Cryptocoryne Beckettii Thwaites Ex Department of Agriculture Trimen

Total Page:16

File Type:pdf, Size:1020Kb

Cryptocoryne Beckettii Thwaites Ex Department of Agriculture Trimen Weed Risk Assessment for United States Cryptocoryne beckettii Thwaites ex Department of Agriculture Trimen. (Araceae) – Beckett’s water trumpet Animal and Plant Health Inspection Service April 29, 2016 Version 1 Habit (left), root system (upper right), and dense patch (bottom right) of Cryptocoryne beckettii (source: David E. Lemke; Lemke, 2015). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Cryptocoryne beckettii Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use the PPQ weed risk assessment (WRA) process (PPQ, 2015) to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. The PPQ WRA process includes three analytical components that together describe the risk profile of a plant species (risk potential, uncertainty, and geographic potential; PPQ, 2015). At the core of the process is the predictive risk model that evaluates the baseline invasive/weed potential of a plant species using information related to its ability to establish, spread, and cause harm in natural, anthropogenic, and production systems (Koop et al., 2012). Because the predictive model is geographically and climatically neutral, it can be used to evaluate the risk of any plant species for the entire United States or for any area within it. We then use a stochastic simulation to evaluate how much the uncertainty associated with the risk analysis affects the outcomes from the predictive model. The simulation essentially evaluates what other risk scores might result if any answers in the predictive model might change. Finally, we use Geographic Information System (GIS) overlays to evaluate those areas of the United States that may be suitable for the establishment of the species. For a detailed description of the PPQ WRA process, please refer to the PPQ Weed Risk Assessment Guidelines (PPQ, 2015), which is available upon request. We emphasize that our WRA process is designed to estimate the baseline— or unmitigated—risk associated with a plant species. We use evidence from anywhere in the world and in any type of system (production, anthropogenic, or natural) for the assessment, which makes our process a very broad evaluation. This is appropriate for the types of actions considered by our agency (e.g., Federal regulation). Furthermore, risk assessment and risk management are distinctly different phases of pest risk analysis (e.g., IPPC, 2015). Although we may use evidence about existing or proposed control programs in the assessment, the ease or difficulty of control has no bearing on the risk potential for a species. That information could be considered during the risk management (decision making) process, which is not addressed in this document. Cryptocoryne beckettii Thwaites ex Trimen. – Beckett’s water trumpet Species Family: Araceae Ver. 1 April 29, 2016 1 Weed Risk Assessment for Cryptocoryne beckettii Information Synonyms: Cryptocoryne petchii Alston1 (The Plant List, 2015). Cryptocoryne beckettii is one of four species in the C. beckettii complex (Jacono, 2002; Reumer, 1984). Wunderlin and Hansen (2015) list this species (in addition to C. axelrodii, C. undulata, C. wendtii, and C. willisii) as a synonym of C. walkeri Schott., but other major taxonomic databases maintain it as a separate species (ITIS, 2015; NGRP, 2015; The Plant List, 2015). Consistent with these databases and the most recent treatment of Sri Lankan Cryptocoryne species (Jacobsen, 1976), we treat this taxon as C. beckettii. Common names: Beckett’s water trumpet (NRCS, 2015). Botanical description: Cryptocoryne beckettii is a perennial, rhizomatous aquatic herb occurring either as emerged or submerged plants (Mansor and Masnadi, 1994; Rosen, 2000). Leaf blades are ovate to narrowly ovate (about 9 x 1.5 cm), green on top and with reddish-brown coloration underneath (Rosen, 2000; Windeløv, 2004). The Sri Lankan Cryptocoryne species are relatively young as a group and have not completely differentiated (Reumer, 1984). Floral traits are needed to distinguish some members of the species complex (Jacono, 2002). Because plants rarely flower in cultivation, “positive identification of cryptocorynes is a constant problem for both the grower and consumer” (Kane et al., 1995). However, plant gibberellins can be used to promote flowering for identification (Kane et al., 1995). Initiation: PPQ received a market access request for C. beckettii for propagation from the Ministry of Food, Agriculture and Fisheries, the Danish Plant Directorate (MFAF, 2009). Because this species is not native to the United States (NGRP, 2015) and poses a risk to threatened and