Downloaded from the WORLDCLIM Database (Hijmans Et Al

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from the WORLDCLIM Database (Hijmans Et Al Drivers of Macrophyte Assemblages in South African Freshwater Systems THESIS Submitted in fulfilment of the requirements for the degree DOCTOR OF PHILOSOPHY at Rhodes University By Grant Douglas Martin January 2013 i Abstract Abstract Potentially damaging submerged invasive freshwater macrophytes have been identified in South African freshwater systems, but have received less attention than their floating counterparts. To ascertain the changes and effects that these species may have on macrophyte ecology, an understanding of the drivers of macrophyte assemblages is essential. The aims of this thesis were to investigate select abiotic and biotic factors driving introduction, establishment and spread of submerged macrophytes in South Africa. Surveys on the status of submerged plant species in South Africa were conducted to find out the distribution and diversity of the species present, imported to, and traded in South Africa. Numerous submerged indigenous and invasive macrophyte locality records were collected during field surveys, of which many were first time records. Pet stores and aquarist trading activities were identified as potential vectors for the spread of submerged macrophytes through online surveys and personal interviews. These results highlighted the potential these species have for continuing to enter, and spread within South African water bodies. Maximum Entropy (MAXENT) is a general-purpose method used to predict or infer distributions from incomplete information, and was used here to predict areas suitable for the establishment of five of these invasive macrophytes. Many systems throughout South Africa, particularly those in the subtropical coastal regions, were found to be climatically suitable for the establishment of Elodea canadensis Michx., Egeria densa Planch., Hydrilla verticillata (L.f.) Royle (all Hydrocharitaceae), Myriophyllum spicatum L. (Haloragaceae), and Cabomba caroliniana Gray (Cabombaceae). i Abstract Despite the high probability of invasion, facilitated by vectors and suitable climate, South Africa’s rich indigenous submerged aquatic flora may be preventing the establishment of these submerged invasive species. Studies on the competitive interactions between a common indigenous submerged macrophytes, Lagarosiphon major (Roxb.) (Hydrocharitaceae) and M. spicatum, an invasive native to Eurasia, were conducted to ascertain which conditions influence competitive superiority. High sediment nutrient conditions significantly increased the growth rate and competitive ability of both species, while clay sediments significantly increased the competitive ability of L. major over M. spicatum, but sandy sediments improved the competitive ability of M. spicatum. These results highlighted the dynamic changes in competition between submerged species driven by abiotic factors, but did not take into consideration the effect that herbivory, a biotic factor, could have on competition between the two species. The effect of herbivory by phytophagous insects of submerged plant species has been regarded as negligible. To find out what this effect is, multiple field surveys were undertaken throughout South Africa to find natural enemies of indigenous Lagarosiphon species with the aim of identifying such species, and quantifying their influence on plant growth dynamics. Several new phytophagous species were recorded for the first time. An ephydrid fly, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae) was ascertained to be the most ubiquitous and abundant species associated with L. major in South Africa. The influence of herbivory by this fly on the competitive ability of L. major in the presence of M. spicatum was investigated using an inverse linear model, which showed that herbivory by H. lagarosiphon reduced the competitive ability of L. major by approximately five times in favour of M. spicatum. This study served to highlight the importance of herbivory as a driver of submerged aquatic plant dynamics. ii Abstract Current ecological theory emphasises the importance of investigating beyond plant-herbivore interactions, by including multitrophic interactions in community dynamics. Therefore, the potential of parasitism by a parasitoid wasp, Chaenusa luteostigma sp. n. Achterberg (Hymenoptera: Braconidae: Alysiinae) on H. lagarosiphon to shift the competitive interactions between the two plant species was also examined. The addition of the parasitoid reduced the effect of herbivory by the fly on L. major by half, thereby shifting the competitive balance in favour of L. major over M. spicatum. This study provides valuable insight into a selection of drivers of submerged macrophyte assemblages of South Africa. It highlights the precarious position of South African freshwater systems with regard to the potential invasion by damaging submerged invasive species. It also provides interesting insights into the effect of competition, herbivory and parasitism on the establishment and spread of species within submerged freshwater systems. Understanding the different influences could assist managers and policy makers to make validated decisions ensuring the integrity of South African freshwater systems. iii Table of Contents Table of Contents Abstract ...................................................................................................................................... i Table of Contents .................................................................................................................... iv List of Tables ............................................................................................................................ x List of Figures ......................................................................................................................... xii Publications arising from this thesis ................................................................................... xix Acknowledgements ................................................................................................................ xx Chapter 1: Introduction .......................................................................................................... 