Chapter 14 Newton’s Laws #1: Using Free Body Diagrams

14 Newton’s Laws #1: Using Free Body Diagrams Ifyouthrowarockupwardinthepresenceofanotherperson,andyouaskthat otherpersonwhatkeepstherockgoingupward,afteritleavesyourhandbutbefore itreachesitsgreatestheight,thatpersonmayincorrectlytellyouthattheof theperson’shandkeepsitgoing.Thisillustratesthecommonmisconceptionthat forceissomethingthatisgiventotherockbythehandandthattherock“has” whileitisintheair.Itisnot.Aforceisallaboutsomethingthatisbeingdoneto anobject.Wehavedefinedaforcetobeanongoingpushorapull.Itissomething thatanobjectcanbeavictimto,itisneversomethingthatanobjecthas.Whilethe forceisactingontheobject,themotionoftheobjectisconsistentwiththefactthat theforceisactingontheobject.Oncetheforceisnolongeractingontheobject, thereisnosuchforce,andthemotionoftheobjectisconsistentwiththefactthat theforceisabsent.(Asrevealedinthischapter,thecorrectanswertothequestion aboutwhatkeepstherockgoingupward,is,“Nothing.”Continuingtogoupward iswhatitdoesallbyitselfifitisalreadygoingupward.Youdon’tneedanythingto makeitkeepdoingthat.Infact,theonlyreasontherockdoesnotcontinuetogo upwardforeverisbecausethereisadownwardforceonit.Whenthereisa downwardforceandonlyadownwardforceonanobject,thatobjectis experiencingadownwardacceleration.Thismeansthattheupwardmovingrock slowsdown,thenreversesitsdirectionofmotionandmovesdownwardeverfaster.) Imaginethatthestarsarefixedinspacesothatthedistancebetweenonestarandanothernever changes.(Theyarenotfixed.Thestarsaremovingrelativetoeachother.)Nowimaginethat youcreateaCartesiancoordinatesystem;asetofthreemutuallyorthogonalaxesthatyoulabel x,y,andz.YourCartesiancoordinatesystemisareferenceframe.Nowaslongasyour referenceframeisnotrotatingandiseitherfixedormovingataconstantvelocityrelativetothe (fictitious)fixedstars,thenyourreferenceframeisan inertialreferenceframe .Notethat velocityhasbothmagnitudeanddirectionandwhenwestipulatethatthevelocityofyour referenceframemustbeconstantinorderforittobeaninertialreferenceframe,wearen’tjust sayingthatthemagnitudehastobeconstantbutthatthedirectionhastobeconstantaswell.The magnitudeofthevelocityisthespeed.So,forthemagnitudeofthevelocitytobeconstant,the speedmustbeconstant.Forthedirectiontobeconstant,thereferenceframemustmovealonga straightlinepath.Soaninertialreferenceframeisonethatiseitherfixedormovingata constantspeedalongastraightlinepath,relativetothe(fictitious)fixedstars. Theconceptofaninertialreferenceframeisimportantinthestudyofbecauseitisin inertialreferenceframesthatthelawsofmotionknownasNewton’sLawsofMotionapply. HereareNewton’sthreelawsofmotion,observedtobeadheredtobyanyparticleofmatterin aninertialreferenceframe: I.Ifthereisnonetforceactingonaparticle,thenthevelocityofthatparticleisnot changing. II.Ifthereisanetforceonaparticle,thenthatparticleisexperiencinganacceleration thatisdirectlyproportionaltotheforce,withtheconstantofproportionalitybeing thereciprocalofthemassoftheparticle.

79 Chapter 14 Newton’s Laws #1: Using Free Body Diagrams

III.Anytimeoneobjectisexertingaforceonasecondobject,thesecondobjectis exertinganequalbutoppositeforcebackonthefirstobject.

Discussion of Newton’s 1 st Law Despitethename,itwasactuallyGalileothatcameupwiththefirstlaw.Heletaballrolldown arampwithanotherrampfacingtheotherwayinfrontofitsothat,afteritrolleddownone ramp,theballwouldrolluptheother.Henotedthattheballrolledupthesecondramp,slowing steadilyuntilitreachedthesameelevationastheonefromwhichtheballwasoriginallyreleased fromrest.Hethenrepeatedlyreducedtheanglethatthesecondrampmadewiththehorizontal andreleasedtheballfromrestfromtheoriginalpositionforeachnewinclinationofthesecond ramp.Thesmallertheangle,themoreslowlythespeedoftheballwasreducedonthewayup thesecondrampandthefartherithadtotravelalongthesurfaceofthesecondrampbefore arrivingatitsstartingelevation.Whenhefinallysettheangletozero,theballdidnotappearto slowdownatallonthesecondramp.Hedidn’thaveaninfinitelylongramp,butheinducedthat ifhedid,withthesecondramphorizontal,theballwouldkeeponrollingforever,neverslowing downbecausenomatterhowfaritrolled,itwouldnevergainanyelevation,soitwouldnever getuptothestartingelevation.Hisconclusionwasthatifanobjectwasmoving,thenifnothing interferedwithitsmotionitwouldkeeponmovingatthesamespeedinthesamedirection.So whatkeepsitgoing?Theansweris“nothing.”Thatisthewholepoint.Anobjectdoesn’tneed anythingtokeepitgoing.Ifitisalreadymoving,goingataconstantvelocityiswhatitdoesas longasthereisnonetforceactingonit.Infact,ittakesa force to change thevelocityofan object. It’snothardtoseewhyittookahugechunkofhumanhistoryforsomeonetorealizethatifthere isnonetforceonamovingobject,itwillkeepmovingataconstantvelocity,becausethething is,wherewelive,onthesurfaceoftheEarth,thereisinevitablyanetforceonamovingobject. YouthrowsomethingupandtheEarthpullsdownwardonitthewholetimetheobjectisin flight.It’snotgoingtokeeptravelinginastraightlineupward,notwiththeEarthpullingonit. Evenifyoutrysomethingacrossthesmoothsurfaceofafrozenpondwherethe downwardpulloftheEarth’sgravitationalfieldiscancelledbytheicepressingupontheobject, youfindthattheobjectslowsdownbecauseofafrictionalforcepushingontheobjectinthe directionoppositethatoftheobject’svelocityandindeedaforceofairresistancedoingthesame thing.Inthepresenceoftheseubiquitous,ittookhumankindalongtimetorealizethatif therewerenoforces,anobjectinmotionwouldstayinmotionalongastraightlinepath,at constantspeed,andthatanobjectatrestwouldstayatrest.

