Effects of Supplying Leucine and Methionine to Early-Lactating Cows

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Supplying Leucine and Methionine to Early-Lactating Cows Effects of supplying leucine and methionine to early-lactating cows fed silage-concentrate based diets with a calculated deficiency in leucine and methionine Thomas Kröber, Franz Sutter, Markus Senn, Wolfgang Langhans, Michael Kreuzer To cite this version: Thomas Kröber, Franz Sutter, Markus Senn, Wolfgang Langhans, Michael Kreuzer. Effects of sup- plying leucine and methionine to early-lactating cows fed silage-concentrate based diets with a calcu- lated deficiency in leucine and methionine. Animal Research, EDP Sciences, 2001, 50 (1), pp.5-20. 10.1051/animres:2001102. hal-00889920 HAL Id: hal-00889920 https://hal.archives-ouvertes.fr/hal-00889920 Submitted on 1 Jan 2001 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Anim. Res. 50 (2001) 5–20 5 © INRA, EDP Sciences, 2001 Original article Effects of supplying leucine and methionine to early-lactating cows fed silage-concentrate based diets with a calculated deficiency in leucine and methionine Thomas F. KRÖBERa, Franz SUTTERa, Markus SENNb, Wolfgang LANGHANSb, Michael KREUZERa* a Group of Animal Nutrition, Institute of Animal Sciences, Swiss Federal Institute of Technology (ETH), ETH centre/LFW, 8092 Zurich, Switzerland b Group of Physiology and Animal Husbandry, Institute of Animal Sciences, Swiss Federal Institute of Technology (ETH), ETH centre/LFW, 8092 Zurich, Switzerland (Received 30 August 1999; accepted 7 September 2000) Abstract — In a 2 × 2 factorial approach the productive and metabolic response of 24 multiparous Brown Swiss cows fed rations calculated to be deficient in leucine (0.9-fold of requirements) and methionine (0.8-fold) to supplementation either of one or both of these amino acids were investigated. On a dry matter basis the rations consisted of 29% grass silage, 20% maize silage, 6% hay, and 45% concentrate. Blood plasma amino acid data confirmed the intended difference in metabolic supply of leucine and methionine keeping a low variation in the plasma levels of the other essential amino acids, particularly lysine. Live weight, milk yield as well as content and amount of milk fat were not affected by the treatments. Content and amount of milk protein were significantly reduced relative to initial level without additional methionine. Nutrient digestibility and nitrogen balance remained widely unchanged by the supplementations. Except of plasma aspartate amino transferase, cholesterol, creatinine and ornithine, which responded to methionine, hormones, enzyme activities as well as plasma, urine and milk metabolites were not systematically influenced by leucine and methionine sup- ply. The present results gave clearer indications for a deficiency in methionine than in leucine. amino acids / dairy cow / requirements / leucine / methionine Résumé — Effets de l’apport de leucine et méthionine chez des vaches en début de lactation rece- vant des rations ensilage-concentré à déficit calculé en leucine et méthionine. Vingt-quatre vaches laitières multipares Brown Swiss ont été affouragées avec des rations calculées pour être déficientes en leucine (0,9 fois du besoin) et méthionine (0,8 fois). Les effets d’une supplémentation de l’un ou des deux acides aminés sur la production et le métabolisme de ces vaches ont été exami- nés à l’aide d’une approche factorielle 2 × 2. En matière sèche, les rations étaient composées de 29 % d’ensilage d’herbe, 20 % d’ensilage de maïs, 6 % de foin et 45 % de concentrés. Comme * Correspondence and reprints Tel.: 41 1 632 5972; fax: 41 1 632 1128; e-mail: [email protected] 6 T.F. Kröber et al. prévu, les analyses des acides aminés dans le plasma sanguin ont confirmé une disponibilité méta- bolique différente de la leucine et de la