endangered species (Alexander et al., 2008), the PPQ Weeds Cross- Functional Working Group initiated this assessment. Foreign distribution: Cryptocoryne beckettii is native to Sri Lanka (NGRP, 2015; Reumer, 1984). It has been cultivated by aquarium enthusiasts for about 60 years (Windeløv, 2004). It is cultivated in Australia (Randall, 2007) and New Zealand (Champion and Clayton, 2001), and is imported to several European countries (Brunel, 2009), but we found no evidence that it has escaped in these areas. U.S. distribution and status: Cryptocoryne beckettii was first detected occurring outside of cultivation in the United States in 1993 in the San Marcos River in Texas (Bowles and Bowles., 2001). It is now naturalized in two counties in Texas (NRCS, 2015) and one in Florida (Jacono, 2002; Jacono, 2015; Kartesz, 2015). Because of the threat to threatened and endangered species in Texas (see Imp-N4 in App. A), “the San Marcos National Fish Hatchery and Technology Center, U.S. Fish and Wildlife Service (USFWS) initiated an effort to remove Beckett’s water trumpet from the upstream end of its range in the San Marcos River (SMR) to 1 Cryptocoryne petchii is the triploid form of C. beckettii (APC, 2015). Ver. 1 April 29, 2016 2 Weed Risk Assessment for Cryptocoryne beckettii create a larger buffer between Beckett’s water trumpet and Texas wild rice” (Alexander et al., 2008). Although the work was manually intensive, they successfully removed populations from one segment of the river using a dredge suction technique. Alexander et al. (2008) believe that the entire population can still be eradicated. Cryptocoryne beckettii is cultivated and sold in the United States (e.g., APC, 2015; eBay, 2015). It is one of the Cryptocoryne species reported to be regularly available in trade (APC, 2015; Kasselmann, 2003); however, it is not as common as other Cryptocoryne species (e.g., Anonymous, 2015). One European seller lists this species on eBay and specifically says they will ship it to the United States (eBay, 2015). WRA area2: Entire United States, including territories. 1. Cryptocoryne beckettii analysis Establishment/Spread Cryptocoryne beckettii is an aquatic plant that reproduces primarily through Potential vegetative means (Jacono, 2002). Like many other aquatics, plants readily fragment, and those fragments can establish new populations (Alexander et al., 2008; Jacono, 2002). This species readily grows in shady areas (Jacobsen, 1976) and can form dense patches through vegetative growth (Anonymous, 2012; Jacono, 2002). This species has demonstrated that it can establish and spread rapidly in one river in the United States (Rosen, 2000). During a 28-month study period, the number of individual colonies in that river increased from 11 to 63, and the total areal coverage increased from 171 to 646 m2. (Doyle, 2001). Although C. beckettii has been cultivated for 60 years, very little is known about its biology, which resulted in a high level of uncertainty for this risk element. Risk score = 11 Uncertainty index = 0.23 Impact Potential The relatively recent naturalization of C. beckettii in the United States (Rosen, 2000) is the first known establishment of this species beyond its native range. Since it has not been well studied, there is little information about its impacts. However, where it occurs in Texas, it has formed dense patches that exclude other species (Jacono, 2002; Tu, 2005) and will likely prevent the establishment of others (see image on cover page). Cryptocoryne beckettii occurs at water depths and flow velocities similar to those of the endangered Texas wild rice (Zizania texana; Alexander et al., 2008). Its threat to this and other threatened and endangered species prompted the U.S. Fish and Wildlife Service to control and eradicate this species from some portions of the San Marcos River in Texas (Alexander et al., 2008; Kleinsasser, 2013). As the species is better studied, additional impacts may emerge. We had an average amount of uncertainty for this risk element. 2 “WRA area” is the area in relation to which the weed risk assessment is conducted (definition modified from that for “PRA area”) (IPPC, 2012). Ver. 1 April 29, 2016 3 Weed Risk Assessment for Cryptocoryne beckettii Risk score = 1.9 Uncertainty index = 0.17 Geographic Potential Because there were no point-referenced localities for this species in the Geographic Information Facility Database (GBIF, 2015), and only a few herbarium records, we based this analysis on general reports of the distribution of C. beckettii and the distribution of the genus, which is limited to southeastern Asia. Using this approach, we estimate that about 16 percent of the United States is suitable for the establishment of C.