Discussion of Newton’s 2 nd Law Galileoinducedsomethingelseofinterestfromhisballontherampexperimentsbyfocusinghis attentiononthefirstrampdiscussedabove.Observationofaballreleasedfromrestrevealedto himthattheballsteadilyspeduponthewaydowntheramp.Tryit.Aslongasyoudon’tmake theramptoosteep,youcan see thattheballdoesn’tjustrolldowntherampatsomefixedspeed,

80 Chapter 14 Newton’s Laws #1: Using Free Body Diagrams itacceleratesthewholewaydown.Galileofurthernotedthatthesteepertherampwas,thefaster theballwouldspeeduponthewaydown.Hedidtrialaftertrial,startingwithaslightlyinclined planeandgraduallymakingitsteeperandsteeper.Eachtimehemadeitsteeper,theballwould, onthewaydowntheramp,speedupfasterthanitdidbefore,untiltherampgotsosteepthathe couldnolongerseethatitwasspeedinguponthewaydowntheramp—itwassimplyhappening toofasttobeobserved.ButGalileoinducedthat,ashecontinuedtomaketherampsteeper,the samethingwashappening.Thatisthattheball’sspeedwasstillincreasingonitswaydownthe rampandthegreatertheangle,thefastertheballwouldspeedup.Infact,heinducedthatifhe increasedthesteepnesstotheultimateangle,90°,thattheballwouldspeedupthewholeway downtherampfasterthanitwouldatanysmalleranglebutthatitwouldstillspeeduponthe waydown.Now,whentherampistiltedat90°,theballisactuallyfallingasopposedtorolling downtheramp,soGalileo’sconclusionwasthatwhenyoudropanobject(forwhichair resistanceisnegligible),whathappensisthattheobjectspeedsupthewholewaydown,untilit hitstheEarth. GalileothusdidquiteabittosetthestageforSirIsaacNewton,whowasbornthesameyearthat Galileodied. ItwasNewtonwhorecognizedtherelationshipbetweenforceandmotion.Heistheonethat realizedthatthelinkwasbetweenforceandacceleration,morespecifically,thatwheneveran objectisexperiencinganetforce,thatobjectisexperiencinganaccelerationinthesame directionastheforce.Now,someobjectsaremoresensitivetoforcethanotherobjects—wecan saythateveryobjectcomeswithitsownsensitivityfactorsuchthatthegreaterthesensitivity factor,thegreatertheaccelerationoftheobjectforagivenforce.Thesensitivityfactoristhe reciprocalofthemassoftheobject,sowecanwritethat 1 a = F (141) m ∑ where a istheaccelerationoftheobject, misthemassoftheobject,and ∑F isthevectorsum ofalltheforcesactingontheobject,thatistosaythat ∑F isthenetforceactingontheobject.

Discussion of Newton’s Third Law Inrealizingthatwheneveroneobjectisintheactofexertingaforceonasecondobject,the secondobjectisalwaysintheactofexertinganequalandoppositeforcebackonthefirstobject, Newtonwasrecognizinganaspectofnaturethat,onthesurface,seemsquitesimpleand straightforward,butquicklyleadstoconclusionsthat,howevercorrecttheymaybe,andindeed theyarecorrect,arequitecounterintuitive.Newton’s3 rd lawisastatementofthefactthatany forcewhatsoeverisjustonehalfofaninteractionwherean interaction inthissenseisthemutual pushingorpullingthatquiteoftenoccurswhenoneobjectisinthevicinityofanother.

81 Chapter 14 Newton’s Laws #1: Using Free Body Diagrams

Insomecases,wheretheeffectisobvious,thevalidityofNewton’sthirdlawisfairlyevident. Forinstanceiftwopeoplewhohavethesamemassareonrollerskatesandarefacingeachother andonepushestheother,weseethatbothskatersgorollingbackward,awayfromeachother.It mightatfirstbehardtoacceptthefactthatthesecondskaterispushingbackonthehandsofthe firstskater,butwecantellthattheskaterthatwethinkofasthepusher,mustalsobea“pushee,” becausewecanseethatsheexperiencesabackwardacceleration.Infact,whilethepushingis takingplace,theforceexertedonhermustbejustasgreatastheforcesheexertsontheother skaterbecauseweseethatherfinalbackwardspeedisjustasgreatasthatoftheother(same mass)skater. Buthowaboutthosecaseswheretheeffectofatleastoneoftheforcesintheinteractionpairis notatallevident?Supposeforinstancethatyouhaveabroomleaningupagainstaslippery wall.AsidefromourknowledgeofNewton’slaws,howcanweconvinceourselvesthatthe broomispressingagainstthewall,thatis,thatthebroomiscontinuallyexertingaforceonthe wall;and;howcanweconvinceourselvesthatthewallisexertingaforcebackonthebroom? Onewaytoconvinceyourselfistoletyourhandplaytheroleofthewall.Movethebroomand putyourhandintheplaceofthewallsothatthebroomisleaningagainstthepalmofyourhand atthesameanglethatitwasagainstthewallwiththepalmofyourhandfacingdirectlytoward thetipofthehandle.Youcanfeelthetipofthehandlepressingagainstthepalmofyourhand. Infact,youcanseetheindentationthatthetipofthebroomhandlemakesinyourhand.You canfeeltheforceofthebroomhandleonyourhandandyoucaninducethatwhenthewallis whereyourhandis,relativetothebroom,thebroomhandlemustbepressingonthewallwith thesameforce. Howaboutthisbusinessofthewallexertingaforceon(pushingon)thetipofthebroomhandle? Again,withyourhandplayingtheroleofthewall,quicklymoveyourhandoutoftheway.The broom,ofcourse,fallsdown.Beforemovingyourhand,youmusthavebeenapplyingaforce onthebroomorelsethebroomwouldhavefallendownthen.Youmightarguethatyourhand wasn’tnecessarilyapplyingaforcebutratherthatyourhandwasjust“intheway.”WellI’m heretotellyouthat“beingintheway”isallaboutapplyingaforce.Whenthebroomisleaning upagainstthewall,thefactthatthebroomdoesnotfallovermeansthatthewallisexertinga forceonthebroomthatcancelstheotherforcessothattheydon’tmakethebroomfallover.In fact,ifthewallwasnotstrongenoughtoexertsuchaforce,thewallwouldbreak.Still,itwould benicetogetavisceralsenseoftheforceexertedonthebroombythewall.Letyourhandplay theroleofthewall,butthistime,letthebroomleanagainstyourpinky,nearthetipofyour finger.Tokeepthebroominthesameorientationasitwaswhenitwasleaningagainstthewall, youcanfeelthatyouhavetoexertaforceonthetipofthebroomhandle.Infact,ifyouincrease thisforcealittlebit,thebroomhandletiltsmoreupward,andifyoudecreaseit,ittiltsmore downward.Again,youcanfeelthatyouarepushingonthetipofthebroomhandlewhenyou arecausingthebroomhandletoremainstationaryatthesameorientationithadwhenitwas leaningagainstthewall,andyoucaninducethatwhenthewalliswhereyourhandis,relativeto thebroom,thewallmustbepressingonthebroomhandlewiththesameforce.Notethatthe directioninwhichthewallispushingonthebroomisawayfromthewallatrightanglestothe wall.Suchaforceisexertedonanyobjectthatisincontactwithasolidsurface.Thiscontact forceexertedbyasolidsurfaceonanobjectincontactwiththatsurfaceiscalleda“normal

