 hours you happen to spin around an axis which is 2500 miles away. What would you feel? Or what if every year you spin around an axis 36 million miles away? Would that have any e↵ect on your everyday life? In this section we will discuss what Newton’s equations of motion look like in non- inertial frames. Just as there are many ways that an animal can be not a dog, so there are many ways in which a reference frame can be non-inertial. Here we will just consider one type: reference frames that rotate. We’ll start with some basic concepts. 6.1 Rotating Frames Let’s start with the inertial frame S drawn in the figure z=z with coordinate axes x, y and z.Ourgoalistounderstand the motion of particles as seen in a non-inertial frame S0, with axes x , y and z , which is rotating with respect to S. 0 0 0 y y We’ll denote the angle between the x-axis of S and the x0- axis of S as ✓.SinceS is rotating, we clearly have ✓ = ✓(t) x 0 0 θ and ✓˙ =0. 6 x Our first task is to find a way to describe the rotation of Figure 31: the axes. For this, we can use the angular velocity vector ! that we introduced in the last section to describe the motion of particles.
    [Show full text]
  • Christmas Eve/Christmas Day Parish Mass Schedules
    Christmas Eve/Christmas Day Parish Mass Schedules Parish Christmas Eve Christmas Day Zip (Louisville unless noted) (p.m. unless noted; check local time zone) (a.m. unless noted; check local time zone) Cathedral of the Assumption 40202 5:30, Midnight 9:30, Noon Saint Agnes 40205 5:30, 8:00, 10:30 9:00, 11:30 Saint Albert the Great 40222 5:00, 8:00, Midnight 10:00 All Saints, Taylorsville 40071 4:00 9:00 Saint Aloysius, Pewee Valley 40056 4:30, 8:00 11:00 Saint Aloysius, Shepherdsville 40165 4:00 9:30 Saint Ambrose, Cecilia 42724 — 10:00 Saint Ann, Howardstown 40051 8:00 10:00 Annunciation, Shelbyville 40065 5:30, 7:30 (Spanish), 11:00 9:00 Ascension 40220 5:30, 10:00 10:30 Saint Athanasius 40219 5:00, 11:00 10:00 Saint Augustine, Lebanon 40033 4:00, 6:30, 9:00 9:00 Saint Augustine 40203 10:00 (Carols at 9:30) — Saint Barnabas 40220 4:30, 9:00 10:00 Saint Bartholomew 40218 4:00 (English), 8:00 (Spanish), 11:00 (English) 10:00 (English) Saint Benedict, Lebanon Junction 40150 6:00 — Saint Bernadette 40059 6:00, 9:00 9:00 Saint Bernard, Clementsville 42539 Midnight 9:00 Saint Bernard 40228 7:00, 11:00 9:00 Saint Boniface 40202 5:00 (Highland Players at 4:00) 11:00 Saint Brigid 40204 5:00 8:00, 10:15 Saint Brigid, Vine Grove 40175 4:00, 9:00 10:00 Saint Catherine, New Haven 40051 4:00 9:00 Saint Charles, St. Mary 40033 4:00 10:45 Christ the Healer, Edmonton 42129 6:00 (Central Time) 11:00 (Central Time) Christ the King 40211 9:00 p.m.
    [Show full text]
  • Center of Mass Moment of Inertia
    Lecture 19 Physics I Chapter 12 Center of Mass Moment of Inertia Course website: http://faculty.uml.edu/Andriy_Danylov/Teaching/PhysicsI PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics IN THIS CHAPTER, you will start discussing rotational dynamics Today we are going to discuss: Chapter 12: Rotation about the Center of Mass: Section 12.2 (skip “Finding the CM by Integration) Rotational Kinetic Energy: Section 12.3 Moment of Inertia: Section 12.4 PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Center of Mass (CM) PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Center of Mass (CM) idea We know how to address these problems: How to describe motions like these? It is a rigid object. Translational plus rotational motion We also know how to address this motion of a single particle - kinematic equations The general motion of an object can be considered as the sum of translational motion of a certain point, plus rotational motion about that point. That point is called the center of mass point. PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Center of Mass: Definition m1r1 m2r2 m3r3 Position vector of the CM: r M m1 m2 m3 CM total mass of the system m1 m2 m3 n 1 The center of mass is the rCM miri mass-weighted center of M i1 the object Component form: m2 1 n m1 xCM mi xi r2 M i1 rCM (xCM , yCM , zCM ) n r1 1 yCM mi yi M i1 r 1 n 3 m3 zCM mi zi M i1 PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Example Center
    [Show full text]
  • Newton Euler Equations of Motion Examples
    Newton Euler Equations Of Motion Examples Alto and onymous Antonino often interloping some obligations excursively or outstrikes sunward. Pasteboard and Sarmatia Kincaid never flits his redwood! Potatory and larboard Leighton never roller-skating otherwhile when Trip notarizes his counterproofs. Velocity thus resulting in the tumbling motion of rigid bodies. Equations of motion Euler-Lagrange Newton-Euler Equations of motion. Motion of examples of experiments that a random walker uses cookies. Forces by each other two examples of example are second kind, we will refer to specify any parameter in. 213 Translational and Rotational Equations of Motion. Robotics Lecture Dynamics. Independence from a thorough description and angular velocity as expected or tofollowa userdefined behaviour does it only be loaded geometry in an appropriate cuts in. An interface to derive a particular instance: divide and author provides a positive moment is to express to output side can be run at all previous step. The analysis of rotational motions which make necessary to decide whether rotations are. For xddot and whatnot in which a very much easier in which together or arena where to use them in two backwards operation complies with respect to rotations. Which influence of examples are true, is due to independent coordinates. On sameor adjacent joints at each moment equation is also be more specific white ellipses represent rotations are unconditionally stable, for motion break down direction. Unit quaternions or Euler parameters are known to be well suited for the. The angular momentum and time and runnable python code. The example will be run physics examples are models can be symbolic generator runs faster rotation kinetic energy.