méthionine, alors que les autres acides aminés essentiels n’ont montré que peu de variation, en particulier la lysine. Le poids vif, la production et la compo- sition du lait, ainsi que la quantité de ses matières grasses n’ont pas été affectés par les traitements. Sans méthionine supplémentaire la teneur et la quantité de protéines dans le lait ont diminué signi- ficativement par rapport au niveau initial. La digestibilité des nutriments et le bilan azoté sont restés inchangés malgré les supplémentations. Les taux hormonaux et les activités enzymatiques sanguins, ainsi que les métabolites du sang, de l’urine et du lait le plus souvent n’ont pas répondu clairement à l’adjonction de leucine et méthionine. Les résultats suggèrent l’existence d’une déficience en methionine plutôt qu’en leucine. acides aminés / vache laitière / besoins / leucine / méthionine 1. INTRODUCTION limiting amino acid in dairy cows [4]. Even mixed forage rations containing maize silage fed together with concentrate might be defi- Most of the commonly applied systems cient in leucine depending on the propor- of recommendations for protein supply of tion of concentrate and the type of concen- dairy cows are based on the protein available trate ingredients used. It is not yet completely in metabolism after small intestinal diges- clear in which order methionine and leucine tion. Although ruminants, like monogastric are required for maximum metabolic pro- animals, have distinct requirements for sin- tein utilisation, and more reliable informa- gle amino acids rather than for protein, only tion is still needed on the cow’s require- very few systems of recommendations, such ments for leucine particularly in relation to as the modified French PDI [34] and the methionine and the types of rations in which Dutch DVE system [8], give the option to these amino acids are actually limiting. consider also the dietary supply of limiting amino acids. Fickler and Heimbeck [11] The objective of the present study was suggested a factorial approach to estimate to determine the degree of limitation by the supply of ‘metabolisable’ amino acids leucine independent from methionine using in order to be able to identify limiting amino a mixed basal ration with a calculated defi- acids. Knowledge on limitations in individ- ciency of leucine and methionine but not of ual amino acids allows to supplement these lysine. Performance, N balance and various amino acids at minimum additional nitro- metabolic indicators in blood, urine and gen intake thus also avoiding unnecessary milk, including the blood amino acid pro- environmental pollution by excretion of file, were determined in order to identify an excessive nitrogen. Methionine and lysine actual deficiency of leucine and of methio- are often regarded as limiting amino acids in nine. dairy cows, particularly with high dietary proportions of maize products rich in leucine [32]. This was recently confirmed by adding 2. MATERIALS AND METHODS lysine and methionine to a forage-based diet calculated to be deficient in these amino 2.1. Feed and treatments acids according to the modified French sys- tem [21]. However, under different feeding A balance experiment based on a 2 × 2 conditions such as forage-based grass/grass factorial design (deficient/sufficient supply silage rations instead of concentrate-based of leucine and methionine, respectively) was rations leucine might be the first or second performed with 24 early-lactating cows, Leucine and methionine requirements of dairy cows 7 with a total of six replicates per treatment (PDI), digestible lysine and methionine to group. In detail, the experiment was carried ensure compatibility of requirement and out in three subsequent experimental periods supply calculations. Accordingly, adequate with three groups of eight cows each (two supply of net energy and PDI was given in cows