Lecture 25 Torque

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 25 Torque Physics 170 - Mechanics Lecture 25 Torque Torque From experience, we know that the same force will be much more effective at rotating an object such as a nut or a door if our hand is not too close to the axis. This is why we have long-handled wrenches, and why the doorknobs are not next to the hinges. Torque We define a quantity called torque: The torque increases as the force increases and also as the distance increases. Torque The ability of a force to cause a rotation or twisting motion depends on three factors: 1. The magnitude F of the force; 2. The distance r from the point of application to the pivot; 3. The angle φ at which the force is applied. = r x F Torque This leads to a more general definition of torque: Two Interpretations of Torque Torque Only the tangential component of force causes a torque: Sign of Torque If the torque causes a counterclockwise angular acceleration, it is positive; if it causes a clockwise angular acceleration, it is negative. Sign of Torque Question Five different forces are applied to the same rod, which pivots around the black dot. Which force produces the smallest torque about the pivot? (a) (b) (c) (d) (e) Gravitational Torque An object fixed on a pivot (taken as the origin) will experience gravitational forces that will produce torques. The torque about the pivot from the ith particle will be τi=−ximig. The minus sign is because particles to the right of the origin (x positive) will produce clockwise (negative) torques. Example: The Gravitational Torque on a Beam The 4.0 m long 500 kg steel beam is supported 1.20 m from the right end. What is the gravitational torque about the support? Torque & Angular Acceleration Newton’s Second Law: If we consider a mass m rotating around an axis a distance r away, we can reformat Newton’s Second Law to read: Or equivalently, Torque & Angular Acceleration Once again, we have analogies between linear and angular motion: F = m a τ = I α Problem Solving Strategy Picture: Angular acceleration for rigid objects can be found by using free-body diagrams and Newton’s 2nd Law for rotation, τnet ext = Στext = Iα. If τnet ext is constant, then the constant angular acceleration equations apply. Time intervals and angular positions, angular velocities, and angular accelerations can be determined using these equations. Solve: 1. Draw a free-body diagram with the object shown as a likeness of the object (not as a dot). 2. Draw each force vector along the line of action of that force. 3. On the diagram, indicate the positive direction (cw or ccw) for rotations. Check: Make sure that the signs of your results are consistent with your choice of positive directions of rotation. Example: A Stationary Bike To get some exercise without going anywhere, you set your bike on a stand with the rear wheel free to turn. As you pedal, the chain applies a force of F = 18 N to the rear sprocket wheel at a distance of rs = 7.0 cm from the rotation axis of the wheel. Consider the wheel to be a hoop of radius R = 35 cm and mass M = 2.4 kg. What is the angular velocity ω of the wheel after 5.0 s? Dynamic Applications of Torque When dealing with systems that have both rotating parts and translating parts, we must be careful to account for all forces and torques correctly and to keep the signs straight. Example: Pulley and Block A 2.54-kg block is attached to a disk-shaped pulley of radius 0.108 m and mass 0.816 kg. (a) If the block is allowed to fall, what is its linear acceleration? (b) What is the angular acceleration of the pulley? (c) How far does the block drop in 1.80 s? Example: A Uniform Rod Pivoted at an End A uniform thin rod of length L and mass M is pivoted at one end. It is held horizontal and released. Neglect friction and air drag. (a) Find the angular acceleration α of the rod immediately after its release. (b) Find the magnitude of the force FA exerted by the rod on the pivot at that instant. Example: A Rolling Sphere A solid sphere with radius r=0.10 m and mass m=0.50 kg rolls down an inclined plane that makes an angle θ=30o with the horizontal. What is the angular acceleration α of the sphere? What is the linear acceleration a of the sphere? 2 ( = ) (The static friction exerts a torque about the center of mass).
