Focus on Guillain–Barré Syndrome and Pompe Disease

Total Page:16

File Type:pdf, Size:1020Kb

Focus on Guillain–Barré Syndrome and Pompe Disease Cell. Mol. Life Sci. (2010) 67:701–713 DOI 10.1007/s00018-009-0184-2 Cellular and Molecular Life Sciences REVIEW Fatigue in neuromuscular disorders: focus on Guillain–Barre´ syndrome and Pompe disease J. M. de Vries • M. L. C. Hagemans • J. B. J. Bussmann • A. T. van der Ploeg • P. A. van Doorn Received: 30 June 2009 / Revised: 12 October 2009 / Accepted: 13 October 2009 / Published online: 16 November 2009 Ó The Author(s) 2009. This article is published with open access at Springerlink.com Abstract Fatigue accounts for an important part of the persist, non-pharmacological interventions, such as exer- burden experienced by patients with neuromuscular disor- cise and cognitive behavioral therapy, can be initiated. ders. Substantial high prevalence rates of fatigue are reported in a wide range of neuromuscular disorders, such Keywords Fatigue Á Neuromuscular disease Á as Guillain–Barre´ syndrome and Pompe disease. Fatigue Experienced fatigue Á Physiological fatigue Á can be subdivided into experienced fatigue and physio- Guillain–Barre´ syndrome Á Pompe disease logical fatigue. Physiological fatigue in turn can be of central or peripheral origin. Peripheral fatigue is an important contributor to fatigue in neuromuscular disor- Introduction ders, but in reaction to neuromuscular disease fatigue of central origin can be an important protective mechanism to Everybody experiences periods of fatigue, but these usually restrict further damage. In most cases, severity of fatigue can be mended by taking a rest or enjoying a good night’s seems to be related with disease severity, possibly with the sleep. In a wide range of diseases, however, fatigue is a well- exception of fatigue occurring in a monophasic disorder known chronic symptom. In patients without demonstrable like Guillain–Barre´ syndrome. Treatment of fatigue in somatic disease chronic fatigue may occur and may lead to neuromuscular disease starts with symptomatic treatment the diagnosis of chronic fatigue syndrome [31]. Severe of the underlying disease. When symptoms of fatigue fatigue as a chronic symptom and its impact on daily living are starting to receive more and more attention as patient- reported outcome measures in clinical trials in patients with somatic disease. Several studies have demonstrated that & J. M. de Vries ( ) fatigue is a disabling symptom in chronic diseases such as Department of Neurology, Erasmus MC, University Medical Centre, Room Number EE 22-30, Dr. Molenwaterplein 50-60, cancer, but also in a variety of neurological disorders and Postbus 2040, 3000 CA Rotterdam, The Netherlands conditions (Table 1)[14]. Severe fatigue can also occur as a e-mail: [email protected] side effect of drugs like beta-blockers, proton-pump inhib- itors, anxiolytic drugs and antipsychotics [2]. J. M. de Vries Á M. L. C. Hagemans Á A. T. van der Ploeg Division of Metabolic Diseases and Genetics, The first studies on fatigue in neurological diseases Department of Paediatrics, Erasmus MC, focused on diseases of the central nervous system (CNS), Sophia Children’s Hospital, Rotterdam, The Netherlands such as cerebrovascular disease, multiple sclerosis and Parkinson’s disease [29, 30, 44, 54, 88, 106]. Nowadays, it J. B. J. Bussmann Department of Rehabilitation Medicine, Erasmus MC, is recognized that fatigue is also an important and fre- University Medical Centre, Rotterdam, The Netherlands quently occurring symptom in disorders of the peripheral nervous system (PNS) with a high impact on physical P. A. van Doorn abilities and perceived health status in these patients [104]. Department of Neurology, Erasmus MC, University Medical Centre, Room Number BA 450,0s Gravendijkwal 230, This review focuses on fatigue in neuromuscular disor- Postbus 2040, 3000 CA Rotterdam, The Netherlands ders, with emphasis on fatigue in Guillain–Barre´ syndrome 702 J. M. de Vries et al. Table 1 Neurological diseases and conditions associated with 29, 51, 53, 57, 107]. In basic neurosciences, it is defined as fatigue a time-related force decline [32, 102]. Considering the Neurological diseases and disorders associated with fatigue different aspects of fatigue it is best regarded as a multi- dimensional concept in which the level of experienced