82 Chapter 14 Newton’s Laws #1: Using Free Body Diagrams force”becausetheforceisperpendiculartothesurfaceandtheword“normal”means perpendicular.

Using Free Body Diagrams ThekeytothesuccessfulsolutionofaNewton’s2 nd Lawproblemistodrawagoodfreebody diagramoftheobjectwhosemotionisunderstudyandthentousethatfreebodydiagramto expandNewton’s2 nd Law,thatis,toreplacethe ∑ F withantheactualtermbytermsumof 1 theforces.NotethatNewton’s2 nd Law a = F isavectorequationandhence,inthemost m ∑ generalcase(3dimensions)isactuallythreescalarequationsinone,oneforeachofthethree possiblemutuallyorthogonaldirectionsinspace.(Ascalarisanumber.Somethingthathas magnitudeonly,asopposedtoavectorwhichhasmagnitudeanddirection.)Inyourphysics course,youwilltypicallybedealingwithforcesthatalllieinthesameplane,andhence,you 1 willtypicallygettwoequationsfrom a = F . m ∑ RegardingtheFreeBodyDiagrams:Thehardpartiscreatingthemfromadescriptionofthe physicalprocessunderconsideration;theeasypartisusingthem.Inwhatlittleremainsofthis chapter,wewillfocusontheeasypart:GivenaFreeBodyDiagram,useittofindanunknown forceorunknownforces,and/oruseittofindtheaccelerationoftheobject.

83 Chapter 14 Newton’s Laws #1: Using Free Body Diagrams

Forexample,giventhefreebodydiagram Upward a FN Leftward Rightward F =13newtons kf FP=31newtons F =19 .6newtons g Downward foranobjectofmass2 .00kg,findthemagnitudeofthenormalforce FN andfindthemagnitude oftheacceleration a.(Notethatwedefinethesymbolsthatweusetorepresentthecomponents offorcesandthecomponentoftheacceleration, inthefreebodydiagram .Wedothisby drawinganarrowwhoseshaftrepresentsalinealongwhichtheforcelies,andwhosearrowhead wedefinetobethepositivedirectionforthatforcecomponent,andthenlabelingthearrowwith ourchosensymbol.Anegativevalueforasymbolthusdefined,simplymeansthatthe correspondingforceoraccelerationisinthedirectionoppositetothedirectioninwhichthe arrowispointing. Solution:Notethattheaccelerationandalloftheforcesliealongoneortheotheroftwo imaginarylines(oneofwhichishorizontalandtheotherofwhichisvertical)thatare perpendiculartoeachother.Theaccelerationalongonelineisindependentofanyforces perpendiculartothatlinesowecanconsideronelineatatime.Let’sdealwiththehorizontal linefirst.WewriteNewton’s2 nd Lawforthehorizontallineas 1 a === F (142) →→→ m ∑∑∑ →→→ inwhichtheshaftsofthearrowsindicatethelinealongwhichwearesummingforces(theshafts inequation142arehorizontalsowemustbesummingforcesalongthehorizontal)andthe arrowheadindicateswhichdirectionweconsidertobethepositivedirection(anyforceinthe oppositedirectionentersthesumwithaminussign).

Thenextstepistoreplace a→ withthesymbolthatwehaveusedinthediagramtorepresentthe rightwardaccelerationandthe ∑∑∑ F→→→ withanactualtermbytermsumoftheforceswhich includesonlyhorizontalforcesandinwhichrightwardforcesenterwitha“+”andleftward forcesenterwitha“ −”.Thisyields: 1 a = (F − F ) m P kf Substitutingvalueswithunitsandevaluatinggives: 1 m a === (31 N −−−13 N) === 9.0 2.00 kg s2

84 Chapter 14 Newton’s Laws #1: Using Free Body Diagrams

Nowweturnourattentiontotheverticaldirection.Foryourconvenience,thefreebodydiagram isreplicatedhere: Upward a

FN Leftward Rightward F =13newtons F =31newtons kf P F =19 .6newtons g Downward AgainwestartwithNewton’s2 nd Law,thistimewrittenfortheverticaldirection: 1 a === F ↓↓↓ m ∑∑∑ ↓↓↓

Wereplace a withwhatitisandwereplace F withthetermbytermsumoftheforces ↓ ∑∑∑ ↓↓↓ witha“+”fordownwardforcesanda“ −“forupwardforces.Notethattheonly ainthefree bodydiagramishorizontal.Whoevercameupwiththatfreebodydiagramistellingusthatthere isnoaccelerationintheverticaldirection,thatis,that a =0.Thus: ↓↓↓ 1 0 = (F − F ) m g N

Solvingthisfor FNyields

FN= Fg Substitutingvalueswithunitsresultsinafinalanswerof:

FN=19 .6newtons.