Recommended publications
  • Explain Inertial and Noninertial Frame of Reference
    Explain Inertial And Noninertial Frame Of Reference Nathanial crows unsmilingly. Grooved Sibyl harlequin, his meadow-brown add-on deletes mutely. Nacred or deputy, Sterne never soot any degeneration! In inertial frames of the air, hastening their fundamental forces on two forces must be frame and share information section i am throwing the car, there is not a severe bottleneck in What city the greatest value in flesh-seconds for this deviation. The definition of key facet having a small, polished surface have a force gem about a pretend or aspect of something. Fictitious Forces and Non-inertial Frames The Coriolis Force. Indeed, for death two particles moving anyhow, a coordinate system may be found among which saturated their trajectories are rectilinear. Inertial reference frame of inertial frames of angular momentum and explain why? This is illustrated below. Use tow of reference in as sentence Sentences YourDictionary. What working the difference between inertial frame and non inertial fr. Frames of Reference Isaac Physics. In forward though some time and explain inertial and noninertial of frame to prove your measurement problem you. This circumstance undermines a defining characteristic of inertial frames: that with respect to shame given inertial frame, the other inertial frame home in uniform rectilinear motion. The redirect does not rub at any valid page. That according to whether the thaw is inertial or non-inertial In the. This follows from what Einstein formulated as his equivalence principlewhich, in an, is inspired by the consequences of fire fall. Frame of reference synonyms Best 16 synonyms for was of. How read you govern a bleed of reference? Name we will balance in noninertial frame at its axis from another hamiltonian with each printed as explained at all.
    [Show full text]
  • 11.1 Virtual Work
    11.1 Virtual Work 11.1 Virtual Work Example 1, page 1 of 5 1. Determine the force P required to keep the two rods in equilibrium when the angle = 30° and weight W is 50 lb. The rods are each of length L and of negligible weight. They are prevented from moving out of the plane of the figure by supports not shown. B L L W C A P Smooth surface 11.1 Virtual Work Example 1, page 2 of 5 B 1 The system has one degree of freedom, L L because specifying the value of a single W coordinate, , completely determines the C configuration (shape) of the system. A P Consider a free-body diagram and identify the active forces those forces that would do work if were increased slightly. Free-body diagram (The dashed line shows the position of the system after has been increased a small amount.) 2 The force W does work because point B 4 The force P does work as B moves up, so W is an active force. point A moves to the right, so P is an active force. P A W C Cx 3 The reactions Cx and Cy do no N Cy work because point C does not 5 The normal force N does no work move. Thus Cx and Cy are not because it is perpendicular to the active forces. displacement of point A. Thus N is not an active force. 11.1 Virtual Work Example 1, page 3 of 5 6 Introduce coordinates measured from a fixed point, 7 Compute the work done when the coordinates are point C in the figure, to the point of application of the increased positive infinitesimal amounts, xA and xB active forces.
    [Show full text]
  • 14 Newton's Laws #1: Using Free Body Diagrams
    Chapter 14 Newton’s Laws #1: Using Free Body Diagrams 14 Newton’s Laws #1: Using Free Body Diagrams If you throw a rock upward in the presence of another person, and you ask that other person what keeps the rock going upward, after it leaves your hand but before it reaches its greatest height, that person may incorrectly tell you that the force of the person’s hand keeps it going. This illustrates the common misconception that force is something that is given to the rock by the hand and that the rock “has” while it is in the air. It is not. A force is all about something that is being done to an object. We have defined a force to be an ongoing push or a pull. It is something that an object can be a victim to, it is never something that an object has. While the force is acting on the object, the motion of the object is consistent with the fact that the force is acting on the object. Once the force is no longer acting on the object, there is no such force, and the motion of the object is consistent with the fact that the force is absent. (As revealed in this chapter, the correct answer to the question about what keeps the rock going upward, is, “Nothing.” Continuing to go upward is what it does all by itself if it is already going upward. You don’t need anything to make it keep doing that. In fact, the only reason the rock does not continue to go upward forever is because there is a downward force on it.
