<<

Sigma-Aldrich Worldwide Locations Argentina Germany Korea South Africa SIGMA-ALDRICH DE ARGENTINA, S.A. SIGMA-ALDRICH CHEMIE GmbH SIGMA-ALDRICH KOREA SIGMA-ALDRICH Tel: 54 11 4556 1472 Free Tel: 0800/51 55 000 Tel: 031-329-9000 Fax: 54 11 4552 1698 SOUTH AFRICA (PTY) LTD. Free Fax: 0800/64 90 000 Fax: 031-329-9090 Vol. 3 No. 6 Tel: 27 11 979 1188 Australia Greece SIGMA-ALDRICH PTY., LIMITED Malaysia Fax: 27 11 979 1119 SIGMA-ALDRICH (O.M.) LTD Free Tel: 1-800 800 097 SIGMA-ALDRICH (M) SDN. BHD Free Fax: 1-800 800 096 Tel: 210 9948010 Tel: 603-56353321 Spain Tel: (612) 9841 0555 Fax: 210 9943831 Fax: 603-56354116 in SIGMA-ALDRICH QUÍMICA S.A. Fax: (612) 9841 0500 Hungary Mexico Free Tel: 900-101376 Austria SIGMA-ALDRICH Kft SIGMA-ALDRICH QUÍMICA, S.A. de C.V. SIGMA-ALDRICH HANDELS GmbH Tel: (06-1) 235-9054 Free Fax: 900-102028 Free Tel: 01-800-007-5300 Organic Chemistry Tel: 43 1 605 8110 Fax: (06-1) 235-9050 Free Fax: 01-800-712-9920 Sweden Fax: 43 1 605 8120 Ingyenes zöld telefon: 06-80-355 355 SIGMA-ALDRICH SWEDEN AB Belgium Ingyenes zöld fax: 06-80-344 344 The Netherlands SIGMA-ALDRICH NV/SA. SIGMA-ALDRICH CHEMIE BV Tel: 020-350510 India Free Tel: 0800-14747 SIGMA-ALDRICH FOREIGN Tel Gratis: 0800-0229088 Fax: 020-352522 SPECIAL FEATURE: Free Fax: 0800-14745 Fax Gratis: 0800-0229089 Tel: 03 899 13 01 HOLDING COMPANY Outside Sweden Tel: 08-7424200 Tel: 078-6205411 Fax: 03 899 13 11 Telephone Outside Sweden Fax: 08-7424243 New Kits Bangalore: (080) 852 4222 / 852 4150 Fax: 078-6205421 Brazil Hyderabad: (040) 631 5488 Switzerland SIGMA-ALDRICH BRASIL LTDA. New Zealand Mumbai: (022) 2579 7588 / 2570 2364 Tel: 55 11 3732 3100 SIGMA-ALDRICH PTY., LIMITED FLUKA CHEMIE GmbH New Delhi: (011) 616 5477 / 6195360 Fax: 55 11 3733 5151 Free Tel: 0 800 936 666 Fax Swiss Free Call: 0800 80 00 80 Free Fax: 0 800 937 777 Canada Bangalore: (080) 852 4214 Tel: +41 81 755 28 28 SIGMA-ALDRICH CANADA LTD. Hyderabad: (040) 631 5466 Norway Fax: +41 81 755 28 15 Free Tel: 800-265-1400 Mumbai: (022) 2579 7589 SIGMA-ALDRICH NORWAY AS Free Fax: 800-265-3858 New Delhi: (011) 616 5611 United Kingdom Tel: 905-829-9500 Tel: 23176000 Fax: 905-829-9292 Ireland Fax: 23176010 SIGMA-ALDRICH COMPANY LTD. China SIGMA-ALDRICH IRELAND LTD Poland Free Tel: 0800 717181 SIGMA-ALDRICH CHINA INC. Free Tel: 1800-200-888 SIGMA-ALDRICH Sp. z o.o. Free Fax: 0800 378785 Tel: (86-21) 6386-2766 Free Fax: 1800-600-222 Tel: +61 829-01-00 Fax: (86-21) 6386-3966 Tel: 01747 833000 Tel: (01) 4041900 Fax: +61 829-01-20 Fax: (01) 4041910 Fax: 01747 833313 Czech Republic Portugal SIGMA-ALDRICH spol. s.r.o. Israel SIGMA-ALDRICH QUÍMICA, S.A. United States Tel: 246 003 200 SIGMA-ALDRICH ISRAEL LTD. Fax: 246 003 291 Free Tel: 800 20 21 80 SIGMA-ALDRICH Free Tel: 1-800-70-2222 Free Fax: 800 20 21 78 Denmark Tel: 08-948-4100 P.O. Box 14508 SIGMA-ALDRICH DENMARK A/S Fax: 08-948-4200 Russia St. Louis, Missouri 63178 Tel: 43565910 SIGMA-ALDRICH RUSSIA Toll-free: 800-325-3010 Fax: 43565905 Italy SIGMA-ALDRICH S.r.l. TechCare Systems, Inc. Call Collect: 314-771-5750 Finland Telefono: 02 33417310 (SAF-LAB) SIGMA-ALDRICH FINLAND Toll-Free Fax: 800-325-5052 Fax: 02 38010737 Tel: 095-975-1917/3321 Tel: (09) 3509250 Tel: 314-771-5750 Numero Verde: 800-827018 Fax: 095-975-4792 Fax: (09) 35092555 Fax: 314-771-5757 Japan Singapore France All other calls: 314-771-5765 SIGMA-ALDRICH CHIMIE S.à.r.l. SIGMA-ALDRICH JAPAN K.K. SIGMA-ALDRICH PTE. LTD. Tél Numéro Vert: 0800 21 14 08 Tokyo Tel: 03 5821 3111 Tel: 65-6271 1089 Internet: Fax Numéro Vert: 0800 03 10 52 Tokyo Fax: 03 5821 3170 Fax: 65-6271 1571 sigma-aldrich.com

