Induction of Direct Shoot Organogenesis from Shoot Tip Explants of an Ornamental Aquatic Plant, Cryptocoryne Wendtii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Notes on Cryptocoryne
Notes on Cryptocoryne BY T. Petch, B.A., B.Sc. WITH FOUR PLATES The genus Cryptocoryne (Araceae) was established by Fischer for the reception of two Indian species, Cryptocoryne spiralis and Crypto- coryne ciliata, which had been described under Ambrosinia by Roxburgh. Additional species were described by Roxburgh, Schott, and other botanists, while in Beccari, Malesia, Engler described eleven new species from Borneo and gave a conspectus of twenty-four known species. In Flora British India, Hooker enumerated sixteen species, and in Flora of Ceylon, five species. The total number of species is now over thirty, confined to the Eastern Tropics. For our knowledge of the structure of the flower we are indebted almost entirely to Griffith, who recorded the results of his examination of fresh specimens of Cryptocoryne ciliata in Trans. Linn. Soc., XX, pp. 263-276. The spadix is small, and it is not easy to determine the details of its structure from dried specimens. Consequently, very little has been added to Griffith's account, and a detailed examination of the living flower is still lacking in the case of the majority of the alleged species. In Ceylon, Cryptocoryne has been considered very rare. Crypto- coryne Thwaitesii Schott, hitherto the best-known species, occurs in the wet low-country in the south-west of the Island. C. Nevillii Trimen was described from a single collection made by Nevill in the Eastern Province. C. Beckettii Thwaites was collected in 1865 in Matale East, and there are two subsequent collections assigned to this species in Herb., Peradeniya. The record of C. -
Aquarium Plants
Aquarium Plants Kingdom: Plantae Conditions for Customer Ownership We hold permits allowing us to transport these organisms. To access permit conditions, click here. Never purchase living specimens without having a disposition strategy in place. Shipment of aquatic plants is prohibited in Puerto Rico. Shipment of Cabomba is restricted in CA, CT, MA, ME, VT, and WA. In all other cases, the USDA does not require any special permits to receive aquatic plants. However, in order to continue to protect our environment, you must house your aquatic plants in an aquarium. Under no circum- stances should you release your plants into the wild. Primary Hazard Considerations Always wash your hands thoroughly before and after you handle your aquatic plants, or anything it has touched. Availability Aquatic plants are generally available year round, and can be found in freshwater lakes and ponds. They are collected, so shortages may occur. The aquatic plants come packaged in plastic bags. Once received, open package and, using tap water, gently rinse away any debris or broken-off pieces. Some plants come in jars; remove lid and place in tank. Your plants do not need to be acclimated. Aquarium Needs Habitat: • Water from the tap in most cases contains chlorine, which can be detrimental to the health of your plants and aquatic animals. De-chlorinate your water by using a commercial chemical designed to do so, such as Ammonia/Chlorine Detoxifier, or by leaving your water out in an open container for 24–48 hours. Tropical plants need temperatures ranging from 66–77°F. For an aquarium to function well, a Filtration System 21 W 3535 is needed. -
Illustrated Flora of East Texas Illustrated Flora of East Texas
ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D. -
Downloaded from the WORLDCLIM Database (Hijmans Et Al
Drivers of Macrophyte Assemblages in South African Freshwater Systems THESIS Submitted in fulfilment of the requirements for the degree DOCTOR OF PHILOSOPHY at Rhodes University By Grant Douglas Martin January 2013 i Abstract Abstract Potentially damaging submerged invasive freshwater macrophytes have been identified in South African freshwater systems, but have received less attention than their floating counterparts. To ascertain the changes and effects that these species may have on macrophyte ecology, an understanding of the drivers of macrophyte assemblages is essential. The aims of this thesis were to investigate select abiotic and biotic factors driving introduction, establishment and spread of submerged macrophytes in South Africa. Surveys on the status of submerged plant species in South Africa were conducted to find out the distribution and diversity of the species present, imported to, and traded in South Africa. Numerous submerged indigenous and invasive macrophyte locality records were collected during field surveys, of which many were first time records. Pet stores and aquarist trading activities were identified as potential vectors for the spread of submerged macrophytes through online surveys and personal interviews. These results highlighted the potential these species have for continuing to enter, and spread within South African water bodies. Maximum Entropy (MAXENT) is a general-purpose method used to predict or infer distributions from incomplete information, and was used here to predict areas suitable for the establishment of five of these invasive macrophytes. Many systems throughout South Africa, particularly those in the subtropical coastal regions, were found to be climatically suitable for the establishment of Elodea canadensis Michx., Egeria densa Planch., Hydrilla verticillata (L.f.) Royle (all Hydrocharitaceae), Myriophyllum spicatum L. -