per treatment in each period). On a all groups. When net energy and absorbable dry matter basis, the rations were composed protein contents were calculated from prox- of forage (consisting of 53% early growth- imate analyses (Tab. I) by the Swiss system stage, rye grass dominated grass silage, 37% [12], in all groups a slight lack of net energy maize silage and 10% late growth-stage was calculated (not given in the tables) as it meadow hay) and concentrate in a ratio of is common for early lactating cows. Nitro- 1.2:1. Feed amount was individually allo- gen (crude protein) intake was sufficient to cated for each cow according to actual milk ensure maximum rumen fermentation activ- yield and live weight. The analysed nutri- ity [12] although some of the concentrate ent and amino acid composition of the feed ingredients contained protein of a relatively ingredients is given in Table I. low rumen degradability. Leucine supply was increased from low Table II also gives the results of two dif- supply (Leu-) to higher supply (Leu+) only ferent calculations of metabolic supply of by changing the ingredient composition of amino acids. One is based on the French the concentrate. The Leu- concentrate con- concept of digestible amino acids [33, 36] sisted on a dry matter basis of dried sugar which considers lysine (LysDI) and methio- beet pulp 20.0%, soy hulls 18.0%, barley nine (MetDI). For calculation of supply by 15.0%, citrus pulp 12.0%, wheat bran this approach INRA [35] feed tables on the 10.0%, maize germ 7.0%, soybean meal contents of LysDI and MetDI in feedstuffs 6.5%, wheat gluten meal 4.5%, sugar beet were used and requirement data of Rulquin molasses 4.0% and mineral premix 3.0%. et al. [33, 36] were applied. Accordingly, The Leu+ concentrate was similarly com- methionine was clearly deficient without posed except that the 4.5% wheat gluten supplementation and calculated require- meal (poor in leucine) were replaced by ments were fully covered with addition of 6.0% maize gluten meal, which should guar- methionine which increased supply by 23% antee a high leucine flow to the small intes- on average (p < 0.001).
Recommended publications
  • Effect of Leucine on Intestinal Absorption of Tryptophan in Rats
    Downloaded from https://doi.org/10.1079/BJN19850155 British Journal of Nutrition (1985), 54, 695-703 695 https://www.cambridge.org/core Effect of leucine on intestinal absorption of tryptophan in rats BY CHISAE UMEZAWA, YUKO MAEDA, KANJI HABA, MARIKO SHIN AND KEIJI SANO School of Pharmacy, Kobe-Gakuin University, Nishi-ku, Kobe 673, Japan (Received I7 May 1985 - Accepted 24 June 1985) . IP address: 1. To elucidate the causal relation between leucine and the lowering of hepatic NAD content of rats fed on a leucine-excessive diet (Yamada et aZ. 1979), the effect of leucine on intestinal absorption of tryptophan was 170.106.35.93 investigated. 2. Co-administration of [3H]tryptophan and leucine, with leucine at ten times the level of tryptophan, delayed absorption of L-[side chain 2,3-3H]tryptophan from the digestive tract and incorporation of [3H]tryptophan into portal blood, the liver and a protein fraction of the liver. After 120 min, more than 95% of tryptophan was absorbed whether [3H]tryptophan was administered with or without leucine. , on 3. Co-administration of a mixture of ten essential amino acids, in proportions simulating casein, with 02 Oct 2021 at 04:49:27 [3H]tryptophan markedly delayed absorption of tryptophan from the digestive tract. The addition of supplementary leucine to the amino acid mixture, however, caused no further delay. 4. In rats prefed a leucine-excessive diet for 1 week [3H]tryptophan was absorbed at the same rate as in rats fed on a control diet. 5. The results indicate that competition between tryptophan and leucine for intestinal absorption did not cause lowering of hepatic NAD.