Fluka Chemie GmbH CH-9471 Buchs/Switzerland Swiss Freecall 0800 80 00 80 Fax +41-81-756 54 49 Tel: +41-81-755-25-11 E-mail: fluka@ sial.com http://www.sigma-aldrich.com

Order/Customer Service 1-800-325-3010 • Fax 1-800-325-5052 Technical Service 1-800-325-5832 • sigma-aldrich.com/techservice

Development/Bulk Manufacturing Inquiries Sigma-Aldrich Fine Chemicals 1-800-336-9719

World Headquarters • 3050 Spruce St., St. Louis, MO 63103 • (314) 771-5750

We are committed to the success of our Customers, Employees and Shareholders through leadership in Life Science, High Technology and Service. The SIGMA-ALDRICH Family sigma-aldrich.com ©2003 Sigma-Aldrich Co. Printed in USA. Sigma brand products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the (s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip. SIGMA and - are registered trademarks of Sigma-Aldrich Co. and its division ® FVQ Sigma-Aldrich Biotechnology LP. Riedel-de Haën : trademark under license from Riedel-de Haën GmbH. Biocatalysts and

Biotransformations 2

sigma-aldrich.com highly qualifiedtechnologies,such asbioseparation,expanded On thedownstreamprocessing side,weapplyawiderangeof place aswell. development andformulation of acustombiocatalystcantake and diminishedbiologicalwaste. Atthecustomer'srequest, overexpression ofbiocatalysts, thereby resultinginhigheryields (bacteria, yeasts,andfungi).Recombinanttechnologyallows We usebothnaturalandrecombinantmicroorganisms Scale Practice(GILSP). Biosafety isestablishedaccordingtoGoodIndustrialLarge consistently highstandardofoperation. 9001/2000. Regularinternalandexternalauditsguarantee a The fermentationprocessatFlukaisincompliancewithISO- system, whichallowstofollow6experimentssimultaneously. optimization isperformedwithaminiaturizedmultifermenter the fermentationorbiotransformationprocess.Process continuous, 24hoperationwithcompletedocumentation of controlled. TheParagonProcessControlSystemallowsusa operation. Allfermentationreactorsarecompletelycomputer- in capacity(2x20L,175Land300L)arecurrently At ournewlyexpandedfacility,bioreactorsofupto300liters in ourfermentationprocesses Rhodococcus Rc2isamongtheorganismsweutilize target moleculeviabiotransformationin-house. scales, andcansubsequentlyperformthesynthesisof both developsandproducesbiocatalystsonsmalllarge knowledge iscombinedwithbiotechnologicalexpertise.Fluka facility locatedinBuchs,Switzerland,awiderangeofchemical locations intheUSA,Israel,andSwitzerland.AtourFluka capabilities, fermentationhashadalongtraditionwith Within Sigma-Aldrich'sarrayoforganicandbiochemical purification steps. process, eliminatingtheneedforcomplicatedseparationand and drugintermediates.Theycanaddstereospecificitytothe instances evenenable,theproductionofcomplexchemicals industries inrecentyears.Biocatalystscansimplify,orsome tools hasincreasedwithinthechemicalandpharmaceutical The recognitionofbiocatalystsasimportantmanufacturing CUSTOM MANUFACTURINGATFLUKA Biocatalysts andBiotransformations SIGMA-ALDRICH Explorer–your researchassistant onwww.sigma-aldrich.com/enzymeexplorer. To learn moreaboutour comprehensive portfolioofenzymes please have alookat the whole-cell biotransformations. simple batchbiotransformationsovermembranereactorsto The techniquesweuseontheapplicationsidevarywidelyfrom