Cerebral vasculitis and cerebrovascular diseases fatigue and the ability to perform activities are influenced Channelopathies by the type of disease, the health status of the patient and Charcot-Marie-Tooth disease type 1 (CMT type 1) several aspects of patient functioning. A distinction is made Chronic inflammatory demyelinating polyneuropathy (CIDP) between experienced fatigue and physiological fatigue, Developmental disorders (cerebral palsy, Arnold-Chiari which can both be influenced by psycho-sociological fac- malformations) tors [101]. The multidimensional concept of fatigue is Dysautonomic states depicted in Fig. 1. In this figure fatigue is integrated in the Encephalitis World Health Organization’s International Classification of Facioscapulohumural dystrophy (FSHD) Functioning, Disability and Health (WHO-ICF). The Granulomatous disorders (neurosarcoidosis, Wegener’s WHO-ICF represents the effect of disease on body function granulomatosis) and structure and the level of activities and participation of Hypothalamic and pituitary diseases the patient [1]. Intracranial infections (meningitis and encephalitis) Metabolic encephalopathy and mitochondrial diseases Migraine Physiology of fatigue Motor neuron disease Multiple sclerosis With electrophysiological testing, fatigue can be measured Multiple system atrophy as a loss of voluntary force-producing capacity of the Myotonic dystrophy muscles during exercise [8, 72]. To understand this reduced Narcolepsy and related sleep disorders capacity of the muscle it is important to know how fatigue Paraneoplastic (limbic encephalitis, opsoclonus-myoclonus) arises. The central governor model clarifies in a logical Parkinson’s disease and other parkinsonian disorders way how fatigue arises during mental or physical effort and Pompe disease and other metabolic myopathies how fatigue is essential for protecting the body against Cerebral commotion damage due to excessive exercise [69]. During performed Guillain-Barre´ syndrome (GBS) effort the CNS is continuously informed about the level of Post-infection fatigue states (poliomyelitis, Lyme disease, Q-fever, perceived exertion by feedback from muscles, joints, body and viral infections) temperature, the cardiorespiratory system and cognitive Postoperative (posterior fossa) surgery domains (afferent pathways). This feedback is processed at Adapted from Ref. [14] the primary somatic sensory cortex, subsequently sensory motor integration takes place and the activation by the (GBS), an immune-mediated polyradiculoneuropathy, and primary motor cortex of the brainstem motor nuclei and Pompe disease, a metabolic muscle disorder. Various anterior horn cells in the spinal cord (efferent pathway) is aspects of fatigue will be discussed, including differences adjusted if needed to maintain body homeostasis. This between experienced and physiological fatigue and differ- continuous feed forward and feedback control mechanisms ent methods available for assessment of fatigue. GBS and regulate the work rate and determines when rest is needed Pompe disease are taken as examples to discuss possible [14, 69]. pathological mechanisms of fatigue, treatment strategies With this model it is not fully explained how severe and options for future research. fatigue can be present in chronic disease or how fatigue can be present in a resting situation. In patients with severe fatigue the sense of normal fatigue is amplified due to Different types of fatigue and their definitions pathological changes in the motor system, disruption of feedback to the primary somatic sensory cortex and/or Fatigue covers a broad spectrum of symptoms and com- change in patients’ motivation [14, 69]. In a resting situa- plaints, and has no uniform definition. In clinical research, tion an estimation is made whether the body can cope with commonly used definitions of fatigue are an overwhelming an increase in effort. Up-regulation of metabolism occurs and persistent feeling of tiredness and diminished ability to during exercise; however, in case of disease, the capacity to sustain voluntary mental and physical activities. In addi- increase the metabolic rate is limited. This is perceived at tion, weakness, lethargy and lack of energy that interfere the level of the CNS as fatigue and the patient will avoid with daily activities are used as definitions [9, 13, 22, 23, excessive