1 1.2 Invasion of freshwater aquatic ecosystems ...................................................................... 1 1.2 Aquatic ecosystems in South Africa ................................................................................ 2 1.3 Introductory paths of aquatic macrophytes ...................................................................... 4 1.4 Drivers of aquatic plant assemblages ............................................................................... 5 1.4.1. Abiotic Drivers ......................................................................................................... 6 1.4.2. Biotic Drivers ........................................................................................................... 7 1.5 Aims ............................................................................................................................... 10 Chapter 2: Description of common invasive and indigenous submerged macrophytes in South Africa ............................................................................................................................ 16 2.1 Introduction .................................................................................................................... 16 2.2 Invasive species .............................................................................................................. 17 2.2.1 Egeria densa Planch (Hydrocharitaceae), dense waterweed ................................... 17 iv Table of Contents 2.2.2 Elodea canadensis Michaux (Hydrocharitaceae), Canadian waterweed ................. 20 2.2.3 Hy drilla verticillata L. (Hydrocharitaceae), hydrilla .............................................. 21 2.2.4 Cabomba caroliniana Grey (Cabombaceae), cabomba, fanwort ............................ 23 2.2.5 Myriophyllum spicatum L. (Haloragaceae) spiked water-milfoil ............................ 24 2.3 Indigenous species.......................................................................................................... 27 2.3.1 Lagarosiphon major (Roxb.) (Ridley) Moss (Hydrocharitaceae), African elodea, oxygen weed and Lagarosiphon muscoides Harv (Hydrocharitaceae). ........................... 27 2.3.2 Stuckenia pectinata (= Potamogeton pectinatus L.) (Potamogetonaceae), sago pondweed .......................................................................................................................... 30 2.4 Discussion ...................................................................................................................... 30 Chapter 3: Pet stores, aquarists and the internet trade as modes of introduction and spread of invasive macrophytes in South Africa ................................................................. 32 3.1 Introduction .................................................................................................................... 32 3.2 Methods & Materials ...................................................................................................... 37 3.2.1 Survey development for pet stores and aquarists .................................................... 37 3.2.2 Selection of test species ........................................................................................... 37 3.3 Results ...........................................................................................................................
Recommended publications
  • Aquarium Plants
    Aquarium Plants Kingdom: Plantae Conditions for Customer Ownership We hold permits allowing us to transport these organisms. To access permit conditions, click here. Never purchase living specimens without having a disposition strategy in place. Shipment of aquatic plants is prohibited in Puerto Rico. Shipment of Cabomba is restricted in CA, CT, MA, ME, VT, and WA. In all other cases, the USDA does not require any special permits to receive aquatic plants. However, in order to continue to protect our environment, you must house your aquatic plants in an aquarium. Under no circum- stances should you release your plants into the wild. Primary Hazard Considerations Always wash your hands thoroughly before and after you handle your aquatic plants, or anything it has touched. Availability Aquatic plants are generally available year round, and can be found in freshwater lakes and ponds. They are collected, so shortages may occur. The aquatic plants come packaged in plastic bags. Once received, open package and, using tap water, gently rinse away any debris or broken-off pieces. Some plants come in jars; remove lid and place in tank. Your plants do not need to be acclimated. Aquarium Needs Habitat: • Water from the tap in most cases contains chlorine, which can be detrimental to the health of your plants and aquatic animals. De-chlorinate your water by using a commercial chemical designed to do so, such as Ammonia/Chlorine Detoxifier, or by leaving your water out in an open container for 24–48 hours. Tropical plants need temperatures ranging from 66–77°F. For an aquarium to function well, a Filtration System 21 W 3535 is needed.