volumes ofupto1600L. ready forlarge-scaleproductionusingreactorswithtotal performing morethanahundredbiocatalyticprocessesandare a biotransformation.Wehaveexperienceinroutinely of thebiocatalystcanbecombinedwithitsdirectapplicationin In ordertofullysatisfythecustomer'sdemands,production production ofbiocatalystsisachievedinhighestyields. chromatography. Withthesetechnologiesthereproducible bed adsorption,two-phaseseparationandmembrane → → → → → → → → → isolation andcharacterization. Proteomics: Enzymes,kitsandreagents forprotein phosphorylation utilizingSigma's ProteinKinaseTables. Protein KinaseExplorer:Explore protein Lectins forLifeScience:LectinSpecificity Table. over 1000intracellularsignalingenzymesandreceptors. Intracellular SignalingEnzymes/Receptors:Contains factors classifiedbyfunctions. Enzyme Co-factorIndex:Containsover100enzymeco- Index:Containsapproximately400substrates. by theircorrespondingenzymes. Inhibitor Index:Containsover700inhibitorsorganized the typeofreactiontheycatalyze. Class Index:HelpsyoufindenzymesbytheirEC#or and organicsynthesis. from apoptosisandsignaltransductiontodiagnostics catagorized intoover35differentareasofinterest Application Index:Containsover1700enzymes 1. NEW!GLYCOSYLTRANSFERASEKITSFROMFLUKA surface patternsareassociated withcellular receptor sitesfor bacteriaandviralparticles. for antibodiesandotherproteins, andtheyfunctionas intercellular adhesion.Theyalso providepointsofattachment glycolipids actasproteinligands providinganchorsfor physiological responses. glycolipids incellularcommunication processesand carbohydrate moietiesofcell surfaceglycoproteinsand studies inrecentyearshaverevealedthevitalrole of storage, andaskeycomponentsofcellsurfaces.Intense function asstructuralscaffolds,toregulateviscosity,forenergy as componentsofabroadrangemolecularstructures.They Oligosaccharides andpolysaccharidesareubiquitousinnature INTRODUCTION - 1.1 sufficient forproductcharacterizations. is suppliedinaliquotsformultiplereactionsonascale, provide greaterflexibilityinresearchapplications,eachenzyme moiety toanacceptorsubstrateonasmallpreparativescale.To components forthetransferofaspecificmonosaccharide enzyme, thecorrespondingnucleotidesugardonorandfurther glycosyltransferase kits.Eachkitisdesignedtoofferthe have agreedtocooperateinthedevelopmentofvarious enzymatic carbohydratesynthesis,FlukaandKyowaHakko In ordertosupportandstimulatescientificresearchin many nucleosidemono-anddiphosphatesugardonors. Japan) recentlydevelopedalargescaleproductionsystemfor engineering researchersatKyowaHakkoKogyoInc.(Tokyo, synthetic applications.Employingmetabolicpathway established fermentationprocessesandcanbeofferedfor recombinant glycosyltransferasesarenowavailablefromwell- progress ofbiocatalysisinsyntheticchemistry.Several carbohydrate synthesisaspartofourcommitmenttothe and producednewglycosyltransferasesforpreparative synthetic chemistry,Flukahas,inthepastfewyears,developed As partofourcommitmenttotheprogressbiocatalysisin preparative scale. necessary forsuccessfulglycosylationson nucleotide sugardonors,buffersandreagents, include sufficientamountsofenzymes, The uniqueFlukaGlycosyltransferaseKits → → → → glycoconjugates inthenearfuture. industrial scaleeconomicsynthesisofoligosaccharidesand technological