    [Show full text]
  • Chapter 3 Motion in Two and Three Dimensions
    Chapter 3 Motion in Two and Three Dimensions 3.1 The Important Stuff 3.1.1 Position In three dimensions, the location of a particle is specified by its location vector, r: r = xi + yj + zk (3.1) If during a time interval ∆t the position vector of the particle changes from r1 to r2, the displacement ∆r for that time interval is ∆r = r1 − r2 (3.2) = (x2 − x1)i +(y2 − y1)j +(z2 − z1)k (3.3) 3.1.2 Velocity If a particle moves through a displacement ∆r in a time interval ∆t then its average velocity for that interval is ∆r ∆x ∆y ∆z v = = i + j + k (3.4) ∆t ∆t ∆t ∆t As before, a more interesting quantity is the instantaneous velocity v, which is the limit of the average velocity when we shrink the time interval ∆t to zero. It is the time derivative of the position vector r: dr v = (3.5) dt d = (xi + yj + zk) (3.6) dt dx dy dz = i + j + k (3.7) dt dt dt can be written: v = vxi + vyj + vzk (3.8) 51 52 CHAPTER 3. MOTION IN TWO AND THREE DIMENSIONS where dx dy dz v = v = v = (3.9) x dt y dt z dt The instantaneous velocity v of a particle is always tangent to the path of the particle. 3.1.3 Acceleration If a particle’s velocity changes by ∆v in a time period ∆t, the average acceleration a for that period is ∆v ∆v ∆v ∆v a = = x i + y j + z k (3.10) ∆t ∆t ∆t ∆t but a much more interesting quantity is the result of shrinking the period ∆t to zero, which gives us the instantaneous acceleration, a.
    [Show full text]
  • Rotational Motion of Electric Machines
    Rotational Motion of Electric Machines • An electric machine rotates about a fixed axis, called the shaft, so its rotation is restricted to one angular dimension. • Relative to a given end of the machine’s shaft, the direction of counterclockwise (CCW) rotation is often assumed to be positive. • Therefore, for rotation about a fixed shaft, all the concepts are scalars. 17 Angular Position, Velocity and Acceleration • Angular position – The angle at which an object is oriented, measured from some arbitrary reference point – Unit: rad or deg – Analogy of the linear concept • Angular acceleration =d/dt of distance along a line. – The rate of change in angular • Angular velocity =d/dt velocity with respect to time – The rate of change in angular – Unit: rad/s2 position with respect to time • and >0 if the rotation is CCW – Unit: rad/s or r/min (revolutions • >0 if the absolute angular per minute or rpm for short) velocity is increasing in the CCW – Analogy of the concept of direction or decreasing in the velocity on a straight line. CW direction 18 Moment of Inertia (or Inertia) • Inertia depends on the mass and shape of the object (unit: kgm2) • A complex shape can be broken up into 2 or more of simple shapes Definition Two useful formulas mL2 m J J() RRRR22 12 3 1212 m 22 JRR()12 2 19 Torque and Change in Speed • Torque is equal to the product of the force and the perpendicular distance between the axis of rotation and the point of application of the force. T=Fr (Nm) T=0 T T=Fr • Newton’s Law of Rotation: Describes the relationship between the total torque applied to an object and its resulting angular acceleration.
    [Show full text]
  • Virtual Work
    MEAM 535 Principle of Virtual Work Aristotle Galileo (1594) Bernoulli (1717) Lagrange (1788) 1. Start with static equilibrium of holonomic system of N particles 2. Extend to rigid bodies 3. Incorporate inertial forces for dynamic analysis 4. Apply to nonholonomic systems University of Pennsylvania 1 MEAM 535 Virtual Work Key Ideas (a) Fi Virtual displacement e2 Small Consistent with constraints Occurring without passage of time rPi Applied forces (and moments) Ignore constraint forces Static equilibrium e Zero acceleration, or O 1 Zero mass Every point, Pi, is subject to The virtual work is the work done by a virtual displacement: . e3 the applied forces. N n generalized coordinates, qj (a) Pi δW = ∑[Fi ⋅δr ] i=1 University of Pennsylvania 2 € MEAM 535 Example: Particle in a slot cut into a rotating disk Angular velocity Ω constant Particle P constrained to be in a radial slot on the rotating disk P F r How do describe virtual b2 Ω displacements of the particle P? b1 O No. of degrees of freedom in A? Generalized coordinates? B Velocity of P in A? a2 What is the virtual work done by the force a1 F=F1b1+F2b2 ? University of Pennsylvania 3 MEAM 535 Example l Applied forces G=τ/2r B F acting at P Q r φ θ m F G acting at Q P (assume no gravity) Constraint forces x All joint reaction forces Single degree of freedom Generalized coordinate, θ Motion of particles P and Q can be described by the generalized coordinate θ University of Pennsylvania 4 MEAM 535 Static Equilibrium Implies Zero Virtual Work is Done Forces Forces that do