    [Show full text]
  • History and Current Status of Systematic Research with Araceae
    HISTORY AND CURRENT STATUS OF SYSTEMATIC RESEARCH WITH ARACEAE Thomas B. Croat Missouri Botanical Garden P. O. Box 299 St. Louis, MO 63166 U.S.A. Note: This paper, originally published in Aroideana Vol. 21, pp. 26–145 in 1998, is periodically updated onto the IAS web page with current additions. Any mistakes, proposed changes, or new publications that deal with the systematics of Araceae should be brought to my attention. Mail to me at the address listed above, or e-mail me at [email protected]. Last revised November 2004 INTRODUCTION The history of systematic work with Araceae has been previously covered by Nicolson (1987b), and was the subject of a chapter in the Genera of Araceae by Mayo, Bogner & Boyce (1997) and in Curtis's Botanical Magazine new series (Mayo et al., 1995). In addition to covering many of the principal players in the field of aroid research, Nicolson's paper dealt with the evolution of family concepts and gave a comparison of the then current modern systems of classification. The papers by Mayo, Bogner and Boyce were more comprehensive in scope than that of Nicolson, but still did not cover in great detail many of the participants in Araceae research. In contrast, this paper will cover all systematic and floristic work that deals with Araceae, which is known to me. It will not, in general, deal with agronomic papers on Araceae such as the rich literature on taro and its cultivation, nor will it deal with smaller papers of a technical nature or those dealing with pollination biology.
    [Show full text]
  • Induction of Direct Shoot Organogenesis from Shoot Tip Explants of an Ornamental Aquatic Plant, Cryptocoryne Wendtii
    http://wjst.wu.ac.th Applied Sciences Induction of Direct Shoot Organogenesis from Shoot Tip Explants of an Ornamental Aquatic Plant, Cryptocoryne wendtii Sutha KLAOCHEED1,*, Wanna JEHSU2, Wanwilai CHOOJUN2, Kanchit THAMMASIRI3, Somporn PRASERTSONGSKUN4 and Suphat RITTIRAT5 1Department of Technology and Industries, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand 2Program in Biology, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand 3Department of Plant Science, Faculty of Science, Mahidol University, Bangkok 10400, Thailand 4Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand 5Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand (*Corresponding author’s e-mail: [email protected]) Received: 26 March 2017, Revised: 13 February 2018, Accepted: 26 March 2018 Abstract Cryptocoryne wendtii is an important amphibious species with a wide range of foliage colors. Although it has a high market demand, the natural propagation of its aquatic species is limited due to the limited production on the number of plants with a long cultivation period, disease, and the requirement for a large space for propagation. Thus, we studied the effects of the plant growth regulators and their concentrations on the induction of direct shoot organogenesis from shoot tip explants of Cryptocoryne wendtii. The shoot tips were sterilized on its surface using 8 % Clorox® (5.25 % sodium hypochlorite, NaOCl) for 15 min followed by rinsing them three times with sterile distilled water. They were again sterilized on the surface for another 4 % Clorox® (5.25 % sodium hypochlorite, NaOCl) for 5 min.
    [Show full text]
  • Structural Aspects of the Vegetative Oegans of Cryptocoryne Wendtii De Wit
    Analele Universităţii din Craiova, seria Agricultură – Montanologie – Cadastru (Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series)Vol. XLVII 2017 STRUCTURAL ASPECTS OF THE VEGETATIVE OEGANS OF CRYPTOCORYNE WENDTII DE WIT. (ARACEAE) RODICA BERCU Faculty of Natural and Agricultural Sciences,”Ovidius” University, Constantza University Alley, No. 1, B, 900470, Constantza E-mail: [email protected] Key words: anatomy, aquatic plants, structure, vegetative organs, Cryptocorynewendtii ABSTRACT The paper presents structural aspects of the vegetative organs (adventitious root, stem and leaf) of a monocot herb, native to Sri Lanka and Thailand, namely Cryptocorynewendtii de Wit. It is a green variety of Cryptocorynewendtii, growing both submerged and emerged in its native regions. In our country the plant is known as an aquarium plant. The material fixation and processing was done according to the usual protocol of the Vegetal Morphology and Anatomy Laboratory belonging to the Natural Sciences Department of the our faculty. The adventitious root has a primary monocot structure with small intercellular spaces. The short stem vascular system consists of amphivasal bundles to the center and fewcollateral bundles to periphery.The petiole exhibits epidermis with regularlly arranged cutinized cells, without intercellular spaces, covered by a thik cuticle and poor developed stele vascular system. The leaf mesophyll is homogenous (isobilateral) type, with small intercellular spaces and a poor developed midrib collateral bundle with few conductive elements. The mechanical tissues almost lack. The petiole and blade have sclerenchyma groups of cells bellow the epidermis and for the blade to the lower epidermis. INTRODUCTION CryptocoryneFisch. ex Widler, known as water trumpet, is a genus of about 58-60 species, belonging to Araceae family.