breakthroughcanbeexpectedtoenable For questions about thepricingor toorder,please contact yourlocalSigma-Aldrich Office (seeback cover) regioselectivity? Are youinterestedinhighstereo-and procedures? Do youliketoavoidlaboriousmultistep techniques usingbiocatalysts? Do youliketocomplementyoursynthetic glycoconjugates? synthesis ofoligosaccharidesand Are youworkingonglycosylationsand [8-11] Cell-surface glycoproteinsand [1-7] [7] [12,13] Altered cell [41-44] This alternatives inthepreparationofoligosaccharides. glycoforms inmammaliansystems,havebeenprovenasviable hydrophobic molecules, and controlleddrugdelivery,toincreasesolubilityof proteins andotherbioactivemoleculesmayserveinsitespecific infectious deseases,inflammationandcancer.Glycosylationof valuable toolsinbiologicalstudiesandpotentialdrugtargets glycoconjugates, whichserveascompetitiveligands,represent diagnostic incertaincancers. differentiation, developmentandviralinfectionare aqueous . modification ofthecarbohydratestoachievesolubilityinnon- organic water, theirmanipulationrequireseitheranadaptationof simple oligosaccharidesexceedsthatofotherbiopolymers. This diversityinjointsbetweenmonomersubunitseven stereospecific activationofeitherglycosyldonorsoracceptors. glycoconjugates stillrequireseffective,regioselective,and monosaccharide unitspresentinoligosaccharidesand vivo are required. protecting groupmanipulationsandcomplexsyntheticschemes regioselectivity andstereospecificity.Therefore,laborious the desiredglycosidiclinkageswithsuitablelevelsof reactivities, mustbesuitablydifferentiatedinordertoobtain pathway, Biocatalysts, namelyglycosyltransferasesfromtheLeloir → → → and glycoconjugatesare: the economic,large-scale,chemicalsynthesisofcarbohydrates preparation ofpeptidesandoligonucleotides.Majorissuesfor automated protocolscomparabletothosedevelopedforthe chemist. Decadesofsyntheticresearchhavenotyieldedrobust, carbohydrates makesthemchallengingtargetsfortheorganic The presenceofmultiplefunctionalgroupsandstereocentersin isolated fromglycoproteins. function studiestothecharacterisationofglycanchains only minutequantities,limitingcarbohydratestructureand The isolationofglycoconjugatesfromnaturalsourcesprovides structures. availability oflargeramountsvaryingcarbohydrate therapeutics hasaccentuatedtherequirementforageneral fundamental biologicalprocessesandtheirpotentialasnew The growingrecognitionoftherolescarbohydratesin systems. to obtainhomogeneousglycoproteinsfromoverexpression in highyields. avoiding tediouschemicalelaborations, andprovideproducts linkages formed.Theyuseunprotectedsugarprecursors,thus highly regio-andstereospecificwithrespecttotheglycosidic classical synthetictechniques.Leloirglycosyltransferasesare glycosidation asthemethodofchoicetocomplementtheir recombinant sources,chemistshaverecognizedenzymatic and moreofthesetransferasesareisolatedorproducedfrom Due tothefactthatmanycarbohydratesareonlysolublein Multiple hydroxylfunctionalities,whichexhibitsimilar The highdiversityinlinkagesbetweenspecific [17,18] [20,21] and decreaseantigenicity. [25-27] reactions toaqueousmediaorareversible responsible forthesynthesisofmostcell-surface [15,16] [1,6,22-24] [10] alter uptakeandresidencytimein Moreover, itisnearlyimpossible [14] [19] Oligosaccharides and [1-7] As more