85 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams Thereisno“forceofmotion”actingonanobject.Onceyouhavetheforceorforces exertedontheobjectbyeverything(includinganyforcepermassfieldatthelocationof theobject)thatistouchingtheobject,youhavealltheforces.Donotaddabogus“force ofmotion”toyourfreebodydiagram.Itisespeciallytemptingtoaddabogusforce whentherearenoactualforcesinthedirectioninwhichanobjectisgoing.Keepin mind,however,thatanobjectdoesnotneedaforceonittokeepgoinginthedirectionin whichitisgoing;movingalongataconstantvelocityiswhatanobjectdoeswhenthere isnonetforceonit . Nowthatyou’vehadsomepracticeusingfreebodydiagramsitistimetodiscusshowtocreate them.Asyoudrawafreebodydiagram,thereareacoupleofthingsyouneedtokeepinmind: (1)IncludeonlythoseforcesactingONtheobjectwhosefreebodydiagramyouare drawing.AnyforceexertedBYtheobjectonsomeotherobjectbelongsonthefreebody diagramofthe other object. (2)Allforcesarecontactforces andeveryforcehasanagent.Theagentis“thatwhichis exertingtheforce.”Inotherwords,theagentisthelifeformorthingthatisdoingthe pushingorpullingontheobject.Noagentcanexertaforceonanobjectwithoutbeingin contactwiththeobject.(Weareusingthefieldpointofview,ratherthantheactionata distancepointofviewforthefundamentalforcesofnature.Thus,forinstance,itisthe earth’sgravitationalfieldatthelocationoftheobject,ratherthanthematerialearthitself, thatexertsthegravitationalforceonanobject.) Wearegoingtointroducethevariouskindsofforcesbymeansofexamples.Hereisthefirst example: Example 15-1 Arockisthrownupintotheairbyaperson.Drawthefreebodydiagramoftherock whileitisupintheair.(Yourfreebodydiagramisapplicableforanytimeafterthe rockleavesthethrower’shand,untilthelastinstantbeforetherockmakescontact withwhateveritisdestinedtohit.)Neglectanyforcesthatmightbeexertedonthe rockbytheair. Ifyouseetherockflyingthroughtheair,itmayverywelllooktoyoulikethereisnothing touchingtherock.Buttheearth’sgravitationalfieldiseverywhereinthevicinityoftheearth.It can’tbeblocked.Itcan’tbeshielded.Itisintheair,inthewater,eveninthedirt.Itisindirect contactwitheverythinginthevicinityoftheearth.Itexertsaforceoneveryobjectnearthe surfaceoftheearth.Wecallthatforcethegravitationalforce.Youhavealreadystudiedthe gravitationalforce.Wegiveabriefsynopsisofithere.

86 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

TheGravitationalForceExertedonObjectsNeartheSurfaceoftheEarth. Becauseithasmass,theearthhasagravitationalfield.Thegravitationalfieldisa forcepermassfield.Itisinvisible.Itisnotmatter.Itisaninfinitesetofforcepermass vectors,oneateverypointinspaceinthevicinityofthesurfaceoftheearth.Eachforce permassvectorisdirecteddownward,towardthecenteroftheearthand,nearthesurface N oftheearth,hasamagnitudeof 9.80 .Thesymbolusedtorepresenttheearth’s kg gravitationalfieldvectoratanypointwhereitexistsis ggg.Thus, N ggg=== 9.80 Downward.Theeffectoftheearth’sgravitationalfieldistoexertaforceon kg anyobjectthatisintheearth’sgravitationalfield.Theforceiscalledthegravitational forceandisequaltotheproductofthemassofth eobjectandtheearth’sgravitational fieldvector: Fg = mggg.Themagnitudeofthegravitationalforceisgivenby F= m (151) g g N where g === 9.80 isthemagnitudeoftheearth’sgravitationalfieldvector.The kg directionofthenearearth’ssurfacegravitationalforceisdownward,towardthecenterof theearth. HereisthefreebodydiagramandthecorrespondingtableofforcesforExample151: a m TableofForces Symbol = ? Name Agent Victim TheEarth’s F=m Gravitational The g g Gravitational F Force Rock g Field Note: 1)Theonlythingtouchingtheobjectwhileitisupintheair(neglectingtheairitself)isthe earth’sgravitationalfield.Sothereisonlyoneforceontheobject,namelythegravitational force.Thearrowrepresentingtheforcevectorisdrawnsothatthetailofthearrowis touchingtheobject,andthearrowextendsawayfromtheobjectinthedirectionoftheforce. 2)Unlessotherwisestipulatedandlabeledonthediagram,upwardistowardthetopofthepage anddownwardistowardthebottomofthepage. 3)Thearrowrepresentingtheaccelerationmustbenearbutnottouchingtheobject.(Ifitis touchingtheobject,onemightmistakeitforaforce.) 4)Thereisnovelocityinformationonafreebodydiagram.