effort and requires rest. Fatigue in neuromuscular disorders 703 Health status and disease I + III Body function Activity, Participation & structure Capacity & II + III II Performance II Physiological Experienced fatigue fatigue Fatigue Psychological factors IV Fig. 1 Fatigue as a multidimensional concept implemented in the physiological fatigue have an effect on activity and participation World Health Organization’s Classification of Functioning, Disabil- and are in most diseases related to health status and disease severity. ity, and Health. The multidimensional concept of fatigue is integrated Psychosocial factors have an influence on fatigue and on activity and in the World Health Organization’s International Classification of participation. The numbers indicate at which level the different Functioning, Disability and Health (WHO-ICF), representing the treatment strategies have an effect on fatigue: I treatment of effect of disease on body function
Recommended publications
  • Fibromyalgia and Chronic Fatigue
    Fibromyalgia and Chronic Fatigue Paul G. Swingle, Ph.D., R. Psych. My previous radio program and my present webcast program are both entitled “It’s all in your head!” How I came up with this title was listening to the discouraged patients that I routinely treated, and still treat, who have been told, by the doctors they have consulted, that the pain, discomfort, distress, debilitating fatigue, sleep disturbance and depression that they endure is “all in your head.” What this remark is meant to imply, of course, is that there is no physical cause of the condition and that the symptoms are manifestations of psychological factors. My response to these patients is that “of course it is in your head, where else would it be?” My remark however is not disparaging but rather indicates the actual location of many of the patients symptoms. The brain controls everything so all symptoms are associated with brain activity. The remarkable effectiveness of neurotherapy for the treatment of the symptoms associated with fibromyalgia and chronic fatigue is due to the fact that the brain functioning associated with the symptoms is treated. Although this derogatory sentiment about fibromyalgia patients was widespread among health care providers in the past, it is remarkable to me that it still persists with many doctors to this day. A few days ago I was surfing the internet health news feeds and was dismayed to find an item entitled “Fibromyalgia: A mental illness?” In this item was a quote from a Canadian neurologist stating that fibromyalgia was a term waiting for a definition.
    [Show full text]
  • The Updated Training Wisdom of John Kellogg
    The Updated Training Wisdom of John Kellogg A collection of John Kellogg’s writings on training for distance runners Compiled by John Davis between May 2009 and December 2015 [email protected] www.runningwritings.com “Why do I pose as ‘Oz’? Because I know which mission to assign to help runners discover their potential. But I can't give them any results through magical powers; I'm just a human like the little carnival man from Kansas. I can only guide them. ” —John Kellogg Preface The goal of this project was to compile as many of John Kellogg’s posts on LetsRun.com as possible. I profoundly admire his training advice and his knowledge, and applying his principles to my own training brought me to new heights as a runner. Why John Kellogg, and not any of the other highly-regarded figures in the running world who have posted on LetsRun.com over the years (Renato Canova, Nobby Hashizume, Jack Daniels, et al.)? Perhaps because of his mysterious, guru-like reputation, or perhaps because of the sheer difficulty of assembling the range of posts. I also felt that it had to be done, that it would be a great loss for this knowledge to fade into obscurity over the years. John Kellogg seems to revel in the anonymity of the internet, and has posted under probably dozens of different “handles” over the years. In all likelihood, the writings here represent only a fraction of his total contribution to the online running community. Though his words sometimes fell on deaf ears, the power of the internet preserved much of his writing.
    [Show full text]
  • New Directions in Exercise Prescription: Is There a Role for Brain-Derived Parameters Obtained by Functional Near-Infrared Spectroscopy?