For technical assistance or to order, please call your local Sigma-Aldrich Office 3 Kits from Fluka 4 5 1.1 GLYCOSYLTRANSFERASES - INTRODUCTION CONTINUED 1.2. β(1→4) GALACTOSYLTRANSFERASE

The biosynthesis of oligosaccharides, catalysed by A major issue in glycosyltransferase-catalysed glycosidations is 59505 β-(1→4)-Galactosyltransferase Kit NEW! glycosyltransferases from the Leloir pathway, resembles the the fact, that the nucleoside diphosphates generated during corresponding chemical procedure (see Figure 1). A donor reaction are potent glycosyltransferase inhibitors. Two Cat. No. Name Amount sugar is activated in a first step, followed by the transfer of the strategies have been described to prevent product inhibition: 48279 β(1→4)-Galactosyltransferase from bovine milk activated moiety to an appropriate acceptor sugar. These → The addition of phosphatase to remove nucleoside ~ 1 U/mg1) , E.C. 2.4.1.22 5 x 1 mg enzymes utilize primarily eight different glycosyl esters of diphosphates [Scheme 2(A)].[37] 40396 UDP- nucleoside mono- or diphosphates as activated UDP-Gal; Uridine 5'-diphospho-α-D-galactose disodium salt → monosaccharide donors to build a new glycosidic bond, such as Employing multienzyme regeneration systems, BioChemika, ≥90% (HPLC) 100 mg UDP-Glc, UDP-GlcNAc, UDP-Gal, UDPGalNAc, GDP-Man, GDP- nucleoside diphosphates can be recycled to the 63536 Manganese(II) chloride tetrahydrate Fuc, UDP-GlcUA, and CMP-NeuAc.[26] appropriate nucleoside diphosphate sugars. puriss. p.a., ACS, ≥99.0% (KT) 500 mg Although several different enzymes and expensive 93371 Trizma® hydrochloride2) cofactors are involved in these in situ regeneration BioChemika, pH 7.4 1 g systems, they are supposed to avoid the use of 61289 α-Lactalbumin from bovine milk stoichiometric amounts of expensive sugar BioChemika, calcium depleted, ≥90% (HPCE) 25 mg [38-40] nucleotides [Scheme 2(B)]. 79385 Phosphatase alkaline from bovine intestinal mucosa BioChemika, solution (clear), >10000 U/µl3), E.C. 3.1.3.1 200 ml from Fluka from Fluka

1) 1 U corresponds to the amount of enzyme, which transfers 1 µmol of galactose from UDP-galactose to D- per minute at pH 8.4 and 30°C in the presence of α-lactalbumin. 2) Trizma® is a registered trademark of Sigma-Aldrich Biotechnology, L.P. 3) 1 U corresponds to the amount of enzyme, which hydrolyzes 1 µmol 4-nitrophenyl phosphate per minute at pH 9.8 and 37 °C. Galactosyltransferase Kits Galactosyltransferase Kits