History and Current Status of Systematic Research with Araceae
HISTORY AND CURRENT STATUS OF SYSTEMATIC RESEARCH WITH ARACEAE Thomas B. Croat Missouri Botanical Garden P. O. Box 299 St. Louis, MO 63166 U.S.A. Note: This paper, originally published in Aroideana Vol. 21, pp. 26–145 in 1998, is periodically updated onto the IAS web page with current additions. Any mistakes, proposed changes, or new publications that deal with the systematics of Araceae should be brought to my attention. Mail to me at the address listed above, or e-mail me at [email protected]. Last revised November 2004 INTRODUCTION The history of systematic work with Araceae has been previously covered by Nicolson (1987b), and was the subject of a chapter in the Genera of Araceae by Mayo, Bogner & Boyce (1997) and in Curtis's Botanical Magazine new series (Mayo et al., 1995). In addition to covering many of the principal players in the field of aroid research, Nicolson's paper dealt with the evolution of family concepts and gave a comparison of the then current modern systems of classification. The papers by Mayo, Bogner and Boyce were more comprehensive in scope than that of Nicolson, but still did not cover in great detail many of the participants in Araceae research. In contrast, this paper will cover all systematic and floristic work that deals with Araceae, which is known to me. It will not, in general, deal with agronomic papers on Araceae such as the rich literature on taro and its cultivation, nor will it deal with smaller papers of a technical nature or those dealing with pollination biology. -
NOTES Suction Dredge Removal of an Invasive Macrophyte from a Spring-Fed River in Central Texas, USA
J. Aquat. Plant Manage. 46: 184-185 NOTES Suction Dredge Removal of an Invasive Macrophyte From a Spring-fed River in Central Texas, USA MARA L. ALEXANDER1, R. D. DOYLE2 AND P. POWER3 INTRODUCTION mented Beckett’s water trumpet covering 1951 m2 in the low- er 2.9 km of the upper SMR. The majority of colonies In 1996, Beckett’s water trumpet (Cryptocoryne beckettii) was mapped in 2005 was found at shallow depths (between 30 found growing in the upper San Marcos River (SMR), locat- and 120 cm) and in areas of rapidly flowing water (Michael ed in Hays County, Texas, USA (Rosen 2000). The SMR is Robertson, BIO-WEST, Inc., pers. comm.). This preference spring-fed and is home to numerous endangered and threat- for shallow, rapidly flowing areas of the river makes Beckett’s ened species, including Texas wild rice (Zizania texana), Tex- water trumpet a potentially serious threat to the endangered as blind salamander (Eurycea rathbuni), San Marcos Texas wild rice in the SMR (Power 1996, Poole and Bowles salamander (Eurycea nana), fountain darter (Etheostoma fonti- 1999). While the introduction of any aggressive, non-native cola), Comal Springs riffle beetle (Heterelmis comalensis) and species is a concern, Beckett’s water trumpet provides an ex- the San Marcos gambusia (Gambusia georgei) now thought to tra threat because it grows in the same habitat conditions as be extinct. Any changes to these species’ habitats may prove the endangered Texas wild rice and has invaded a portion of detrimental to their existence. Texas wild rice’s critical habitat. Fortunately, the growth of Beckett’s water trumpet is in the Araceae family native to the exotic species was downstream of Texas wild rice current Sri Lanka (Jacobsen 1977). -
Sucul Ortamlarda Doğal Gderm Yöntemler Le