Recommended publications
  • 27April12acquatic Plants
    International Plant Protection Convention Protecting the world’s plant resources from pests 01 2012 ENG Aquatic plants their uses and risks Implementation Review and Support System Support and Review Implementation A review of the global status of aquatic plants Aquatic plants their uses and risks A review of the global status of aquatic plants Ryan M. Wersal, Ph.D. & John D. Madsen, Ph.D. i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of speciic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Ofice of Knowledge Exchange,
    [Show full text]
  • Invasive Alien Plants an Ecological Appraisal for the Indian Subcontinent
    Invasive Alien Plants An Ecological Appraisal for the Indian Subcontinent EDITED BY I.R. BHATT, J.S. SINGH, S.P. SINGH, R.S. TRIPATHI AND R.K. KOHL! 019eas Invasive Alien Plants An Ecological Appraisal for the Indian Subcontinent FSC ...wesc.org MIX Paper from responsible sources `FSC C013604 CABI INVASIVE SPECIES SERIES Invasive species are plants, animals or microorganisms not native to an ecosystem, whose introduction has threatened biodiversity, food security, health or economic development. Many ecosystems are affected by invasive species and they pose one of the biggest threats to biodiversity worldwide. Globalization through increased trade, transport, travel and tour- ism will inevitably increase the intentional or accidental introduction of organisms to new environments, and it is widely predicted that climate change will further increase the threat posed by invasive species. To help control and mitigate the effects of invasive species, scien- tists need access to information that not only provides an overview of and background to the field, but also keeps them up to date with the latest research findings. This series addresses all topics relating to invasive species, including biosecurity surveil- lance, mapping and modelling, economics of invasive species and species interactions in plant invasions. Aimed at researchers, upper-level students and policy makers, titles in the series provide international coverage of topics related to invasive species, including both a synthesis of facts and discussions of future research perspectives and possible solutions. Titles Available 1.Invasive Alien Plants : An Ecological Appraisal for the Indian Subcontinent Edited by J.R. Bhatt, J.S. Singh, R.S. Tripathi, S.P.
    [Show full text]
  • My Green Wet Thumb: Lagenandra
    My Green Wet Thumb: Lagenandra By Derek P.S. Tustin Over the years I have found that the average aquarist will go through several different stages. I am by no means a sociologist specializing in the aquari- um hobbyist, but from my own observations I think pretty much everyone goes through some variation of the following; Initial wide-spread interest and associated errors, A focusing of interest into one or two main areas, Competence in an area of interest, Mastery of an area of interest Expansion of interest into new areas while either maintaining the old interest, or focusing entirely on the new area of interest. As an aquatic horticulturist, there are actually very few entry points, or at least entry species, into the hobby. When I started out, I had access to sev- eral excellent aquarium stores with an impressive diversity of aquatic crea- tures, but a very limited selection of aquatic plants. Now, this was back be- fore I joined the Durham Region Aquarium Society (DRAS), so I didn’t have access to mentors or their specialized stock, and it was also before there were so many excellent on-line resources. Most of my initial experience came from the limited genera of plants that were available in local stores; Echinodorus, Cryptocoryne, Anubias and some Aponogeton. (Oh, there were numerous stem plants, but for some reason, I have never been that interested in those, being much more fascinated by rooted plants, and my interest in ponds and suitable plants came much later.) Over the past decade, I have grown the majority of commonly available plants from those genera, and now also have the benefit of being exposed to other skilled hobbyists and resources offered through DRAS.