    [Show full text]
  • Electrochemical Studies of Dl-Leucine, L-Proline and L
    ELECTROCHEMICAL STUDIES OF DL -LEUCINE, 60 L-PROLINE AND L-TRYPTOPHAN AND THEIR INTERACTION WITH COPPER AND IRON 30 c b A) M. A. Jabbar, R. J. Mannan, S. Salauddin and B. µ a Rashid 0 Department of Chemistry, University of Dhaka, ( Current Dhaka-1000, Bangladesh -30 Introduction -60 In vitro study of the charge transfer reactions coupled -800 -400 0 400 800 with chemical reactions can give important indication of Potential vs. Ag/AgCl (mV) about actual biological processes occurring in human Fig.1. Comparison of the cyclic voltammogram of system. Understanding of such charge-transfer 5.0mM (a) DL -Leucine, (b) Cu-DL -Leucine ion and mechanism will help to determine the effectiveness of (c) [Fe-DL -Leucine] in 0.1M KCl solution at a Pt- nutrition, metabolism and treatment of various biological button electrode. Scan rates 50 mV/s. disorders. In the previous research, the redox behaviour of 40 various amino acids and biochemically important compounds and their charge transfer reaction and their b interaction of metal ions were studied [1,2]. In the present 20 ) a c research, the redox behavior and the charge transfer µΑ kinetics of DL -Leucine, L-Proline and L-Tryptophan in 0 the presence and absence of copper and iron will be investigated. Current ( -20 Experimental A computerized electrochemistry system developed by -40 -800 -400 0 400 800 Advanced Analytics, Virginia, USA, (Model-2040) Potential vs. Ag/AgCl (mV) consisting of three electrodes micro-cell with a saturated Ag/AgCl reference, a Pt-wire auxiliary and a pretreated Fig.2 . Comparison of the cyclic voltammogram of Pt-button working electrode is employed to investigate 5.0mM (a) L-Proline, (b) Cu-L-Proline and (c) Fe-L- Proline in 0.1M KCl solution at a Pt-button different amino acids and metal-amino acid systems.
    [Show full text]
  • Amino Acid Chemistry
    Handout 4 Amino Acid and Protein Chemistry ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES Amino Acid Chemistry I. Chemistry of amino acids A. General amino acid structure + HN3- 1. All amino acids are carboxylic acids, i.e., they have a –COOH group at the #1 carbon. 2. All amino acids contain an amino group at the #2 carbon (may amino acids have a second amino group). 3. All amino acids are zwitterions – they contain both positive and negative charges at physiological pH. II. Essential and nonessential amino acids A. Nonessential amino acids: can make the carbon skeleton 1. From glycolysis. 2. From the TCA cycle. B. Nonessential if it can be made from an essential amino acid. 1. Amino acid "sparing". 2. May still be essential under some conditions. C. Essential amino acids 1. Branched chain amino acids (isoleucine, leucine and valine) 2. Lysine 3. Methionine 4. Phenyalanine 5. Threonine 6. Tryptophan 1 Handout 4 Amino Acid and Protein Chemistry D. Essential during rapid growth or for optimal health 1. Arginine 2. Histidine E. Nonessential amino acids 1. Alanine (from pyruvate) 2. Aspartate, asparagine (from oxaloacetate) 3. Cysteine (from serine and methionine) 4. Glutamate, glutamine (from α-ketoglutarate) 5. Glycine (from serine) 6. Proline (from glutamate) 7. Serine (from 3-phosphoglycerate) 8. Tyrosine (from phenylalanine) E. Nonessential and not required for protein synthesis 1. Hydroxyproline (made postranslationally from proline) 2. Hydroxylysine (made postranslationally from lysine) III. Acidic, basic, polar, and hydrophobic amino acids A. Acidic amino acids: amino acids that can donate a hydrogen ion (proton) and thereby decrease pH in an aqueous solution 1.