    [Show full text]
  • 6. Non-Inertial Frames
    6. Non-Inertial Frames We stated, long ago, that inertial frames provide the setting for Newtonian mechanics. But what if you, one day, find yourself in a frame that is not inertial? For example, suppose that every 24 hours you happen to spin around an axis which is 2500 miles away. What would you feel? Or what if every year you spin around an axis 36 million miles away? Would that have any e↵ect on your everyday life? In this section we will discuss what Newton’s equations of motion look like in non- inertial frames. Just as there are many ways that an animal can be not a dog, so there are many ways in which a reference frame can be non-inertial. Here we will just consider one type: reference frames that rotate. We’ll start with some basic concepts. 6.1 Rotating Frames Let’s start with the inertial frame S drawn in the figure z=z with coordinate axes x, y and z.Ourgoalistounderstand the motion of particles as seen in a non-inertial frame S0, with axes x , y and z , which is rotating with respect to S. 0 0 0 y y We’ll denote the angle between the x-axis of S and the x0- axis of S as ✓.SinceS is rotating, we clearly have ✓ = ✓(t) x 0 0 θ and ✓˙ =0. 6 x Our first task is to find a way to describe the rotation of Figure 31: the axes. For this, we can use the angular velocity vector ! that we introduced in the last section to describe the motion of particles.
    [Show full text]
  • Free-Body Diagrams
    Free-body diagrams Newton’s Laws For this lecture, I shall assume that you have already been introduced to forces and to Newton’s laws of motion, so I shall begin by summarizing them here, Newton’s First Law The momentum of a mass that is not subject to any forces acting on it remains constant. Newton’s Second Law F ma (1) Newton’s Third Law An object that exerts a force on another will experience a force from that other object that is equal in magnitude but opposite in its direction from that which it is exerting. F1 acting on 2 F2 acting on 1 (2) Although these are called ‘laws’, they are not absolute rules governing the nat- ural world, but are rather only approximate statements about it. They usually work extremely well for describing most of what occurs in one’s daily experi- ence, as long as one does not ask for too much precision. For example, in the second law, we have treated the mass as though it is a fixed quantity, but that is really just an idealization. The mass of an ordinary brick is not a perfectly defined quantity—a bit of it is worn off as it slides over a rough surface, or it might scrape off and attach some of that surface to itself. And at a subtler level, at every moment the atoms of the brick a sublimating back and forth into the air around it. But if we do not need to be overly finicky about the mass of the brick, it is usually a useful approximation to treat it as though it has a constant, well defined mass.
    [Show full text]
  • Rotation: Moment of Inertia and Torque
    Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn that where the force is applied and how the force is applied is just as important as how much force is applied when we want to make something rotate. This tutorial discusses the dynamics of an object rotating about a fixed axis and introduces the concepts of torque and moment of inertia. These concepts allows us to get a better understanding of why pushing a door towards its hinges is not very a very effective way to make it open, why using a longer wrench makes it easier to loosen a tight bolt, etc. This module begins by looking at the kinetic energy of rotation and by defining a quantity known as the moment of inertia which is the rotational analog of mass. Then it proceeds to discuss the quantity called torque which is the rotational analog of force and is the physical quantity that is required to changed an object's state of rotational motion. Moment of Inertia Kinetic Energy of Rotation Consider a rigid object rotating about a fixed axis at a certain angular velocity. Since every particle in the object is moving, every particle has kinetic energy. To find the total kinetic energy related to the rotation of the body, the sum of the kinetic energy of every particle due to the rotational motion is taken. The total kinetic energy can be expressed as ..