    brain sciences Perspective New Directions in Exercise Prescription: Is There a Role for Brain-Derived Parameters Obtained by Functional Near-Infrared Spectroscopy? Fabian Herold 1,2,* , Thomas Gronwald 3 , Felix Scholkmann 4,5, Hamoon Zohdi 5 , Dominik Wyser 4,6, Notger G. Müller 1,2,7 and Dennis Hamacher 8 1 Department of Neurology, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; [email protected] 2 Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany 3 Department Performance, Neuroscience, Therapy and Health, MSH Medical School Hamburg, University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457 Hamburg, Germany; [email protected] 4 Department of Neonatology, Biomedical Optics Research Laboratory, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; [email protected] (F.S.); [email protected] (D.W.) 5 Institute for Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland; [email protected] 6 ETH Zurich, Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, 8092 Zurich, Switzerland 7 Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany 8 German University for Health and Sports, (DHGS), Vulkanstraße 1, 10367 Berlin, Germany; [email protected] * Correspondence: [email protected] Received: 29 April 2020; Accepted: 29 May 2020; Published: 3 June 2020 Abstract: In the literature, it is well established that regular physical exercise is a powerful strategy to promote brain health and to improve cognitive performance. However, exact knowledge about which exercise prescription would be optimal in the setting of exercise–cognition science is lacking.
    [Show full text]
  • Vascular Dementia: an Overview of Current Challenges and Gaps
    Stroke and Dementia: what research tells us UK Stroke Assembly 2016 JM Wardlaw University of Edinburgh NHS Lothian www.strokeassembly.org.uk #strokeassembly Definitions Stroke Dementia Sudden onset focal A syndrome where there neurological deficit which is deterioration in last more than 24 hours memory, thinking, attributable to a vascular behaviour such that the defect and has no other person is no longer able identifiable cause to perform everyday activities by themselves www.strokeassembly.org.uk #strokeassembly Stroke – the importance • Stroke, 16.9million new strokes per year, – A third are disabled and dependent – 2nd commonest cause of death – Commonest cause of dependency in adults Infarct, or ischaemic stroke Haemorrhagic stroke www.strokeassembly.org.uk #strokeassembly Cerebrovascular disease – the importance • ‘Silent’ cerebrovascular disease, even bigger issue – Up to 45% of 35.6million dementias – Cognitive impairment, mobility problems Normal White matter disease www.strokeassembly.org.uk #strokeassembly Dementia • 47.5 million people have dementia world wide • 7.7million new cases per year • Affects different people in different ways • Major cause of dependency and disability amongst older people • Alzheimer’s disease commonest cause – 60-70% of cases • Vascular dementia 2nd commonest – 25-45% of all cases www.strokeassembly.org.uk #strokeassembly Dementia: historical perspective 1800’s – Blood vessel diseases 1900’s – Alzheimers disease - dominant 1970’s – ‘Multi-infarct dementia’ – vascular 1990’s–2000’s - ‘Vascular
    [Show full text]
  • TIA Vs CVA (STROKE)
    Phone: 973.334.3443 Email: [email protected] NJPR.com TIA vs CVA (STROKE) What is the difference between a TIA and a stroke? Difference Between TIA and Stroke • Both TIA and stroke are due to poor blood supply to the brain. • Stroke is a medical emergency and it’s a life-threatening condition. • The symptoms of TIA and Stroke may be same but TIA symptoms will recover within 24 hours. TRANSIENT ISCHEMIC ATTACK ● Also known as: TIA, mini stroke 80 E. Ridgewood Avenue, 4th Floor Paramus, NJ 07652 TIA Causes ● A transient ischemic attack has the same origins as that of an ischemic stroke, the most common type of stroke. In an ischemic stroke, a clot blocks the blood supply to part of your brain. In a transient ischemic attack, unlike a stroke, the blockage is brief, and there is no permanent damage. ● The underlying cause of a TIA often is a buildup of cholesterol- containing fatty deposits called plaques (atherosclerosis) in an artery or one of its branches that supplies oxygen and nutrients to your brain. ● Plaques can decrease the blood flow through an artery or lead to the development of a clot. A blood clot moving to an artery that supplies your brain from another part of your body, most commonly from your heart, also may cause a TIA. CEREBROVASCULAR ACCIDENT/STROKE Page 2 When the brain’s blood supply is insufficient, a stroke occurs. Stroke symptoms (for example, slurring of speech or loss of function in an arm or leg) indicate a medical emergency. Without treatment, the brain cells quickly become impaired or die.