    [Show full text]
  • Nucleotide Base Coding and Am1ino Acid Replacemients in Proteins* by Emil L
    VOL. 48, 1962 BIOCHEMISTRY: E. L. SAIITH 677 18 Britten, R. J., and R. B. Roberts, Science, 131, 32 (1960). '9 Crestfield, A. M., K. C. Smith, and F. WV. Allen, J. Biol. Chem., 216, 185 (1955). 20 Gamow, G., Nature, 173, 318 (1954). 21 Brenner, S., these PROCEEDINGS, 43, 687 (1957). 22 Nirenberg, M. WV., J. H. Matthaei, and 0. WV. Jones, unpublished data. 23 Crick, F. H. C., L. Barnett, S. Brenner, and R. J. Watts-Tobin, Nature, 192, 1227 (1961). 24 Levene, P. A., and R. S. Tipson, J. Biol. Ch-nn., 111, 313 (1935). 25 Gierer, A., and K. W. Mundry, Nature, 182, 1437 (1958). 2' Tsugita, A., and H. Fraenkel-Conrat, J. Mllot. Biol., in press. 27 Tsugita, A., and H. Fraenkel-Conrat, personal communication. 28 Wittmann, H. G., Naturwissenschaften, 48, 729 (1961). 29 Freese, E., in Structure and Function of Genetic Elements, Brookhaven Symposia in Biology, no. 12 (1959), p. 63. NUCLEOTIDE BASE CODING AND AM1INO ACID REPLACEMIENTS IN PROTEINS* BY EMIL L. SMITHt LABORATORY FOR STUDY OF HEREDITARY AND METABOLIC DISORDERS AND THE DEPARTMENTS OF BIOLOGICAL CHEMISTRY AND MEDICINE, UNIVERSITY OF UTAH COLLEGE OF MEDICINE Communicated by Severo Ochoa, February 14, 1962 The problem of which bases of messenger or template RNA' specify the coding of amino acids in proteins has been largely elucidated by the use of synthetic polyri- bonucleotides.2-7 For these triplet nucleotide compositions (Table 1), it is of in- terest to examine some of the presently known cases of amino acid substitutions in polypeptides or proteins of known structure.
    [Show full text]
  • Amino Acid Transport Pathways in the Small Intestine of the Neonatal Rat
    Pediat. Res. 6: 713-719 (1972) Amino acid neonate intestine transport, amino acid Amino Acid Transport Pathways in the Small Intestine of the Neonatal Rat J. F. FITZGERALD1431, S. REISER, AND P. A. CHRISTIANSEN Departments of Pediatrics, Medicine, and Biochemistry, and Gastrointestinal Research Laboratory, Indiana University School of Medicine and Veterans Administration Hospital, Indianapolis, Indiana, USA Extract The activity of amino acid transport pathways in the small intestine of the 2-day-old rat was investigated. Transport was determined by measuring the uptake of 1 mM con- centrations of various amino acids by intestinal segments after a 5- or 10-min incuba- tion and it was expressed as intracellular accumulation. The neutral amino acid transport pathway was well developed with intracellular accumulation values for leucine, isoleucine, valine, methionine, tryptophan, phenyl- alanine, tyrosine, and alanine ranging from 3.9-5.6 mM/5 min. The intracellular accumulation of the hydroxy-containing neutral amino acids threonine (essential) and serine (nonessential) were 2.7 mM/5 min, a value significantly lower than those of the other neutral amino acids. The accumulation of histidine was also well below the level for the other neutral amino acids (1.9 mM/5 min). The basic amino acid transport pathway was also operational with accumulation values for lysine, arginine and ornithine ranging from 1.7-2.0 mM/5 min. Accumulation of the essential amino acid lysine was not statistically different from that of nonessential ornithine. Ac- cumulation of aspartic and glutamic acid was only 0.24-0.28 mM/5 min indicating a very low activity of the acidic amino acid transport pathway.