β(1→4) Galactosyltransferase from bovine milk (GalT, EC 2.4.1.22) is one of the most extensively studied mammalian glycosyltransferases with regard to synthesis and substrate specificity.[2-6,45-51] β(1→4) GalT catalyses the transfer of galactose from UDP-galactose (UDP-Gal) to the OH at the 4-position of N- Scheme 1. Glycosyltransferase-catalysed glycosidation acetyl glucosamine (GlcNAc) and also β-linked GlcNAc subunits using β(1→4)-Galactosyltransferase {β(1→4)GalT}. to yield β-lactosamine (β-LacNAc) and β-Gal(1→4)-β-GlcNAc structures.[52] When the enzyme forms a complex with α- Glycosyltransferases are specific for the type of linkage (α or β), lactalbumin, the specificity is altered and D-glucose becomes the and the linkage position of the glycoside bond formed [e.g. preferred acceptor. Thus, addition of α-lactalbumin promotes α(1→3) or β(1→4)]. Also, they are considered to be specific for the formation of (β-Gal(1→4)-Glc). Both α- and β- a given glycosyl donor and acceptor, which led to the “one glycosides of glucose were utilized as acceptors in enzymatic enzyme–one linkage” concept.[28,29] A number of recent galactosidation as well. The α-glucosides required the presence observations have defeated the theory of absolute specificity of α-lactalbumin.[5] Numerous other acceptor substrates for regarding donors or acceptors: β(1→4)GalT catalyzed transfer of galactose have been described Scheme 3. Modifications of GlcNAc employed as → The transfer of analogues of some nucleoside mono- in the literature (see Table 1), e.g. 2-deoxyglucose, D-xylose, 5- acceptors in β(1→4)GalT catalyzed transfer of galactose. or diphosphate sugar donors by glycosyltransferases thioglucose, N-acetylmuramic acid, and myoinositol. Moreover, has been described.[30-36] 6-O-fucosylated and sialylated modifications served as acceptors[53] as well as 3-O-methyl-GlcNAc,[38,54] 3-deoxy-GlcNAc, by sialylation with α(2→3) and fucosylation with → The enzymes tolerate a certain range of 3-O-allyl-GlcNAcβOBu and 3-oxo-GlcNAc.[55] Several α(2→3) yielded a glycopeptide containing a modifications in the acceptor substrate, as long as Scheme 2. Methods for avoiding product inhibition modifications of GlcNAc that were employed as acceptor tetrasaccharide moiety.[61] specific structural requirements (e.g. appropriate in glycosyltransferase-catalyzed synthesis: (A) substrates are illustrated in Scheme 3.[2] and availability of the hydroxyl Addition of phosphatase. (B) Recycling of sugar As different glycosides of N-acetylglucosamine and glucose can β → group involved in the glycosidic bond) are met in the nucleotides (NDP = nucleoside diphosphates, NTP = (1 4)GalT has been employed in solid-phase oligosaccharide be used as acceptors in β(1→4)GalT catalyzed galactosidations, acceptor molecule.[1-5] nucleoside triphosphates, N = nucleoside, Pi = synthesis on polymer supports like polyacrylamide or water- this enzymatic method was recently exploited in the phosphate). soluble poly(vinyl alcohol). The resulting galactosylated modification of pharmacologically interesting glycosides.[15,16,62,63] oligosaccharides are cleaved from the polymers photochemically Several currently published syntheses of new drug-sugar or by using chymotrypsin.[56,57] conjugates derived from the broad range of naturally occurring For more information about the complete range N-Acetylglucosaminyl amino acids and peptides were glycosides have accentuated the high potential of of glycosyltransferases and glycosyltransferase successfully galactosylated to afford glycopeptides with a in drug delivery, for example by increasing the solubility and kits offered by Fluka, please take a look at the disaccharide moiety.[58-60] Further extension of the carbohydrate bioavailability of large hydrophobic molecules under mild β → product listing in section 2.2 or visit our website chain was accomplished afterwards by employing conditions. (1 4)GalT catalyzed galactosidations of glycosides [58-60] β at www.sigma-aldrich.com/fluka. α(2→6)Sialyltransferase. was successfully accomplished for elymoclavine-17-O- -D- glucopyranoside,[15] stevioside and steviolbioside,[64] The preparation of an -bound trisaccharide was colchicoside,[65] coumarinic glycoside fraxin,[65] and different accomplished by combined chemo-enzymatic synthesis.[58] ginsenosides.[66,67] Galactosidation of a N-acetylglucosaminyl oligopeptide followed To learn more about our comprehensive portfolio of enzymes please have a look at the For technical assistance or to order, please call your local Sigma-Aldrich Office sigma-aldrich.com SIGMA-ALDRICH Enzyme Explorer – your research assistant on www.sigma-aldrich.com/enzymeexplorer. For questions about the pricing or to order, please contact your local Sigma-Aldrich Office (see back cover) 6 7 1.2. β(1→4) GALACTOSYLTRANSFERASECONTINUED 1.2. β(1→4) GALACTOSYLTRANSFERASECONTINUED