    [Show full text]
  • ICD-10 Backs
    Qualifying Dx Codes for Java Backs, Java Decaf Back, & Custom Back ICD-10 Description ICD-10 Description Paraplegia (paraparesis) and quadriplegia B91 Sequelae of poliomyelitis G82.20 - G82.54 (quadriparesis) E75.00 - E75.19 GM2 Gangliosidosis - Other gangliosidosis G83.10 - G83.14 Monoplegia of lower limb Other specified disorders of the brain - E75.23 Krabbe disease G93.89 - G94 Other disorders of the brain in diseases classified elsewhere E75.25 Metachromatic leukodystrophy G95.0 Syringomyelia and syringobulbia Acute infarction of spinal code (embolic) E75.29 Other sphingolipidosis G95.11 (nonembolic) E75.4 Neuronal ceroid lipofuscinosis G95.19 Other vascular myelopathies Myelopathy in diseases classified F84.2 Rett's Syndrome G99.2 elsewhere Monoplegia of lower limb following G04.1 Tropical spastic paraplegia I69.041 - I69.049 nontraumatic subarachnoid hemorrhage Hemiplegia and hemiparesis following G04.89 Other Myelitis I69.051 - I69.059 nontraumatic subarachnoid hemorrhage Monoplegia of lower limb following G10 Huntington's disease I69.141 - I69.149 nontraumatic intracerebral hemorrhage Congenital nonprogressive ataxia - Hemiplegia and hemiparesis following G11.0 - G11.9 I69.151 - I69.159 Hereditary ataxia, unspecified nontraumatic intracerebral hemorrhage Infantile spinal muscular atrophy, type 1 Monoplegia of lower limb following other G12.0 I69.241 - I69.249 (Werdnig-Hoffman) nontraumatic intracranial hemorrhage Hemiplegia and hemiparesis following G12.1 Other inherited spinal muscular atrophy I69.251 - I69.259 other nontraumatic
    [Show full text]
  • Central Pain: Clinical and Physiological J Neurol Neurosurg Psychiatry: First Published As 10.1136/Jnnp.61.1.62 on 1 July 1996
    626Journal ofNeurology, Neurosurgery, and Psychiatry 1996;61:62-69 Central pain: clinical and physiological J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.61.1.62 on 1 July 1996. Downloaded from characteristics David Bowsher Abstract spinothalamic pathway, its relays, or projec- Objectives-To study the clinical and tions may cause central pain,' and modern pathophysiological features of central radiological techniques have tended to con- pain due to damage to the CNS. firm this.9 '" Because of this, and of recent Methods-156 patients (mostly with considerations on pathophysiology,'5 '" the ischaemic strokes, some with infarct after condition is now known as "central poststroke subarachnoid haemorrhage and other pain (CPSP)"'.'7 Stroke is not the only condi- cerebral conditions; one with bulbar and tion causing such central pains of cerebral ori- others with spinal pathology) with central gin.' lxII 2' Furthermore, identical pains occur pain have been investigated clinically and after some spinal lesions.- 22 varying numbers instrumentally with respect to quantitative somatosensory perception thresholds and autonomic Patients function. Between 1983 and 1993, 156 patients have Results-Pain onset was immediate in a been referred to me, in whom a diagnosis of minority; and from a week or two up to central pain due to a cerebral or spinal lesion six years in > 60%. For those with supra- has been made. Of these, 112 (64 (57)%'Y spinal ischaemic lesions, the median age male) had a history of a stroke episode (cere- of onset was 59; dominant and non- brovascular accident, CVA patients), includ- dominant sides were equally affected.