    [Show full text]
  • Notes on Cryptocoryne
    Notes on Cryptocoryne BY T. Petch, B.A., B.Sc. WITH FOUR PLATES The genus Cryptocoryne (Araceae) was established by Fischer for the reception of two Indian species, Cryptocoryne spiralis and Crypto- coryne ciliata, which had been described under Ambrosinia by Roxburgh. Additional species were described by Roxburgh, Schott, and other botanists, while in Beccari, Malesia, Engler described eleven new species from Borneo and gave a conspectus of twenty-four known species. In Flora British India, Hooker enumerated sixteen species, and in Flora of Ceylon, five species. The total number of species is now over thirty, confined to the Eastern Tropics. For our knowledge of the structure of the flower we are indebted almost entirely to Griffith, who recorded the results of his examination of fresh specimens of Cryptocoryne ciliata in Trans. Linn. Soc., XX, pp. 263-276. The spadix is small, and it is not easy to determine the details of its structure from dried specimens. Consequently, very little has been added to Griffith's account, and a detailed examination of the living flower is still lacking in the case of the majority of the alleged species. In Ceylon, Cryptocoryne has been considered very rare. Crypto- coryne Thwaitesii Schott, hitherto the best-known species, occurs in the wet low-country in the south-west of the Island. C. Nevillii Trimen was described from a single collection made by Nevill in the Eastern Province. C. Beckettii Thwaites was collected in 1865 in Matale East, and there are two subsequent collections assigned to this species in Herb., Peradeniya. The record of C.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Aquarium Plants
    Aquarium Plants Kingdom: Plantae Conditions for Customer Ownership We hold permits allowing us to transport these organisms. To access permit conditions, click here. Never purchase living specimens without having a disposition strategy in place. Shipment of aquatic plants is prohibited in Puerto Rico. Shipment of Cabomba is restricted in CA, CT, MA, ME, VT, and WA. In all other cases, the USDA does not require any special permits to receive aquatic plants. However, in order to continue to protect our environment, you must house your aquatic plants in an aquarium. Under no circum- stances should you release your plants into the wild. Primary Hazard Considerations Always wash your hands thoroughly before and after you handle your aquatic plants, or anything it has touched. Availability Aquatic plants are generally available year round, and can be found in freshwater lakes and ponds. They are collected, so shortages may occur. The aquatic plants come packaged in plastic bags. Once received, open package and, using tap water, gently rinse away any debris or broken-off pieces. Some plants come in jars; remove lid and place in tank. Your plants do not need to be acclimated. Aquarium Needs Habitat: • Water from the tap in most cases contains chlorine, which can be detrimental to the health of your plants and aquatic animals. De-chlorinate your water by using a commercial chemical designed to do so, such as Ammonia/Chlorine Detoxifier, or by leaving your water out in an open container for 24–48 hours. Tropical plants need temperatures ranging from 66–77°F. For an aquarium to function well, a Filtration System 21 W 3535 is needed.
    [Show full text]
  • Illustrated Flora of East Texas Illustrated Flora of East Texas
    ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D.
    [Show full text]
  • Pharmacognostical Standardisation of Lagenandra Toxicaria Dalz
    Malaysian Journal of Science 33(2): 163-175(2014) PHARMACOGNOSTICAL STANDARDISATION OF LAGENANDRA TOXICARIA DALZ P Annie Sulochana Selvakumari Botany, St. John’s College, Palayamkottai, Tamil Nadu, 62002, India. *Corresponding Author: [email protected] ABSTRACT Lagenandra toxicaria Dalz. of Araceae is endemic to South India. It is a semi aquatic herb growing gregariously in semi evergreen forests. By tradition rhizomes are considered carminative, tonic, diuretic and used in bilious complaints. The rhizome extract is said to have insecticidal and antimicrobial properties. Effective utilization of any information requires its systematic evaluation. Pharmacognosy is an important link between pharmacology and medicinal chemistry. Pharmacognostical standards are prepared by systematic study of the drug through morphological and anatomical descriptions of plants, pharmacognostical standards such as structural standards, analytical standards, physical constants and phytochemical analyses. The results of the present investigation provide dependable diagnostic features of the vegetative organs of the plants for the identity of the drug in entire and in fragmentary conditions. (Keywords: Lagenandra toxicaria Dalz., pharmacognosy, anatomical characters, physichochemical constants, phytochemical screening ) INTRODUCTION There are about 12 species of Lagenandra, mainly in concentration (0.5µl/ml) of the oil in water totally Sri Lanka [1], one species in North East India and four inhibited the germination of seeds (Cicer arietinum, species in South India [2]. Lagenandra toxicaria Oryza sativa and Vigna radiata), in the evaluation of Dalz. of Araceae is endemic to peninsular India [3]. It germicidal activity carried out by the method of Rao is a semi aquatic herb, found in marshes and along and Singh [11]. The methanol extract of L.