87 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

5)Thereisnoforceofthehandactingontheobjectbecause,attheinstantinquestion,thehand isnolongertouchingtheobject.Whenyoudrawafreebodydiagram,onlyforcesthatare actingontheobjectattheinstantdepictedinthediagramareincluded.Theaccelerationof theobjectdependsonlyonthecurrentlyactingforcesontheobject.Theforceofthehandis ofhistoricalinterestonly. 6)Regardingthetableofforces: a)Makesurethatforanyfreebodydiagramyoudraw,youarecapableofmakinga completetableofforces.Youarenotrequiredtoprovideatableofforceswithevery freebodydiagramyoudraw,butyoushouldexpecttobecalledupontocreateatableof forcesmorethanonce. b)Inthetableofforces,theagentisthelifeformorthingthatisexertingtheforceandthe victimistheobjectonwhichtheforceisbeingexerted.Makesurethat,ineverycase, thevictimistheobjectforwhichthefreebodydiagramisbeingdrawn. c)Inthecaseathand,thereisonlyoneforcesothereisonlyoneentryinthetableof forces. d)Foranyobjectnearthesurfaceoftheearth,theagentofthegravitationalforceisthe earth’sgravitationalfield.Itisokaytoabbreviatethatto“Earth”becausethe gravitationalfieldoftheearthcanbeconsideredtobeaninvisiblepartoftheearth,but itisNOTokaytocallit“.”Gravityisasubjectheadingcorrespondingtothe kindofforcethegravitationalforceis,gravityisnotanagent. Example 15-2 Aballofmass mhangsatrest,suspendedbyastring.Drawthefreebodydiagram fortheball,andcreatethecorrespondingtableofforces. Todothisproblem,youneedthefollowinginformationaboutstrings: TheForceExertedbyaTautStringonanObjecttoWhichitisAffixed (Thisalsoappliestoropes,cables,chains,andthelike.) Theforceexertedbyastring,onanobjecttowhichitisattached,isalwaysdirectedaway fromtheobject,alongthelengthofthestring. Notethattheforceinquestionisexertedbythestring,notforinstance,bysomeperson pullingontheotherendofthestring. Theforceexertedbyastringonanobjectisreferredtoasa“tensionforce”andits magnitudeisconventionallyrepresentedbythesymbol FT. Note:Thereisnoformulatotellyouwhatthetensionforceis.Ifitisnotgiven,theonly waytogetitistouseNewton’s2 nd Law.

88 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

Hereisthefreebodydiagramoftheball,andthecorrespondingtableofforcesforExample152: FT TableofForces a=0 Symbol=? Name Agent Victim m Tension F TheString TheBall T Force F Gravitational TheEarth’s g F=m g TheBall g Force GravitationalField Example 15-3 Asledofmass misbeingpulledforwardoverahorizontalfrictionlesssurfaceby meansofahorizontalropeattachedtothefrontofthesled.Drawthefreebody diagramofthesledandprovidethecorrespondingtableofforces. Asidefromtheropeandtheearth’sgravitationalfield,thesledisincontactwithasolidsurface. Thesurfaceexertsakindofforcethatweneedtoknowaboutinordertocreatethefreebody diagramforthisexample. TheNormalForce Whenanobjectisincontactwithasurface,thatsurfaceexertsaforceontheobject.The surfacepressesontheobject.Theforceontheobjectisawayfromthesurface,anditis perpendiculartothesurface.Theforceiscalledthenormalforcebecause“normal” meansperpendicular,andasmentioned,theforceisperpendiculartothesurface.Weuse thesymbol FN torepresentthemagnitudeofthenormalforce. Note:Thereisnoformulatotellyouwhatthenormalforceis.Ifitisnotgiven,theonly waytogetitistouseNewton’s2 nd Law. Hereisthefreebodydiagramofthesledaswellasthecorrespondingtableofforces. TableofForces a Symbol=? Name Agent Victim The F Normal The N F Horizontal FT N Force Sled Surface Tension The FT TheRope F Force Sled g TheEarth’s Gravitational The F=m g Gravitational g Force Sled Field

89 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

Note:Theword“Free”in“FreeBodyDiagram”referstothefactthattheobjectisdrawnfreeof itssurroundings.Donotincludethesurroundings(suchasthehorizontalsurfaceon whichthesledisslidinginthecaseathand)inyourFreeBodyDiagram. Example 15-4 Ablockofmass mrestsonafrictionlesshorizontalsurface.Theblockisduewest ofawestfacingwall.Theblockisattachedtothewallbyanidealmassless uncompressed/unstretchedspringwhoseforceconstantis k.Thespringis perpendiculartothewall.Apersonpullstheblockadistance xdirectlyawayfrom thewallandreleasesitfromrest.Drawthefreebodydiagramoftheblock appropriateforthefirstinstantafterrelease.Providethecorrespondingtableof forces. Now,forthefirsttime,wehaveaspringexertingaforceontheobjectforwhichwearedrawing thefreebodydiagram.So,weneedtoknowabouttheforceexertedbyaspring. TheForceExertedbyaSpring Theforceexertedbyanidealmasslessspringonanobjectincontactwithoneendofthe springisdirectedalongthelengthofthespring,and • awayfromtheobjectifthespringisstretched, • towardtheobjectifthespringiscompressed. Forthespringtoexertaforceontheobjectinthestretchedspringcase,theobjectmust beattachedtotheendofthespring.Notsointhecompressedspringcase.Thespring canpushonanobjectwhetherornotthespringisattachedtotheobject. Theforcedependsontheamount x bywhichthespringisstretchedorcompressed, andonameasureofthestiffnessofthespringknownastheforceconstantofthespring a.k.a.thespringconstantandrepresentedbythesymbol k.Themagnitudeofthespring forceistypicallyrepresentedbythesymbol FS .Thespringforceisdirectlyproportional totheamountofstretch x .Thespringconstant kistheconstantofproportionality. Thus,

FS= k x (152) Hereisthefreebodydiagramoftheblock,andthecorrespondingtableofforcesfor Example154:

90 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

BEWARE:Bychance,intheexamples providedinthischapter,thenormalforce UP isupward.Neverassumeittobeupward. Thenormalforceisperpendicularto,and a awayfrom,thesurfaceexertingit.It happenstobeupwardintheexamples FN becausetheobjectisincontactwiththe topofahorizontalsurface.Ifthesurface EAST isawall,thenormalforceishorizontal;if m F S itisaceiling,downward;ifanincline, perpendiculartoandawayfromthe incline. Never assume the normal force F g to be upward. TableofForces Symbol=? Name Agent Victim F Normal TheHorizontal The N Force Surface Block The F === k x SpringForce TheSpring S Block Gravitational TheEarth’s The F=m g g Force GravitationalField Block Example 15-5 Fromyourvantagepoint,acrateofmass misslidingrightwardonaflatlevel concretefloor.Nothingsolidisincontactwiththecrateexceptforthefloor.Draw thefreebodydiagramofthecrate.Providethecorrespondingtableofforces. Fromourexperiencewithobjectsslidingonconcretefloors,weknowthatthecrateisslowing downattheinstantunderconsideration.Itisslowingbecauseofkinetic. KineticFriction Asurface,uponwhichanobjectissliding,exerts(inadditiontothenormalforce)a retardingforceonthatobject.Theretardingforceisinthedirectionoppositethatofthe velocityoftheobject.Inthecaseofanobjectslidingonadrysurfaceofasolidbody (suchasafloor)wecalltheretardingforceakineticfrictionalforce.Kineticmeans motionandweincludetheadjectivekinetictomakeitclearthatwearedealingwithan objectthatisinmotion. Thekineticfrictionalformulagivenbelowisanempiricalresult.Thismeansthatitis

91 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams deriveddirectlyfromexperimentalresults.Itworksonlyinthecaseofobjectsslidingondry surfaces.Itdoesnotapply,forinstance,tothecaseofanobjectslidingonagreasedsurface. WeusethesymbolF forthekineticfrictionforce.Thekineticfrictionalformulareads kf F = F (153) kf K N

FNisthemagnitudeofthenormalforce.Itspresenceintheformulaindicatesthatthemore stronglythesurfaceispressingontheobject,thegreaterthefrictionalforce.

K (musubK)iscalledthecoefficientofkineticfriction.Itsvaluedependsonthematerialsof whichboththeobjectandthesurfacearemadeaswellasthesmoothnessofthetwocontact surfaces.Ithasnounits.Itisjustanumber.Themagnitudeofthekineticfrictionalforceis somefractionofthemagnitudeofthenormalforce; K isthatfraction.Valuesof K for variouspairsofmaterialscanbefoundinhandbooks.Theytendtofallbetween0and1.The actualvalueforagivenpairofmaterialsdependsonthesmoothnessofthesurfaceandis typicallyquotedwithbutasinglesignificantdigit.

IMPORTANT: K isacoefficient(withnounits)usedincalculatingthefrictionalforce.Itis notaforceitself. Hereisthefreebodydiagramandthetableofforcesforthecaseathand.Thecrateismoving rightwardandslowingdown—ithasaleftwardacceleration. TableofForces a Symbol Name Agent Victim TheConcrete The FN F NormalForce N Floor Crate Kinetic TheConcrete The F = F kf K N FrictionForce Floor Crate m TheEarth’s F =m Gravitational The F g g Gravitational Force Crate kf Field F g

Note:Noteveryobjecthasanormal(“perpendiculartothesurface”)forceactingonit.Ifthe objectisnotincontactwithasurface,thenthereisnonormalforceactingontheobject.

92 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

Example 15-6 Apersonhaspushedabrickalongatilefloortowardaneastwardfacingwall

trappingaspringofunstretchedlength Lo andforceconstant kbetweenthewalland theendofthebrickthatisfacingthewall.Thatendofthebrickisadistance dfrom thewall.Thepersonhasreleasedthebrick,butthespringisunabletobudgeit— thebrickremainsexactlywhereitwaswhenthepersonreleasedit.Drawthefree bodydiagramforthebrickandprovidethecorrespondingtableofforces. Africtionalforceisactingonanobjectatrest.Typically,anobject atrest clingsmorestrongly tothesurfacewithwhichitisincontactthanthesameobjectdoeswhenitis sliding acrossthe samesurface.Whatwehavehereisacaseofstaticfriction. StaticFrictionForce Asurfacethatisnotfrictionlesscanexertastaticfrictionforceonanobjectthatisin contactwiththatsurface.Theforceofstaticfrictionisparalleltothesurface.Itisinthe directionoppositethedirectionofimpendingmotionofthestationaryobject.The directionofimpendingmotionisthedirectioninwhichtheobjectwouldaccelerateif therewasnostaticfriction. Ingeneral,thereisnoformulaforcalculatingstaticfriction—tosolvefortheforceof staticfriction,youuseNewton’s2 nd Law.Theforceofstaticfrictioniswhateverithasto betomakethenetparalleltothesurfaceforcezero.

Weusethesymbol Fsftorepresentthemagnitudeofthestaticfrictionforce. SPECIALCASE:Imaginetryingtopusharefrigeratoracrossthefloor. Imaginethatyoupushhorizontally,andthatyougraduallyincreasetheforce withwhichyouarepushing.Initially,theharderyoupush,thebiggertheforce ofstaticfriction.Butitcan’tgrowforever.Thereisamaximumpossiblestatic frictionforcemagnitudeforanysuchcase.Oncethemagnitudeofyourforce exceedsthat,therefrigeratorwillstartsliding.Themaximumpossibleforceof staticfrictionisgivenby: maxpossible Fsf = SFN (154)

Theunitlessquantity S isthecoefficientofstaticfrictionspecifictothetypeof surfacetheobjectisslidingonandthenatureofthesurfaceoftheobject.