    [Show full text]
  • The Process and Effects of Ultrarunning
    Bowling Green State University ScholarWorks@BGSU Honors Projects Honors College Summer 8-21-2020 The Process and Effects of Ultrarunning Ellis Ulery [email protected] Follow this and additional works at: https://scholarworks.bgsu.edu/honorsprojects Part of the Exercise Science Commons, Other Kinesiology Commons, and the Sports Sciences Commons Repository Citation Ulery, Ellis, "The Process and Effects of Ultrarunning" (2020). Honors Projects. 562. https://scholarworks.bgsu.edu/honorsprojects/562 This work is brought to you for free and open access by the Honors College at ScholarWorks@BGSU. It has been accepted for inclusion in Honors Projects by an authorized administrator of ScholarWorks@BGSU. 1 The Process and Effects of Ultrarunning Ellis Ulery Bowling Green State University HNRS 4990: Honors Project Dr. Jessica Kiss and Dr. Matthew Kutz August 21, 2020 2 Table of Contents Phase 1: Pre Run (September 1, 2019 - March 29, 2020)… 4 Research on Ultrarunning… 4 My Personal Training… 5 Nutrition Research… 6 Daily Calorie Burn and Caloric Deficit (Exercise Induced)... 6 Hydration… 6 Electrolytes and Macronutrient Imbalances… 7 Personal Physiological Results and Research Information (VO2max and Lactate Threshold Information)… 7 Recovery Techniques… 9 Stretching… 9 Foam Rolling … 9 Sauna… 10 Dry Needling… 10 Motivating Factors & Forming the Event… 11 Phase 2: The Run (March 30, 2020)… 11 The Course and Set-Up… 11 My Running Plan (Expectations)… 12 Hydration & Caloric Intake (Expectations)… 13 The Official Results… 14 Chart of Performance Throughout The 12 Hours… 15 Hydration/Caloric Intake Results… 15 3 Observations Recorded During the Run… 15 Phase 3: Post Run/Conclusion… 15 The Personal Experience After the Run (Injuries)… 15 Question 1: What does it take to run an ultramarathon?… 16 Question 2: What did I learn through this experience?..
    [Show full text]
  • Genetics of Amyotrophic Lateral Sclerosis
    GENETICS VIGNETTE Genetics of Amyotrophic Lateral Sclerosis J. Gorodenker and L.M. Levy ABBREVIATIONS: ALS ϭ amyotrophic lateral sclerosis; UMN ϭ upper motor neuron; LMN ϭ lower motor neuron; fALS ϭ familial amyotrophic lateral sclerosis; sALS ϭ sporadic amyotrophic lateral sclerosis myotrophic lateral sclerosis (ALS) reflects a heterogeneous The phenotypic heterogeneity of ALS presents several difficul- Agroup of neurodegenerative disorders unified by loss of mo- ties; the diagnosis of ALS is made on clinical grounds and is fun- tor neurons in the primary motor cortex, brain stem, and spinal damentally uncertain, ranging from “suspected” to “possible,” to cord, resulting in progressive muscle weakness. Typical ALS (rep- “probable” to “definite.” There currently is no stated role for neu- resenting 80% of cases) is a limb-predominant disease character- roimaging to support the diagnosis of ALS; however, diagnosis ized by a combination of upper motor neuron (UMN) and lower requires absence of neuroimaging evidence of other disease pro- motor neuron (LMN) symptoms predominantly affecting the ex- cesses that may explain the observed clinical and electrophysio- tremities. ALS may also present in a bulbar form (20%), with early logical signs.4,5 symptoms involving muscles innervated by the lower brain stem, Absence of a sensitive and specific test for ALS often results in affecting articulation, chewing, and swallowing. While the disease significant delay of diagnosis, which ranges from 13–18 months may chronically persist in such form, it usually progresses to the from onset of the disease or longer in patients who present with 1,2 generalized muscle weakness of typical ALS. isolated LMN signs.5 Furthermore, delayed diagnosis restricts the Patients with ALS are more often male and typically present in inclusion of patients in clinical trials and limits early initiation of late middle age.