    [Show full text]
  • REVISIE VAN HET GENUS LAGENANDRA DALZELL (ARACEAE) (With Summary
    582.547.17 MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN • NEDERLAND • 78-13 (1978) REVISIE VAN HET GENUS LAGENANDRA DALZELL (ARACEAE) (with summary. Latin descriptions and key) H. CD. DE WIT Laboratorium voor Plantensystematiek en -geografie. Landbouwhogeschool. Wageningen. Nederland SOMATIC CHROMOSOME NUMBERS IN LAGENANDRA DALZELL {met samenvatting) J. C. ARENDS and F. M. VAN DER LAAN Laboratorium voor Plantensystematiek en -geografie, Landbouwhogeschool, Wageningen, Nederland Ontvangen 30-11-1977 Publikatiedatum 1-III-1978 H. VEENMAN EN ZONEN B.V.-WAGENINGEN - 1978 INHOUD REVISIE VAN HET GENUS LAGENANDRA DALZELL . 5 HISTORIE 5 BESCHRIJVINGEN DER SOORTEN 9 Lagenandra ovata (L.)THWAITE S 9 - toxicaria DALZELL 12 - lancifolia (SCHOTT) THWAITES 17 - koenigii (SCHOTT) THWAITES 20 - thwaitesii ENGLER 22 - insignis TRIMEN 27 - meeboldii (ENGLER) C. E. C. FISCHER 29 - undulata SASTRY 32 - bogneri DE WIT,sp. nov 33 - schulzei DE WIT,sp. nov 35 - erosa DE WIT. sp. nov 36 - blassii DE WIT, sp. nov 38 SLEUTEL TOT DE SOORTEN VAN LAGENANDRA 41 SUMMARY 42 Lagenandra bogneri DE WIT. sp. nov.(descr. ) 42 - schulzei DE WIT,sp. nov. (descr.) 43 - erosa DE WIT, sp. nov. (descr.) 43 - blassii DE WIT,sp. nov. (descr.) 43 Key toth especie s ofLagenandra 44 Acknowledgements 45 LITERATUUR 45 SOMATIC CHROMOSOME NUMBERS INLAGENANDR A 46 Meded. Landbouwhogeschool Wageningen 78-13 (1978) Revisie van het genus Lagenandra Dalzell (Araceae) H. C. D. DE WIT HISTORIE HENDRIK ADRIAAN VAN RHEEDE TOT DRAAKESTEIN. in 1637 geboren in het kasteel Draakestein bij de Vuurse.wa sva n 1669-1676gouverneu r van Malabar namens de O.-Indische Compagnie. Hij liet het eerste grote, geïllustreerde botanische boek samenstellen over zijn district: Hortus Malabaricus.