Valuesof S tendtofallbetween0and1.Foraparticularpairofsurfaces, S isatleastaslargeas,andtypicallylargerthan, . K

93 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

maxpossible Clearly,thisformula( Fsf = SFN )isonlyapplicablewhenthe questionisaboutthemaximumpossibleforceofstaticfriction.Youcanuse thisformulaiftheobjectissaidtobeonthevergeofslipping,orifthe questionisabouthowhardonemustpushtobudgeanobject.Italsocomes inhandywhenyouwanttoknowwhetherornotanobjectwillstayput.In suchacaseyouwoulduseNewton’s2 ndtofindoutthemagnitudeofthe forceofstaticfrictionneededtokeeptheobjectfromaccelerating.Thenyou wouldcomparethatmagnitudewiththemaximumpossiblemagnitudeofthe forceofstaticfriction. HereisthefreebodydiagramofthebrickandthetableofforcesforExample156: Up a=0 FN m East FS F sf F TableofForces g Symbol=? Name Agent Victim Normal The FN TheTileFloor Force Brick Static The F Friction TheTileFloor sf Brick Force Gravitational TheEarth’s The F = mg g Force GravitationalField Brick The F = k x SpringForce TheSpring S Brick

94 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings When,inthecaseofatiltedcoordinatesystem,youbreakupthegravitationalforce vectorintoitscomponentvectors,makesurethegravitationalforcevectoritselfforms thehypotenuseoftherighttriangleinyourvectorcomponentdiagram.Alltoooften, folksdrawoneofthecomponentsofthegravitationalforcevectorinsuchamannerthat itisbiggerthanthegravitationalforcevectoritissupposedtobeacomponentof.The componentofavectorisneverbiggerthanthevectoritself . Havinglearnedhowtousefreebodydiagrams,andthenhavinglearnedhowtocreatethem,you areinaprettygoodpositiontosolveahugenumberofNewton’s2 nd Lawproblems.An understandingoftheconsiderationsinthischapterwillenabletoyoutosolveanevenlarger classofproblems.Again,weuseexamplestoconveythedesiredinformation. Example 16-1 Aprofessorispushingonadeskwithaforceofmagnitude Fatanacuteangle θbelow thehorizontal.Thedeskisonaflat,horizontaltileflooranditisnotmoving.Forthe desk,drawthefreebodydiagramthatfacilitatesthedirectandstraightforward applicationofNewton’s2 nd Lawofmotion.Givethetableofforces. Whilenotarequiredpartofthesolution,asketchoftenmakesiteasiertocomeupwiththe correctfreebodydiagram.Justmakesureyoudon’tcombinethesketchandthefreebody diagram.Inthisproblem,asketchhelpsclarifywhatismeantby“atanacuteangle θbelowthe horizontal.” Pushingwithaforcethatisdirectedatsomeacuteanglebelowthehorizontalispushing horizontallyanddownwardatthesametime.

95 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

Hereistheinitialfreebodydiagramandthecorrespondingtableofforces. a=0 FN θ FP F F sf g TableofForces Symbol=? Name Agent Victim Normal F TheFloor Desk N Force Static Fsf Friction TheFloor Desk Force Gravitational TheEarth’s F =m g Desk g Force GravitationalField Forceof F HandsofProfessor Desk P Professor Notethattherearenotwomutuallyperpendicularlinestowhichalloftheforcesareparallel. Thebestchoiceofmutuallyperpendicularlineswouldbeaverticalandahorizontalline.Three ofthefourforcesliealongoneortheotherofsuchlines.Buttheforceoftheprofessordoesnot. Wecannotusethisfreebodydiagramdirectly.Wearedealingwithacasewhichrequiresa secondfreebodydiagram. CasesRequiringaSecondFreeBodyDiagraminWhichOneofMoreoftheForces thatwasintheFirstFreeBodyDiagramisReplacedWithitsComponents Establishapairofmutuallyperpendicularlinessuchthatmostofthevectorsliealong oneortheotherofthetwolines.Afterhavingdoneso,breakupeachoftheother vectors,theonesthatliealongneitherofthelines,(let’scallthesetheroguevectors)into componentsalongthetwolines.(Breakingupvectorsintotheircomponentsinvolves drawingavectorcomponentdiagram.)Drawasecondfreebodydiagram,identicaltothe first,exceptwithroguevectorsreplacedbytheircomponentvectors.Inthenewfree bodydiagram,drawthecomponentvectorsinthedirectioninwhichtheyactuallypoint andlabelthemwiththeirmagnitudes(nominussigns).

96 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

Forthecaseathand,ourrogueforceistheforceoftheprofessor.Webreakitupinto componentsasfollows: y

FPx x θ

|F | Py

FP

FPx F = cosθ Py = sinθ FP FP FPx = FP cosθ FPy = FP sinθ

Thenwedrawasecondfreebodydiagram,thesameasthefirst,exceptwith FPreplacedbyits componentvectors: a=0 F N

FPx F g Fsf FPy

97 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

Example 16-2 Awoodenblockofmass misslidingdownaflatmetalincline(aflatmetalramp)that makesanacuteangle θwiththehorizontal.Theblockisslowingdown.Drawthe directlyusablefreebodydiagramoftheblock.Provideatableofforces. Wechoosetostartthesolutiontothisproblemwithasketch.Thesketchfacilitatesthecreation ofthefreebodydiagrambutinnowayreplacesit. m v θ Sincetheblockisslidinginthedowntheinclinedirection,thefrictionalforcemustbeintheup theinclinedirection.Sincetheblock’svelocityisinthedowntheinclinedirectionand decreasing,theaccelerationmustbeintheuptheinclinedirection. TableofForces a Symbol=? Name Agent Victim FN Normal The FN TheRamp F Force Block kf Kinetic The F = F Friction TheRamp θ fk K N Block Force Gravitational TheEarth’s The F =m g g Force GravitationalField Block F g Nomatterwhatwechooseforapairofcoordinateaxes,wecannotmakeitsothatallthevectors inthefreebodydiagramareparalleltooneortheotherofthetwocoordinateaxeslines.Atbest, thepairoflines,onelineparalleltothefrictionalforceandtheotherperpendiculartotheramp, leavesoneroguevector,namelythegravitationalforcevector.Suchacoordinatesystemistilted onthepage.