    [Show full text]
  • In Vitro Propagation of Cryptocoryne Ferruginea Engler
    Faculty of Resource Science and Technology IN VITRO PROPAGATION OF CRYPTOCORYNE FERRUGINEA ENGLER CHEN MEI YIN Bachelor of Science with Honours (Plant Resource Science and Management) 2012 IN VITRO PROPAGATION OF CRYPTOCORYNE FERRUGINEA ENGLER CHEN MEI YIN This project is submitted in partial fulfilment of the requirements for the Degree of Bachelor of Science with Honours (Plant Resource Science and Management) Faculty of Resource Science & Technology UNIVERSITI MALAYSIA SARAWAK 2012 i APPROVAL SHEET Name of candidate: Chen Mei Yin Title of dissertation: In vitro propagation of Cryptocoryne ferruginea Engler Prof. Dr. Hamsawi Sani Supervisor Dr. Siti Rubiah Coordinator Plant Resource Science and Management Programme Department of Plant Science and Environmental Ecology Faculty of Resource Science and Technology ii UNIVERSITI MALAYSIA SAWARAK Grade: _____________ Please tick () Final Year Project Report Masters PhD DECLARATION OF ORIGINAL WORK This declaration is made on the 29 of June 2012. Student’s Declaration: I, Chen Mei Yin (23282) of Faculty of Resource Science and Technology hereby declare that the work entitled, In vitro Propagation of Cryptocoryne ferruginea Engler is my original work. I have not copied from any other students’ work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person. Chen Mei Yin (23282) 29 June 2012 Supervisor’s Declaration: I, Prof. Dr. Hamsawi bin Sani hereby certifies that the work entitled, In vitro Propagation of Cryptocoryne ferruginea Engler was prepared by the above named student, and was submitted to the “FACULTY” as a *partial/full fulfilment for the conferment of Bachelor of Science with Honours (Plant Resource Science and Management), and the aforementioned work, to the best of my knowledge, is the said student’s work Received for examination by: _____________________ Date: 29 June 2012 (Prof.
    [Show full text]
  • Technical Note Cryptocoryne Wendtii Can Successfully Be Grown in River
    Sri Lanka J. Aquat. Sci. 21(1) (2016): 67-71 Technical Note Cryptocoryne wendtii can successfully be grown in river sand enriched with nutrients B.V.A.S.M. Bambaranda1* and S.E. Peiris2 1Faculty of Animal Science and Export Agricultue, Uva Wellassa University of Sri Lanka, Badulla, Sri Lanka 2Faculty of Agriculture, University of Peradeniya, Sri Lanka *Corresponding Author: [email protected] Abstract Cryptocoryne wendtii is commonly used for aquaria and water gardens and hence is an economically important aquatic plant with a high demand in local and export markets. There are fifty species of genus Cryptocoryne out of which fourteen species including C. wendtii are endemic to Sri Lanka. Although Sri Lanka exports around 300 aquatic plants, exportation of endemic and threatened species collected from the wild is prohibited, but the cultivated plants. C. wendtii (‘Brown’) shows poor growth when cultivated in common soil which is used for normal propagation of other ornamental aquatic plants. Hence, this study was undertaken to find an effective substratum for C. wendtii, which is important for aquatic plant industry. C. wendtii was grown in five different media prepared with top soil and river sand in different proportions, both under emerged and submerged conditions. Results were analyzed using one-way analysis of variance. Plants grown in river sand had the highest dry weight gain and percentage survival compared to plants grown in top soil and river sand media prepared according to 1:1, 1:2, 1:3 ratios irrespective of either they were grown emerged or submerged, demonstrating that river sand enriched with commercially available fertilizer is the best medium to grow C.