YILDIZ TEKN İK ÜN İVERS İTES İ FEN B İLİMLER İ ENST İTÜSÜ SUCUL ORTAMLARDA DO ĞAL G İDER İM YÖNTEMLER İ İLE METALLERDEK İ DE ĞİŞİ KL İĞİ N ARA ŞTIRILMASI Biyolog Zehra ŞAPÇI ZENG İN FBE Çevre Mühendisli ği Anabilim Dalı Çevre Mühendisli ği Programında Hazırlanan DOKTORA TEZ İ Tez Savunma Tarihi : 17 Eylül 2008 Tez Danı şmanı : Prof. Dr. E. Beyza ÜSTÜN (YTÜ) Jüri Üyeleri : Prof. Dr. Ay şen ERD İNÇLER (BÜ) : Prof. Dr. BAHAR İNCE (BÜ) : Prof. Dr. M. Talha GÖNÜLLÜ (YTÜ) : Yrd. Doç. Dr. Süleyman ŞAKAR (YTÜ) i İSTANBUL, 2008 İÇİNDEK İLER Sayfa KISALTMA L İSTES İ........................................................................................................... vi ŞEK İL L İSTES İ................................................................................................................... vii ÇİZELGE L İSTES İ ............................................................................................................ xiii İLİŞ Kİ L İSTES İ .................................................................................................................. xv ÖZET ................................................................................................................................. xvi ABSTRACT ...................................................................................................................... xvii 1. GİRİŞ .................................................................................................................. 1 1.1 Çalı şmanın Amacı ............................................................................................... -
Structural Aspects of the Vegetative Oegans of Cryptocoryne Wendtii De Wit
Analele Universităţii din Craiova, seria Agricultură – Montanologie – Cadastru (Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series)Vol. XLVII 2017 STRUCTURAL ASPECTS OF THE VEGETATIVE OEGANS OF CRYPTOCORYNE WENDTII DE WIT. (ARACEAE) RODICA BERCU Faculty of Natural and Agricultural Sciences,”Ovidius” University, Constantza University Alley, No. 1, B, 900470, Constantza E-mail: [email protected] Key words: anatomy, aquatic plants, structure, vegetative organs, Cryptocorynewendtii ABSTRACT The paper presents structural aspects of the vegetative organs (adventitious root, stem and leaf) of a monocot herb, native to Sri Lanka and Thailand, namely Cryptocorynewendtii de Wit. It is a green variety of Cryptocorynewendtii, growing both submerged and emerged in its native regions. In our country the plant is known as an aquarium plant. The material fixation and processing was done according to the usual protocol of the Vegetal Morphology and Anatomy Laboratory belonging to the Natural Sciences Department of the our faculty. The adventitious root has a primary monocot structure with small intercellular spaces. The short stem vascular system consists of amphivasal bundles to the center and fewcollateral bundles to periphery.The petiole exhibits epidermis with regularlly arranged cutinized cells, without intercellular spaces, covered by a thik cuticle and poor developed stele vascular system. The leaf mesophyll is homogenous (isobilateral) type, with small intercellular spaces and a poor developed midrib collateral bundle with few conductive elements. The mechanical tissues almost lack. The petiole and blade have sclerenchyma groups of cells bellow the epidermis and for the blade to the lower epidermis. INTRODUCTION CryptocoryneFisch. ex Widler, known as water trumpet, is a genus of about 58-60 species, belonging to Araceae family. -
In Vitro Propagation of Cryptocoryne Ferruginea Engler
Faculty of Resource Science and Technology IN VITRO PROPAGATION OF CRYPTOCORYNE FERRUGINEA ENGLER CHEN MEI YIN Bachelor of Science with Honours (Plant Resource Science and Management) 2012 IN VITRO PROPAGATION OF CRYPTOCORYNE FERRUGINEA ENGLER CHEN MEI YIN This project is submitted in partial fulfilment of the requirements for the Degree of Bachelor of Science with Honours (Plant Resource Science and Management) Faculty of Resource Science & Technology UNIVERSITI MALAYSIA SARAWAK 2012 i APPROVAL SHEET Name of candidate: Chen Mei Yin Title of dissertation: In vitro propagation of Cryptocoryne ferruginea Engler Prof. Dr. Hamsawi Sani Supervisor Dr. Siti Rubiah Coordinator Plant Resource Science and Management Programme Department of Plant Science and Environmental Ecology Faculty of Resource Science and Technology ii UNIVERSITI MALAYSIA SAWARAK Grade: _____________ Please tick () Final Year Project Report Masters PhD DECLARATION OF ORIGINAL WORK This declaration is made on the 29 of June 2012. Student’s Declaration: I, Chen Mei Yin (23282) of Faculty of Resource Science and Technology hereby declare that the work entitled, In vitro Propagation of Cryptocoryne ferruginea Engler is my original work. I have not copied from any other students’ work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person. Chen Mei Yin (23282) 29 June 2012 Supervisor’s Declaration: I, Prof. Dr. Hamsawi bin Sani hereby certifies that the work entitled, In vitro Propagation of Cryptocoryne ferruginea Engler was prepared by the above named student, and was submitted to the “FACULTY” as a *partial/full fulfilment for the conferment of Bachelor of Science with Honours (Plant Resource Science and Management), and the aforementioned work, to the best of my knowledge, is the said student’s work Received for examination by: _____________________ Date: 29 June 2012 (Prof. -
Technical Note Cryptocoryne Wendtii Can Successfully Be Grown in River