98 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

CasesInvolvingTiltedCoordinateSystems Foreffectivecommunicationpurposes,studentsdrawingdiagramsdepictingphenomena occurringnearthesurfaceoftheeartharerequiredtouseeithertheconventionthat downwardistowardthebottomofthepage(correspondingtoasideview)orthe conventionthatdownwardisintothepage(correspondingtoatopview).Ifonewantsto depictacoordinatesystemforacaseinwhichthedirection“downward”isparallelto neithercoordinateaxisline,thecoordinatesystemmustbedrawnsothatitappearstilted onthepage. Inthecaseofatiltedcoordinatesystemproblemrequiringasecondfreebodydiagramofthe sameobject,itisagoodideatodefinethecoordinatesystemonthefirstfreebodydiagram.Use dashedlinessothatthecoordinateaxesdonotlooklikeforcevectors.Hereweredrawthefirst freebodydiagram.(When you gettothisstageinaproblem,justaddthecoordinateaxesto yourexistingdiagram.) y a F N Fkf θ F g x Nowwebreakup Fg intoits x,ycomponentvectors.Thiscallsforavectorcomponentdiagram.

99 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

y θ HorizontalLine θ 90 °−θ θ Fgy F g x F gx F g x F y = sinθ g = cosθ Fg Fg = = Fgx Fg sinθ Fg y Fg cosθ Next,weredrawthefreebodydiagramwiththegravitationalforcevectorreplacedbyits componentvectors. F a N Fkf θ Fg x F y g

100 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

Example 16-3 Asolidbrasscylinderofmass missuspendedbyamasslessstringwhichis attachedtothetopendofthecylinder.Fromthere,thestringextendsstraight upwardtoamasslessidealpulley.Thestringpassesoverthepulleyandextends downward,atanacuteanglethetatothevertical,tothehandofapersonwhois

pullingonthestringwithforce FT.Thepulleyandtheentirestringsegment,fromthe cylindertohand,lieinoneandthesameplane.Thecylinderisacceleratingupward. Providebothafreebodydiagramandatableofforcesforthecylinder. Asketchcomesinhandyforthisone: Toproceedwiththisone,weneedsomeinformationontheeffectofanidealmasslesspulleyon astringthatpassesoverthepulley. EffectofanIdealMasslessPulley Theeffectofanidealmasslesspulleyonastringthatpassesoverthepulleyistochange thedirectioninwhichthestringextends,withoutchangingthetensioninthestring.

Bypullingontheendofthestringwithaforceofmagnitude FT,thepersoncausestheretobea tension FTinthestring.(Theforceappliedtothestringbythehandoftheperson,andthe tensionforceofthestringpullingonthehandoftheperson,areaNewton’s3rd lawinteraction pairofforces.Theyareequalinmagnitudeandoppositeindirection.Wechoosetouseoneand thesamesymbol FTforthemagnitudeofbothoftheseforces.Thedirectionsareoppositeeach other.)Thetensionisthesamethroughoutthestring,so,wherethestringisattachedtothebrass cylinder,thestringexertsaforceofmagnitude FTdirectedawayfromthecylinderalongthe lengthofthestring.Hereisthefreebodydiagramandthetableofforcesforthecylinder:

101 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

F T TableofForces a Symbol=? Name Agent Victim Tension The F TheString T Force Cylinder F Gravitational TheEarth’s The g F =mg g Force GravitationalField Cylinder Example 16-4

Acartofmass mC isonahorizontalfrictionlesstrack.Oneendofanidealmassless stringsegmentisattachedtothemiddleofthefrontendofthecart.Fromtherethe stringextendshorizontally,forwardandawayfromthecart,paralleltothecenterlineof thetrack,toaverticalpulley.Thestringpassesoverthepulleyandextendsdownward

toasolidmetalblockofmass mB .Thestringisattachedtotheblock.Apersonwas holdingthecartinplace.Theblockwassuspendedatrest,wellabovethefloor,bythe string.Thepersonhasreleasedthecart.Thecartisnowacceleratingforwardandthe blockisacceleratingdownward.Drawafreebodydiagramforeachobject. Asketchwillhelpustoarriveatthecorrectanswertothisproblem. mC mB

Recallfromthelastexamplethatthereisonlyonetensioninthestring.Callit FT.Basedonour knowledgeoftheforceexertedonanobjectbyastring,viewedsothattheapparatusappearsas

itdoesinthesketch,thestringexertsarightwardforce FTonthecart,andanupwardforceof

magnitude FTontheblock.

102 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

Thereisarelationshipbetweeneachofseveralvariablesofmotionofoneobjectattachedbya tautstring,whichremainstautthroughoutthemotionoftheobject,andthecorresponding variablesofmotionofthesecondobject.Therelationshipsaresosimplethatyoumightconsider themtobetrivial,buttheyarecriticaltothesolutionofproblemsinvolvingobjectsconnectedby atautspring. TheRelationshipsAmongtheVariablesofMotionForTwoObjects,OneatOne EndandtheOtherattheOtherEnd,ofanalwaystaut,UnstretchableString Considerthefollowingdiagram. 2 1 Becausetheyareconnectedtogetherbyastringoffixedlength,ifobject1goes downward5cm,thenobject2mustgorightward5cm.Soifobject1goesdownwardat 5cm/sthenobject2mustgorightwardat5cm/s.Infact,nomatterhowfastobject1 goesdownward,object2mustgorightwardattheexactsamespeed(aslongasthestring doesnotbreak,stretch,orgoslack).Inorderforthespeedstoalwaysbethesame,the accelerationshavetobethesameaseachother.Soifobject1ispickingupspeedinthe downwarddirectionat,forinstance,5cm/s 2,thenobject2mustbepickingupspeedin therightwarddirectionat5cm/s 2.Themagnitudesoftheaccelerationsareidentical. Thewaytodealwiththisistouseoneandthesamesymbolforthemagnitudeofthe accelerationofeachoftheobjects.Theideasrelevanttothissimpleexampleapplyto anycaseinvolvingtwoobjects,oneoneachendofaninextensiblestring,aslongaseach objectmovesonlyalongalinecollinearwiththestringsegmenttowhichtheobjectis attached. Let’sreturntotheexampleprobleminvolvingthecartandtheblock.Thetwofreebody diagramsfollow: F N FT a m mc B a F T F C FgB g

Notethattheuseofthesamesymbol FTinbothdiagramsisimportant,asistheuseofthesame symbol ainbothdiagrams.

103