    [Show full text]
  • Downloaded from the WORLDCLIM Database (Hijmans Et Al
    Drivers of Macrophyte Assemblages in South African Freshwater Systems THESIS Submitted in fulfilment of the requirements for the degree DOCTOR OF PHILOSOPHY at Rhodes University By Grant Douglas Martin January 2013 i Abstract Abstract Potentially damaging submerged invasive freshwater macrophytes have been identified in South African freshwater systems, but have received less attention than their floating counterparts. To ascertain the changes and effects that these species may have on macrophyte ecology, an understanding of the drivers of macrophyte assemblages is essential. The aims of this thesis were to investigate select abiotic and biotic factors driving introduction, establishment and spread of submerged macrophytes in South Africa. Surveys on the status of submerged plant species in South Africa were conducted to find out the distribution and diversity of the species present, imported to, and traded in South Africa. Numerous submerged indigenous and invasive macrophyte locality records were collected during field surveys, of which many were first time records. Pet stores and aquarist trading activities were identified as potential vectors for the spread of submerged macrophytes through online surveys and personal interviews. These results highlighted the potential these species have for continuing to enter, and spread within South African water bodies. Maximum Entropy (MAXENT) is a general-purpose method used to predict or infer distributions from incomplete information, and was used here to predict areas suitable for the establishment of five of these invasive macrophytes. Many systems throughout South Africa, particularly those in the subtropical coastal regions, were found to be climatically suitable for the establishment of Elodea canadensis Michx., Egeria densa Planch., Hydrilla verticillata (L.f.) Royle (all Hydrocharitaceae), Myriophyllum spicatum L.
    [Show full text]
  • Natural Hybridization – Recombination – an Ever-Ongoing Process
    THAI FOREST BULL., BOT. 47(1): 19–28. 2019. DOI https://doi.org/10.20531/tfb.2019.47.1.05 Natural hybridization – recombination – an ever-ongoing process NIELS JACOBSEN1,* & MARIAN ØRGAARD1 ABSTRACT Exemplified by studies of the SE Asian genusCryptocoryne (Araceae) we provide evidence that: 1) interspecific hybridization is an ever- ongoing process, and introgression and gene exchange takes place whenever physically possible throughout the region; 2) artificial hybridization experiments confirm that wide crosses are possible in a large number of cases; 3) rivers and streams provide numerous, diverse habitats for Cryptocoryne diaspores to settle in; 4) the changes in habitats caused by recurrent glaciations resulting in numerous splitting and merging of populations facilitates hybridization and segregation of subsequent generations; 5) hybridization is a major driving element in speciation; 6) populations are the units and stepping stones in evolution – not the species. KEYWORDS: Araceae, Chromosome numbers, Cryptocoryne, hybridization, evolution. Accepted for publication: 11 January 2019. Published online: 14 February 2019 INTRODUCTION Chiang Khan, Loei Province, hosts a number of morphologically distinct but genetically closely The completion of Cryptocoryne Fisch. ex related hybrids (Idei et al., 2017). Wydler for the Araceae volume for Flora of Thailand stands as a milestone after several years of research in this biological unique and complex genus (Boyce THE GENUS CRYPTOCORYNE et al., 2012). Numerous cultivation experiments, The genus
    [Show full text]
  • History and Current Status of Systematic Research with Araceae
    HISTORY AND CURRENT STATUS OF SYSTEMATIC RESEARCH WITH ARACEAE Thomas B. Croat Missouri Botanical Garden P. O. Box 299 St. Louis, MO 63166 U.S.A. Note: This paper, originally published in Aroideana Vol. 21, pp. 26–145 in 1998, is periodically updated onto the IAS web page with current additions. Any mistakes, proposed changes, or new publications that deal with the systematics of Araceae should be brought to my attention. Mail to me at the address listed above, or e-mail me at [email protected]. Last revised November 2004 INTRODUCTION The history of systematic work with Araceae has been previously covered by Nicolson (1987b), and was the subject of a chapter in the Genera of Araceae by Mayo, Bogner & Boyce (1997) and in Curtis's Botanical Magazine new series (Mayo et al., 1995). In addition to covering many of the principal players in the field of aroid research, Nicolson's paper dealt with the evolution of family concepts and gave a comparison of the then current modern systems of classification. The papers by Mayo, Bogner and Boyce were more comprehensive in scope than that of Nicolson, but still did not cover in great detail many of the participants in Araceae research. In contrast, this paper will cover all systematic and floristic work that deals with Araceae, which is known to me. It will not, in general, deal with agronomic papers on Araceae such as the rich literature on taro and its cultivation, nor will it deal with smaller papers of a technical nature or those dealing with pollination biology.
    [Show full text]