Galactosylation of glycosides bearing a hydrophobic aglycone Employing C-glycoside analogues of the naturally occurring may suffer from poor solubility of the acceptor substrate. glycopeptide linkages (N-acetylglucosamine β-linked to either β-GlcNAc-R ; R = Ac-Asn-OMe → [58] Recent systematic investigations of the stability of β(1→4)GalT asparagine or ) the corresponding C-lactosides were in different aqueous reaction mixtures and the effect of organic isolated in excellent yields.[69] cosolvents are very instructive for choosing an appropriate Neither D-, D-allose, D-galactose, nor D- are [65] mixture. Solvents like dimethyl sulfoxide, acetone, substrates.[4,5] Monosaccharides displaying a negative charge, dioxane and ethanol seemed to be beneficial, increasing the α such as glucuronic acid and -glucose-1-phosphate are also not β-GlcNAc(1→4)-β-GlcNAc-R ; R = Ac-Asn-OMe → [58] stability of this enzyme, while other solvents such as N,N- accepted as substrates. Azasugars and glucals are considered to dimethylformamide, acetonitrile and tetrahydrofuran enhanced be very weak acceptors.[54] the inactivation process. With regard to the nucleotide sugar donors, several modified Transfer of galactose onto cyclodextrin was performed, because substrates were utilized, but the rate of enzyme-catalyzed the recognition of the Gal-cyclodextrin conjugates by galectins transfer turned out to be rather slow.[4,5] was expected to enhance the drug delivery capabilities of the → [59] system.[68] from Fluka from Fluka Table 1. Acceptors and products of β(1→4)GalT catalyzed transfer of galactose. β-GlcNAc-R ; R = Gly-Gly-Asn-Gly-Gly → β-Gal(1→4)-β-GlcNAc-R ; R = Gly-Gly-Asn-Gly-Gly [59]

→ [61] Acceptor Substrate → Product Ref.

GlcNAc-OH → [46,47] Galactosyltransferase Kits Galactosyltransferase Kits

elymoclavine 17-O-(2-acetamido-2-deoxy-β-D-glucopyranoside) → [15] Glc-OH → β-Gal(1→4)-Glc-OH [46,47]

β-GlcNAc-hexanolamine → β-Gal(1→4)- β-GlcNAc- hexanolamine [47]

β-GlcNAc-hexanolamine-agarose → β-Gal(1→4)- β-GlcNAc- hexanolamine-agarose [47]

β-GlcNAc(1→4)-Gal-OH → β-Gal(1→4)-β-GlcNAc(1→4)-Gal-OH [46]

β-GlcNAc(1→4)-GlcNAc-OH → β-Gal(1→4)-β-GlcNAc(1→4)-GlcNAc-OH [47,58] → [65] β-GlcNAc(1→6)-Gal-OH → β-Gal(1→4)-β-GlcNAc(1→6)-Gal-OH [38,54]

β-GlcNAc(1→3)-Gal-OH → β-Gal(1→4)-β-GlcNAc(1→3)-Gal-OH [38,54] β → β → β -Glc-OCH2C6H4(NO2)-CONH-polymer -Gal(1 4)- -Glc-OCH2C6H4(NO2)-CONH-polymer [56,57] β → β → β → β → β -Glc(1 4)- -Glc-OCH2C6H4(NO2)-CONH-polymer -Gal(1 4)- -Glc(1 4)- -Glc-OCH2C6H4(NO2)-CONH-polymer [56,57] → [65] β → β → β → β → β -Glc(1 4)- -Glc-OCH2-NH-L-Phe-CO-polymer -Gal(1 4)- -Glc(1 4)- -Glc-OCH2-NH-L-Phe-CO-polymer [56,57]

- → [54,60] - - → [64] -

→ [54,60] - -

-

-L- → [69] α → β → -L-Fuc-(1 6)- -GlcNAc-O(CH2)8CO2CH3 [53]

Contact us to learn more about our biocatalyst and biotransformation capabilities. For technical assistance or to order, please call your local Sigma-Aldrich Office sigma-aldrich.com To place an order or get a quote, please contact your local Sigma-Aldrich Fine Chemicals office For questions about the pricing or to order, please contact your local Sigma-Aldrich Office (see back cover) 8 9 1.3. α(1→3) GALACTOSYLTRANSFERASE 1.3. α(1→3) GALACTOSYLTRANSFERASE CONTINUED