    [Show full text]
  • Determination of Branched-Chain Keto Acids in Serum and Muscles Using High Performance Liquid Chromatography-Quadrupole Time-Of-Flight Mass Spectrometry
    molecules Article Determination of Branched-Chain Keto Acids in Serum and Muscles Using High Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry You Zhang, Bingjie Yin, Runxian Li and Pingli He * State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; [email protected] (Y.Z.); [email protected] (B.Y.); [email protected] (R.L.) * Correspondence: [email protected]; Tel.: +86-10-6273-3688 Received: 4 December 2017; Accepted: 8 January 2018; Published: 11 January 2018 Abstract: Branched-chain keto acids (BCKAs) are derivatives from the first step in the metabolism of branched-chain amino acids (BCAAs) and can provide important information on animal health and disease. Here, a simple, reliable and effective method was developed for the determination of three BCKAs (α-ketoisocaproate, α-keto-β-methylvalerate and α-ketoisovalerate) in serum and muscle samples using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS). The samples were extracted using methanol and separated on a 1.8 µm Eclipse Plus C18 column within 10 min. The mobile phase was 10 mmol L−1 ammonium acetate aqueous solution and acetonitrile. The results showed that recoveries for the three BCKAs ranged from 78.4% to 114.3% with relative standard deviation (RSD) less than 9.7%. The limit of quantitation (LOQ) were 0.06~0.23 µmol L−1 and 0.09~0.27 nmol g−1 for serum and muscle samples, respectively. The proposed method can be applied to the determination of three BCKAs in animal serum and muscle samples.
    [Show full text]
  • Utilization of Alpha-Ketoisocaproate for Protein Synthesis in Uremic Rats
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Kidney International, Vol. 30 (1986), pp. 891—894 Utilization of alpha-ketoisocaproate for protein synthesis in uremic rats KRIANG TUNGSANGA, CHANG W. KANG, and MACKENZIE WALSER Department of Pharmacology and Molecular Science, and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland U.S.A. Utilization of alpha-.ketoisocaproate for protein synthesis in uremic logues [1]. The reason for this was that studies of isolated rats. We have recently shown that the nutritional efficiency, R, ofperfused rat liver had shown that substantial fractions of each alpha—ketoisocaproate (KIC) as a substitute for leucine, defined as the ratio of the dose of leucine to the dose of KIC (on a leucine—free diet) BCKA were oxidized rather than transaminated [8]. for equal growth, can be evaluated isotopically: '4C-KIC and 3H-leucine Chawla, Stackhouse and Wadsworth [9] compared the are administered p.o.; six hours later, '4C/3H in the leucine of whole growth of rats fed aipha—ketoisocaproate (KIC) in place of body protein, divided by '4CPH in the injectate, gives a value indistin- leucine, and reported that four to five times as much KIC was guishable from R assessed in the same animals by growth experiments. To see how chronic uremia affects R, 11/12 nephrectomized rats and required to achieve equal growth. They defined nutritional sham—operated controls were fed a regular diet for 15 days and then efficiency of KIC as the ratio of the dose of leucine to the dose given these isotopes p.o.
    [Show full text]
  • The Effect of HMB Supplementation on Body Composition, Fitness
    Eur J Appl Physiol (2011) 111:2261–2269 DOI 10.1007/s00421-011-1855-x ORIGINAL ARTICLE The effect of HMB supplementation on body composition, fitness, hormonal and inflammatory mediators in elite adolescent volleyball players: a prospective randomized, double-blind, placebo-controlled study Shawn Portal • Zvi Zadik • Jonathan Rabinowitz • Ruty Pilz-Burstein • Dana Adler-Portal • Yoav Meckel • Dan M. Cooper • Alon Eliakim • Dan Nemet Received: 25 August 2010 / Accepted: 25 January 2011 / Published online: 16 February 2011 Ó Springer-Verlag 2011 Abstract The use of ergogenic nutritional supplements is led to a significant greater increase in FFM by skinfold becoming inseparable from competitive sports. b-Hydroxy- thickness (56.4 ± 10.2 to 56.3 ± 8.6 vs. 59.3 ± 11.3 to b-Methylbutyric acid (HMB) has recently been suggested 61.6 ± 11.3 kg in the control and HMB group, respec- to promote fat-free mass (FFM) and strength gains during tively, p \ 0.001). HMB led to a significant greater resistance training in adults. In this prospective random- increase in both dominant and non-dominant knee flexion ized, double-blind, placebo-controlled study, we studied isokinetic force/FFM, measured at fast (180°/sec) and slow the effect of HMB (3 g/day) supplementation on body (60°/sec) angle speeds, but had no significant effect on composition, muscle strength, anaerobic and aerobic knee extension and elbow flexion and extension. HMB led capacity, anabolic/catabolic hormones and inflammatory to a significant greater increase in peak and mean anaerobic mediators in elite, national team level adolescent volleyball power determined by the Wingate anaerobic test (peak players (13.5–18 years, 14 males, 14 females, Tanner stage power: 15.5 ± 1.6 to 16.2 ± 1.2 vs.