    [Show full text]
  • Newton's First Law of Motion the Principle of Relativity
    MATHEMATICS 7302 (Analytical Dynamics) YEAR 2017–2018, TERM 2 HANDOUT #1: NEWTON’S FIRST LAW AND THE PRINCIPLE OF RELATIVITY Newton’s First Law of Motion Our experience seems to teach us that the “natural” state of all objects is at rest (i.e. zero velocity), and that objects move (i.e. have a nonzero velocity) only when forces are being exerted on them. Aristotle (384 BCE – 322 BCE) thought so, and many (but not all) philosophers and scientists agreed with him for nearly two thousand years. It was Galileo Galilei (1564–1642) who first realized, through a combination of experi- mentation and theoretical reflection, that our everyday belief is utterly wrong: it is an illusion caused by the fact that we live in a world dominated by friction. By using lubricants to re- duce friction to smaller and smaller values, Galileo showed experimentally that objects tend to maintain nearly their initial velocity — whatever that velocity may be — for longer and longer times. He then guessed that, in the idealized situation in which friction is completely eliminated, an object would move forever at whatever velocity it initially had. Thus, an object initially at rest would stay at rest, but an object initially moving at 100 m/s east (for example) would continue moving forever at 100 m/s east. In other words, Galileo guessed: An isolated object (i.e. one subject to no forces from other objects) moves at constant velocity, i.e. in a straight line at constant speed. Any constant velocity is as good as any other. This principle was later incorporated in the physical theory of Isaac Newton (1642–1727); it is nowadays known as Newton’s first law of motion.
    [Show full text]
  • Rotational Motion and Angular Momentum 317
    CHAPTER 10 | ROTATIONAL MOTION AND ANGULAR MOMENTUM 317 10 ROTATIONAL MOTION AND ANGULAR MOMENTUM Figure 10.1 The mention of a tornado conjures up images of raw destructive power. Tornadoes blow houses away as if they were made of paper and have been known to pierce tree trunks with pieces of straw. They descend from clouds in funnel-like shapes that spin violently, particularly at the bottom where they are most narrow, producing winds as high as 500 km/h. (credit: Daphne Zaras, U.S. National Oceanic and Atmospheric Administration) Learning Objectives 10.1. Angular Acceleration • Describe uniform circular motion. • Explain non-uniform circular motion. • Calculate angular acceleration of an object. • Observe the link between linear and angular acceleration. 10.2. Kinematics of Rotational Motion • Observe the kinematics of rotational motion. • Derive rotational kinematic equations. • Evaluate problem solving strategies for rotational kinematics. 10.3. Dynamics of Rotational Motion: Rotational Inertia • Understand the relationship between force, mass and acceleration. • Study the turning effect of force. • Study the analogy between force and torque, mass and moment of inertia, and linear acceleration and angular acceleration. 10.4. Rotational Kinetic Energy: Work and Energy Revisited • Derive the equation for rotational work. • Calculate rotational kinetic energy. • Demonstrate the Law of Conservation of Energy. 10.5. Angular Momentum and Its Conservation • Understand the analogy between angular momentum and linear momentum. • Observe the relationship between torque and angular momentum. • Apply the law of conservation of angular momentum. 10.6. Collisions of Extended Bodies in Two Dimensions • Observe collisions of extended bodies in two dimensions. • Examine collision at the point of percussion.
    [Show full text]
  • Principle of Virtual Work
    Principle of Virtual Work Degrees of Freedom Associated with the concept of the lumped-mass approximation is the idea of the NUMBER OF DEGREES OF FREEDOM. This can be defined as “the number of independent co-ordinates required to specify the configuration of the system”. The word “independent” here implies that there is no fixed relationship between the co- ordinates, arising from geometric constraints. Modelling of Automotive Systems 1 Degrees of Freedom of Special Systems A particle in free motion in space has 3 degrees of freedom z particle in free motion in space r has 3 degrees of freedom y x 3 If we introduce one constraint – e.g. r is fixed then the number of degrees of freedom reduces to 2. note generally: no. of degrees of freedom = no. of co-ordinates –no. of equations of constraint Modelling of Automotive Systems 2 Rigid Body This has 6 degrees of freedom y 3 translation P2 P1 3 rotation P3 . x 3 e.g. for partials P1, P2 and P3 we have 3 x 3 = 9 co-ordinates but the distances between these particles are fixed – for a rigid body – thus there are 3 equations of constraint. The no. of degrees of freedom = no. of co-ordinates (9) - no. of equations of constraint (3) = 6. Modelling of Automotive Systems 3 Formulation of the Equations of Motion Two basic approaches: 1. application of Newton’s laws of motion to free-body diagrams Disadvantages of Newton’s law approach are that we need to deal with vector quantities – force and displacement. thus we need to resolve in two or three dimensions – choice of method of resolution needs to be made.
    [Show full text]