    [Show full text]
  • Transient Ischemic Attacks (Tias) and Strokes (Cvas)
    CREATED EXCLUSIVELY FOR FINANCIAL PROFESSIONALS Transient Ischemic Attacks (TIAs) and Rx FOR SUCCESS Strokes (CVAs) Obstruction in blood flow (ischemia) to the brain can lead to permanent damage. This is called a cerebrovascular accident (CVA). It is also known as cerebral infarction or stroke. If the symptoms are temporary without permanent brain damage, the event is called a transient ischemic attack (TIA). Rupture of an artery with bleeding into the brain (hemorrhage) is called a CVA, too. Strokes and TIAs are rated based on the underlying cause. The most common cause of TIAs and CVAs is hypertensive and atherosclerotic plaque within the arteries to the brain (aka cerebrovascular disease or CVD). CVD can be complicated by clots (thrombosis) and by emboli from the heart. Because CVD is an indicator of atherosclerosis in other parts of the body, an individual with a history of TIA or CVA is at risk for coronary artery disease and recurrent stroke. Risk factors for CVD include smoking, coronary artery disease, high blood pressure, diabetes, lipid disorders (such as high cholesterol), peripheral arterial disease, and atrial fibrillation. Signs and symptoms of a CVA/TIA include weakness, numbness, headaches, dizziness, nausea, vomiting, paralysis of one side of the body, speech difficulty, and memory defects. Amaurosis fugax, a form of visual TIA, is temporary monocular (one eye) or partial blindness. Tests are done to evaluate the brain circulation, such as a carotid ultrasound (Duplex) or angiogram (MRA). A brain scan (CT and/or MRI) is used to determine if an individual has had a stroke. A TIA will not show on a scan.
    [Show full text]
  • Multiple Models Can Concurrently Explain Fatigue During Human Performance
    Multiple Models Can Concurrently Explain Fatigue During Human Performance C. MATTHEW LAURENT†1, and J. MATT GREEN‡2 1Department of Kinesiology, St. Ambrose University, Davenport, IA, USA; 2Department of Health, Physical Education and Recreation, The University of North Alabama, Florence, AL, USA †Denotes graduate student author, ‡denotes professional author ABSTRACT Int J Exerc Sci 2(4): 280-293, 2009. One of the most commonly and thoroughly studied paradigms of human performance is fatigue. However, despite volumes of research there remains considerable controversy among scientists regarding definitive conclusions about the specific mechanism(s) contributing to fatigue. Within the literature there are three primary yet distinctly different governing ideas of fatigue; the traditionally referenced central model and peripheral model as well as the emerging central governor model (CGM). The CGM has recently been advocated by a limited number of researchers and is suggestive of a more integrative model of fatigue when compared the traditional peripheral and central models. However, more work is needed to determine the specific and perhaps synergistic roles of each paradigm during exercise or sport activity. This article contains three components; (1) a brief overview of the problems associated with defining fatigue, (2) a description of the models governing interpretation of fatigue and, (3) a presentation of multiple interpretations of selected data to demonstrate that some results can be reasonably explained using multiple models of fatigue, often concurrently. The purposes of this paper are to reveal that a) perhaps it is not the results that suggest a certain paradigm of regulation, yet that it may be a product of an a priori definition that is being employed and b) an integrative model of central and peripheral fatigue may present a plausible explanation for fatigue vs.
    [Show full text]
  • Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives
    International Journal of Molecular Sciences Review Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives Diji Kuriakose and Zhicheng Xiao * Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia; [email protected] * Correspondence: [email protected] Received: 29 September 2020; Accepted: 13 October 2020; Published: 15 October 2020 Abstract: Stroke is the second leading cause of death and a major contributor to disability worldwide. The prevalence of stroke is highest in developing countries, with ischemic stroke being the most common type. Considerable progress has been made in our understanding of the pathophysiology of stroke and the underlying mechanisms leading to ischemic insult. Stroke therapy primarily focuses on restoring blood flow to the brain and treating stroke-induced neurological damage. Lack of success in recent clinical trials has led to significant refinement of animal models, focus-driven study design and use of new technologies in stroke research. Simultaneously, despite progress in stroke management, post-stroke care exerts a substantial impact on families, the healthcare system and the economy. Improvements in pre-clinical and clinical care are likely to underpin successful stroke treatment, recovery, rehabilitation and prevention. In this review, we focus on the pathophysiology of stroke, major advances in the identification of therapeutic targets and recent trends in stroke research. Keywords: stroke; pathophysiology; treatment; neurological deficit; recovery; rehabilitation 1. Introduction Stroke is a neurological disorder characterized by blockage of blood vessels. Clots form in the brain and interrupt blood flow, clogging arteries and causing blood vessels to break, leading to bleeding.
    [Show full text]