    [Show full text]
  • Plasma Concentrations and Intakes of Amino Acids in Male Meat-Eaters, fish-Eaters, Vegetarians and Vegans: a Cross-Sectional Analysis in the EPIC-Oxford Cohort
    European Journal of Clinical Nutrition (2016) 70, 306–312 OPEN © 2016 Macmillan Publishers Limited All rights reserved 0954-3007/16 www.nature.com/ejcn ORIGINAL ARTICLE Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort JA Schmidt1, S Rinaldi2, A Scalbert2, P Ferrari2, D Achaintre2, MJ Gunter3, PN Appleby1, TJ Key1 and RC Travis1 BACKGROUND/OBJECTIVES: We aimed to investigate the differences in plasma concentrations and in intakes of amino acids between male meat-eaters, fish-eaters, vegetarians and vegans in the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. SUBJECTS/METHODS: This cross-sectional analysis included 392 men, aged 30–49 years. Plasma amino acid concentrations were measured with a targeted metabolomic approach using mass spectrometry, and dietary intake was assessed using a food frequency questionnaire. Differences between diet groups in mean plasma concentrations and intakes of amino acids were examined using analysis of variance, controlling for potential confounding factors and multiple testing. RESULTS: In plasma, concentrations of 6 out of 21 amino acids varied significantly by diet group, with differences of − 13% to +16% between meat-eaters and vegans. Concentrations of methionine, tryptophan and tyrosine were highest in fish-eaters and vegetarians, followed by meat-eaters, and lowest in vegans. A broadly similar pattern was seen for lysine, whereas alanine concentration was highest in fish-eaters and lowest in meat-eaters. For glycine, vegans had the highest concentration and meat-eaters the lowest. Intakes of all 18 dietary amino acids differed by diet group; for the majority of these, intake was highest in meat-eaters followed by fish-eaters, then vegetarians and lowest in vegans (up to 47% lower than in meat-eaters).
    [Show full text]
  • Transfer of Β-Hydroxy-Β-Methylbutyrate from Sows to Their
    Wan et al. Journal of Animal Science and Biotechnology (2017) 8:2 DOI 10.1186/s40104-016-0132-6 RESEARCH Open Access Transfer of β-hydroxy-β-methylbutyrate from sows to their offspring and its impact on muscle fiber type transformation and performance in pigs Haifeng Wan†, Jiatao Zhu†, Caimei Wu†, Pan Zhou, Yong Shen, Yan Lin, Shengyu Xu, Lianqiang Che, Bin Feng, Jian Li, Zhengfeng Fang and De Wu* Abstract Background: Previous studies suggested that supplementation of lactating sows with β-hydroxy-β-methylbutyrate (HMB) could improve the performance of weaning pigs, but there were little information in the muscle fiber type transformation of the offspring and the subsequent performance in pigs from weaning through finishing in response to maternal HMB consumption. The purpose of this study was to determine the effect of supplementing lactating sows with HMB on skeletal muscle fiber type transformation and growth of the offspring during d 28 and 180 after birth. A total of 20 sows according to their body weight were divided into the control (CON, n = 10) or HMB groups (HMB, n = 10). Sows in the HMB group were supplemented with β-hydroxy-β-methylbutyrate calcium (HMB-Ca) 2 g /kg feed during d 1 to 27 of lactation. After weaning, 48 mixed sex piglets were blocked by sow treatment and fed standard diets for post-weaning, growing, finishing periods. Growth performance was recorded during d 28 to 180 after birth. Pigs were slaughtered on d 28 (n = 6/treatment) and 180 (n = 6/treatment) postnatal, and the longissimus dorsi (LD) was collected, respectively.