    [Show full text]
  • Invasive Aquatic Plants and the Aquarium and Ornamental Pond Industries Shakira Stephanie Elaine Azan
    Ryerson University Digital Commons @ Ryerson Theses and dissertations 1-1-2011 Invasive aquatic plants and the aquarium and ornamental pond industries Shakira Stephanie Elaine Azan Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations Part of the Plant Sciences Commons Recommended Citation Azan, Shakira Stephanie Elaine, "Invasive aquatic plants and the aquarium and ornamental pond industries" (2011). Theses and dissertations. Paper 818. This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please contact [email protected]. INVASIVE AQUATIC PLANTS AND THE AQUARIUM AND ORNAMENTAL POND INDUSTRIES by Shakira Stephanie Elaine Azan Master of Philosophy, University of the West Indies, Mona Campus, Jamaica, 2002 Bachelor of Science (Hons.), University of the West Indies, Mona Campus, Jamaica, 1997 A thesis presented to Ryerson University in partial fulfilment of the requirements for the degree of Master of Applied Science in the Program of Environmental Applied Science and Management Toronto, Ontario, Canada, 2011 ©Shakira Azan 2011 AUTHOR’S DECLARATION I hereby declare that I am the sole author of this thesis. I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research. ........................................................................................ I further authorize
    [Show full text]
  • Cryptocoryne Beckettii
    Cryptocoryne beckettii Authors: Mandy Tu, Global Invasive Species Team, The Nature Conservancy Contents [hide] 1 Identifiers 2 Stewardship summary o 2.1 Impacts 3 Natural history o 3.1 Description o 3.2 Reproduction o 3.3 Range 4 Management/Monitoring 5 Information sources o 5.1 Bibliography . 5.1.1 Source document Identifiers Latin Names: Cryptocoryne beckettii Thwaites ex Trimen Common Names: watertrumpet The genus name Cryptocoryne is derived from the Latin crypto, meaning hidden, and the Greek koryne, meaning club. The common name (watertrumpet) refers to the shape of its inflorescence, which is typical of the arum family. There are currently no accepted synonyms for C. beckettii. Stewardship summary Cryptocoryne beckettii has been recently observed invading the San Marcos River in Texas, and there are (unconfirmed) reports of it in Florida. (Cryptocoryne wendtii is established in the wild in Florida, where it is not native (Atlas of Florida vascular plants, 2000).) Cryptocoryne beckettii is thought to have escaped from cultivation via the dumping of aquariums. Its potential range as an invader in North America is uncertain, but it may easily expand throughout the Gulf coastal plain, Florida, and the southern Atlantic coastal plain. Native to southeastern Asia, C. beckettii is an attractive herb in the arum family (Araceae), and which has been one of the most popular aquarium plants for more than 60 years (Bastmeijer, 2001; Tropica Aquarium Plants, 2001). Since the confident identification of members in this rely on floral characters, the plants in Texas (which were not flowering) should not be considered absolutely certain (Bastmeijer, 2001).
    [Show full text]
  • Isolation of Leaf Protoplasts from the Submerged Aquatic Monocot Aponogeton Madagascariensis
    ® The Americas Journal of Plant Science and Biotechnology ©2010 Global Science Books Isolation of Leaf Protoplasts from the Submerged Aquatic Monocot Aponogeton madagascariensis Christina E. N. Lord • Arunika H. L. A. N. Gunawardena* Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4J1, Canada Corresponding author : * [email protected] ABSTRACT Aponogeton madagascariensis is the only aquatic plant which forms perforations in its leaves through a process known as programmed cell death (PCD). Although PCD can be studied in vivo, isolated protoplasts maintain many of the same physiological properties of the intact plant and, due to their accessibility and reduced complexity, make ideal research tools to investigate plant processes including PCD. The conditions for the isolation of protoplasts from the lace plant were examined. Several factors including leaf age, carbohydrate source, and enzyme incubation time all significantly influenced protoplast yield and viability from lace plant tissue. Viable protoplasts were successfully isolated from leaf tissue approximately 1 month in age, using an enzyme mixture comprised of 2% w/v cellulase onozuka R10 and 0.5% pectolyase Y-23 dissolved in 0.005 M MES and 0.6 M sorbitol, pH 5.5. Approximately 60.35 ± 1.08 x 105 protoplasts/g fresh weight, with a viability of 92.75 ± 2.25%, were obtained from 4 hour isolations in the dark. Following successful isolation, these lace plant protoplasts can be used as an excellent model system for the study of environmentally induced PCD and can provide the first ever opportunity to compare this form of PCD with its developmentally regulated counterpart within one species of plant.
    [Show full text]
  • Everyone Can Grow!