    [Show full text]
  • Rotation: Moment of Inertia and Torque
    Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn that where the force is applied and how the force is applied is just as important as how much force is applied when we want to make something rotate. This tutorial discusses the dynamics of an object rotating about a fixed axis and introduces the concepts of torque and moment of inertia. These concepts allows us to get a better understanding of why pushing a door towards its hinges is not very a very effective way to make it open, why using a longer wrench makes it easier to loosen a tight bolt, etc. This module begins by looking at the kinetic energy of rotation and by defining a quantity known as the moment of inertia which is the rotational analog of mass. Then it proceeds to discuss the quantity called torque which is the rotational analog of force and is the physical quantity that is required to changed an object's state of rotational motion. Moment of Inertia Kinetic Energy of Rotation Consider a rigid object rotating about a fixed axis at a certain angular velocity. Since every particle in the object is moving, every particle has kinetic energy. To find the total kinetic energy related to the rotation of the body, the sum of the kinetic energy of every particle due to the rotational motion is taken. The total kinetic energy can be expressed as ..
    [Show full text]
  • Lecture 25 Torque
    Physics 170 - Mechanics Lecture 25 Torque Torque From experience, we know that the same force will be much more effective at rotating an object such as a nut or a door if our hand is not too close to the axis. This is why we have long-handled wrenches, and why the doorknobs are not next to the hinges. Torque We define a quantity called torque: The torque increases as the force increases and also as the distance increases. Torque The ability of a force to cause a rotation or twisting motion depends on three factors: 1. The magnitude F of the force; 2. The distance r from the point of application to the pivot; 3. The angle φ at which the force is applied. = r x F Torque This leads to a more general definition of torque: Two Interpretations of Torque Torque Only the tangential component of force causes a torque: Sign of Torque If the torque causes a counterclockwise angular acceleration, it is positive; if it causes a clockwise angular acceleration, it is negative. Sign of Torque Question Five different forces are applied to the same rod, which pivots around the black dot. Which force produces the smallest torque about the pivot? (a) (b) (c) (d) (e) Gravitational Torque An object fixed on a pivot (taken as the origin) will experience gravitational forces that will produce torques. The torque about the pivot from the ith particle will be τi=−ximig. The minus sign is because particles to the right of the origin (x positive) will produce clockwise (negative) torques.
    [Show full text]
  • Newton's First Law of Motion the Principle of Relativity
    MATHEMATICS 7302 (Analytical Dynamics) YEAR 2017–2018, TERM 2 HANDOUT #1: NEWTON’S FIRST LAW AND THE PRINCIPLE OF RELATIVITY Newton’s First Law of Motion Our experience seems to teach us that the “natural” state of all objects is at rest (i.e. zero velocity), and that objects move (i.e. have a nonzero velocity) only when forces are being exerted on them. Aristotle (384 BCE – 322 BCE) thought so, and many (but not all) philosophers and scientists agreed with him for nearly two thousand years. It was Galileo Galilei (1564–1642) who first realized, through a combination of experi- mentation and theoretical reflection, that our everyday belief is utterly wrong: it is an illusion caused by the fact that we live in a world dominated by friction. By using lubricants to re- duce friction to smaller and smaller values, Galileo showed experimentally that objects tend to maintain nearly their initial velocity — whatever that velocity may be — for longer and longer times. He then guessed that, in the idealized situation in which friction is completely eliminated, an object would move forever at whatever velocity it initially had. Thus, an object initially at rest would stay at rest, but an object initially moving at 100 m/s east (for example) would continue moving forever at 100 m/s east. In other words, Galileo guessed: An isolated object (i.e. one subject to no forces from other objects) moves at constant velocity, i.e. in a straight line at constant speed. Any constant velocity is as good as any other. This principle was later incorporated in the physical theory of Isaac Newton (1642–1727); it is nowadays known as Newton’s first law of motion.
    [Show full text]