    [Show full text]
  • Chain Amino Acids in Pseudomonas Aeruginosa
    JOUtNAL OF BACTERIOLOGY, Mar. 1980, p. 1055-1063 Vol. 141, No. 3 0021-9193/80/03-1055/09$02.00/0 Purification and Properties of a Binding Protein for Branched- Chain Amino Acids in Pseudomonas aeruginosa TOSHIMITSU HOSHINO* AND MAKOTO KAGEYAMA Mitsubishi-Kasei Institute ofLife Sciences, Machida-shi, Tokyo 194, Japan A binding protein for branched-chain amino acids was purified to a homoge- neous state from shock fluid of Pseudomonas aeruginosa PML14. It was a monomeric protein with an apparent molecular weight of4.3 x 10' or 4.0 x 10' by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or gel filtration, re- spectively. The isoelectric point was determined to be pH 4.1 by electrofocusing. Amino acid analysis of the protein showed that aspartic acid, glutamic acid, glycine, and alanine were major components and that the protein contained only one residue each of tryptophan and cysteine per molecule. The binding protein contained no sugar. The binding activity of the protein was specific for the branched-chain amino acids. The protein also bound alanine and threonine with lower affinity. The dissociation constants of this protein for leucine, isoleucine, and valine were found to be 0.4, 0.3, and 0.5 !M, respectively. Mutants defective in the production of the binding protein were identified among the mutants deficient in a transport system for branched-chain amino acids (LIV-I). The revertants from these mutants to LIV-I-positive phenotype simultaneously re- covered normal levels of the binding protein. These findings suggest strongly the association of the binding protein with the LIV-I transport system.
    [Show full text]
  • 24Amino Acids, Peptides, and Proteins
    WADEMC24_1153-1199hr.qxp 16-12-2008 14:15 Page 1153 CHAPTER COOϪ a -h eli AMINO ACIDS, x ϩ PEPTIDES, AND NH3 PROTEINS Proteins are the most abundant organic molecules 24-1 in animals, playing important roles in all aspects of cell structure and function. Proteins are biopolymers of Introduction 24A-amino acids, so named because the amino group is bonded to the a carbon atom, next to the carbonyl group. The physical and chemical properties of a protein are determined by its constituent amino acids. The individual amino acid subunits are joined by amide linkages called peptide bonds. Figure 24-1 shows the general structure of an a-amino acid and a protein. α carbon atom O H2N CH C OH α-amino group R side chain an α-amino acid O O O O O H2N CH C OH H2N CH C OH H2N CH C OH H2N CH C OH H2N CH C OH CH3 CH2OH H CH2SH CH(CH3)2 alanine serine glycine cysteine valine several individual amino acids peptide bonds O O O O O NH CH C NH CH C NH CH C NH CH C NH CH C CH3 CH2OH H CH2SH CH(CH3)2 a short section of a protein a FIGURE 24-1 Structure of a general protein and its constituent amino acids. The amino acids are joined by amide linkages called peptide bonds. 1153 WADEMC24_1153-1199hr.qxp 16-12-2008 14:15 Page 1154 1154 CHAPTER 24 Amino Acids, Peptides, and Proteins TABLE 24-1 Examples of Protein Functions Class of Protein Example Function of Example structural proteins collagen, keratin strengthen tendons, skin, hair, nails enzymes DNA polymerase replicates and repairs DNA transport proteins hemoglobin transports O2 to the cells contractile proteins actin, myosin cause contraction of muscles protective proteins antibodies complex with foreign proteins hormones insulin regulates glucose metabolism toxins snake venoms incapacitate prey Proteins have an amazing range of structural and catalytic properties as a result of their varying amino acid composition.
    [Show full text]