    Everyone can Grow! Book 2 Student Materials Written by: Rachel Elam Special thanks to Hannah Burch and Toby Una Everyone can Grow! Foreword Welcome to Everyone can Grow! a curriculum to bring gardening indoors. If you are reading this, you must have an interest in growing plants, but may not have a yard to do it in, or maybe you just like the idea of having plants indoors so you can reap the health benefits, like increased focus, creativity, better air quality, a higher pain tolerance, and improved sleep. It is amazing what keeping plants can do for you and your home. In this student manual you will find a compilation of handouts that correspond to the Everyone can Grow! curriculum and activities. These instructions are meant to get you started on your indoor gardening adventure and are not extensive guides. There is a plethora of information online that can help answer questions once you get past the introductory knowledge. Like all hobbies, keeping plants has its own vocabulary, which can be a learning curve to a new hobbyist. It is my hope that you have a lot of fun with these activities, learn about science, and how plants work. Tending plants can be a relaxing and enjoyable hobby for everyone, so welcome and I hope you plan to stay! 2 Everyone can Grow! Table of Contents Foreword ................................................................................................................................................. 2 Table of Contents ....................................................................................................................................
    [Show full text]
  • Interstitial Telomerelike Repeats in the Monocot Family Araceae
    bs_bs_banner Botanical Journal of the Linnean Society, 2015, 177, 15–26. With 3 figures Interstitial telomere-like repeats in the monocot family Araceae ARETUZA SOUSA* and SUSANNE S. RENNER Department of Biology, University of Munich (LMU), 80638 Munich, Germany Received 6 May 2014; revised 26 September 2014; accepted for publication 4 October 2014 Combining molecular cytogenetics and phylogenetic modelling of chromosome number change can shed light on the types of evolutionary changes that may explain the haploid numbers observed today. Applied to the monocot family Araceae, with chromosome numbers of 2n = 8 to 2n = 160, this type of approach has suggested that descending dysploidy has played a larger role than polyploidy in the evolution of the current chromosome numbers. To test this, we carried out molecular cytogenetic analyses in 14 species from 11 genera, using probes for telomere repeats, 5S rDNA and 45S rDNA and a plastid phylogenetic tree covering the 118 genera of the family, many with multiple species. We obtained new chromosome counts for six species, modelled chromosome number evolution using all available counts for the family and carried out fluorescence in situ hybridization with three probes (5S rDNA, 45S rDNA and Arabidopsis-like telomeres) on 14 species with 2n =14to2n = 60. The ancestral state reconstruction provides support for a large role of descending dysploidy in Araceae, and interstitial telomere repeats (ITRs) were detected in Anthurium leuconerum, A. wendlingeri and Spathyphyllum tenerum, all with 2n = 30. The number of ITR signals in Anthurium (up to 12) is the highest so far reported in angiosperms, and the large repeats located in the pericentromeric regions of A.
    [Show full text]
  • Aquarium Plants – New Products 2013/2014 Experience Nature Underwater Dennerle - Experience Nature
    AQUARIUM PLANTS – NEW PRODUCTS 2013/2014 Experience nature underwater DENNERLE - Experience nature Plantahunter-Tour Sulawesi 2011 Dennerle - experience nature... “Gardening“ above and below water is our passion. We are active all over the world in a variety of ways, whether it be on a Plantahunter tour in Florida or Borneo or on our partner farm in Sri Lanka. Constant contact with good friends in Japan, China, Taiwan and India helps us to develop new plant products. But one or two long „forgotten“ plants are also regaining significance. Modern aquascaping in particular has significantly enhanced awareness of the needs of plants. These days, plant enthusiasts with underwater gardens no longer ask whether or not CO2 fertilisation is necessary. In addition to many new plants in pots, we have expanded our selection of in-vitro plants and established a separate product segment. In the new plant-it series there are now 22 attractive plants for various planting areas in the aquarium. The plant-it tubs are especially well suited for aquascaping. Their small size means you can insert the plants into the hardscape between stones and roots very easily. There are also new and exciting things to discover in the decorative range. The range of products for designing magical underwater landscapes is supplemented by Bonsai Palm, Scape Wood, Coco Cave, Scaper pads and much more. …..now have fun „gardening“ under water! Stefan Hummel 2 | FOREWORD NEW PRODUCTS FROM A – Z On the following pages you will find out more about our new products from 2013/2014. As usual, the plants are described in detail with lots of hints and tips.
    [Show full text]