Sri Lanka J. Aquat. Sci. 21(1) (2016): 67-71 Technical Note Cryptocoryne wendtii can successfully be grown in river sand enriched with nutrients B.V.A.S.M. Bambaranda1* and S.E. Peiris2 1Faculty of Animal Science and Export Agricultue, Uva Wellassa University of Sri Lanka, Badulla, Sri Lanka 2Faculty of Agriculture, University of Peradeniya, Sri Lanka *Corresponding Author: [email protected] Abstract Cryptocoryne wendtii is commonly used for aquaria and water gardens and hence is an economically important aquatic plant with a high demand in local and export markets. There are fifty species of genus Cryptocoryne out of which fourteen species including C. wendtii are endemic to Sri Lanka. Although Sri Lanka exports around 300 aquatic plants, exportation of endemic and threatened species collected from the wild is prohibited, but the cultivated plants. C. wendtii (‘Brown’) shows poor growth when cultivated in common soil which is used for normal propagation of other ornamental aquatic plants. Hence, this study was undertaken to find an effective substratum for C. wendtii, which is important for aquatic plant industry. C. wendtii was grown in five different media prepared with top soil and river sand in different proportions, both under emerged and submerged conditions. Results were analyzed using one-way analysis of variance. Plants grown in river sand had the highest dry weight gain and percentage survival compared to plants grown in top soil and river sand media prepared according to 1:1, 1:2, 1:3 ratios irrespective of either they were grown emerged or submerged, demonstrating that river sand enriched with commercially available fertilizer is the best medium to grow C. -
Invasive Aquatic Plants and the Aquarium and Ornamental Pond Industries Shakira Stephanie Elaine Azan
Ryerson University Digital Commons @ Ryerson Theses and dissertations 1-1-2011 Invasive aquatic plants and the aquarium and ornamental pond industries Shakira Stephanie Elaine Azan Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations Part of the Plant Sciences Commons Recommended Citation Azan, Shakira Stephanie Elaine, "Invasive aquatic plants and the aquarium and ornamental pond industries" (2011). Theses and dissertations. Paper 818. This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please contact [email protected]. INVASIVE AQUATIC PLANTS AND THE AQUARIUM AND ORNAMENTAL POND INDUSTRIES by Shakira Stephanie Elaine Azan Master of Philosophy, University of the West Indies, Mona Campus, Jamaica, 2002 Bachelor of Science (Hons.), University of the West Indies, Mona Campus, Jamaica, 1997 A thesis presented to Ryerson University in partial fulfilment of the requirements for the degree of Master of Applied Science in the Program of Environmental Applied Science and Management Toronto, Ontario, Canada, 2011 ©Shakira Azan 2011 AUTHOR’S DECLARATION I hereby declare that I am the sole author of this thesis. I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research. ........................................................................................ I further authorize -
Enhancement of a Three-Kilometer Segment of the San Marcos River and Eradication of the Invasive Aquatic Plant Cryptocoryne Beckettii
Section 6 Revised Final Report 4/7/2006 Grant Title: Enhancement of a three-kilometer segment of the San Marcos River and eradication of the invasive aquatic plant Cryptocoryne beckettii TPWD Abbreviated Title Plant Removal SM River (E45) Grant #: E-45 Project #: WER01 Contract #: 129861 Principle Investigator: Dr. Robert Doyle Baylor University Director, Center for Reservoir and Aquatic Systems Research One Bear Place, Box 97388 Waco, TX 76798 254-710-2911 [email protected] Research and Project Collaborator Ms. Paula Power & Dr. Tom Brandt San Marcos National Fish Hatchery and Technology Center San Marcos, TX. Reporting Period: November 1 2003- 31 August 2005 Section 6 Final Report- Revised. R. Doyle- Grant E-45 (4/7/2006) I. ABSTRACT Efforts have continued on the lower San Marcos River to eradicate the invasive exotic aquatic plant Cryptocoryne beckettii and to re-establish desirable native plants to provide habitat and cover for fish and invertebrate species. During the 2002-2003 dredging operations were initiated under other funding to remove C. beckettii from San Marcos River. Prior to the initiation of the Section 6 project, approximately 132 m2 of the exotic species was removed by human-operated dredging efforts. The Section 6 Project provided funds for continuing the dredge removal operations during the fall of 2003 and spring –summer 2004. During the Section 6 project period, approximately 515 additional m2 of C. beckettii were removed from the section of the San Marcos River downriver of the “powerline” and in the vicinity of the San Marcos Waste Water Treatment Plant. This effort was accomplished by use of a suction dredge operated for 62 days by paid field assistants.