74188 α(1→3)-Galactosyltransferase Kit NEW! Cat. No. Name Amount β-Gal(1→4)-β-GlcNAc-OAll → [85] 77038 α(1→3)-Galactosyl , murine, recombinant from E. coli 5 x 0.6 ml ~ 0.5 U/ml1) , E.C. 2.4.1.151 40396 UDP-Galactose UDP-Gal; Uridine 5'-diphospho-α-D-galactose disodium salt BioChemika, ≥90% (HPLC) 70 mg 63536 Manganese(II) chloride tetrahydrate β-Gal(1→4)-β-GlcN-OH → α-Gal(1→3)-β-Gal(1→4)-β-GlcN-OH [85] puriss. p.a., ACS, ≥99.0% (KT) 500 mg 93368 Trizma® hydrochloride2) β → β → β → β → -Gal(1 4)- -GlcNAc(1 3)- -Gal(1 4)- -Glc-N3 [85] BioChemika, pH 7 1 g 05470 Albumine from bovine serum BioChemika, lyophilized, crystallized, ≥98% (HPCE) 25 mg 79385 Phosphatase alkaline from bovine intestinal mucosa BioChemika, solution (clear), >10000 U/ml3), E.C. 3.1.3.1 150 ml

from Fluka β → β → α → β → β from Fluka -Gal(1 4)- -GlcNAc-O(CH2)8COOCH3 -Gal(1 3)- -Gal(1 4)- -GlcNAc-O(CH2)8COOCH3 [84] 1) 1 U corresponds to the amount of enzyme, which transfers 1 µmol of galactose from UDP-galactose to D-glucose per minute at pH 8.4 and 30°C in the presence of α-lactalbumin. → [84] 2) Trizma® is a registered trademark of Sigma-Aldrich Biotechnology, L.P. 3) 1 U corresponds to the amount of enzyme, which hydrolyzes 1 µmol 4-nitrophenyl phosphate per minute at pH 9.8 and 37 °C.

α(1→ 3) Galactosyltransferase (EC 2.4.1.151) has attracted scale.[84,85] This approach provides an easy access to a wide much attention in recent years as a unique enzyme responsible variety of antigens for studies on xenotransplantation and also Galactosyltransferase Kits Galactosyltransferase Kits for the formation of α-galactosyl epitopes bearing α-Gal(1→ 3)- for other pharmaceutical research.[86] The α-(1→ 3) β-Gal-OR termini. The interaction of such α-Gal epitopes (Galili Galactosyltransferase transfers a galactose unit from UDP- antigens) on the surface of animal cells (e.g. porcine endothelial galactose (UDP-Gal) onto the 3-OH group of a terminal β-linked cells) with anti-galactosyl antibodies present in human serum is galactose forming an α-linkage. Several studies of α-(1→ 3) believed to be the main cause in antibody-mediated hyperacute Galactosyltransferase substrate specificity have been carried out, rejection following xenotransplantation.[70-75] Experimental which showed a high acceptor promiscuity of the enzyme in attempts to overcome hyperacute rejection revealed the need vitro.[84,85,87-89] Acceptors that were successfully used include for substantial amounts of α-Gal oligosaccharides as well as lactose, β-lactosyl azide, β-thiophenyl lactoside, N- synthetical α-Gal analogues and mimetics with high affinity for acetyllactosamine derivatives and lactosamine.[85] A wide range anti-Gal antibodies. Earlier chemical syntheses of α-Gal of N-acyl derivatives of type II disaccharides are galactosylated trisaccharides were rather tedious,[76-79] while glycosidase- by the enzyme. Carbamate, different protected 1.4. References: catalyzed transglycosylation reactions to form the desired α- residues and lipophilic, as well as hydrophilic bulky aromatic [1] E. J. Toone, et al., Tetrahedron, 1989, 45, 5365. [2] D. G. Drueckhammer, et al., Synthesis, 1991, 499. [3] C.-H. Wong, et. al., Angew. Chem., Gal(1→ 3)-β-Gal-OR linkage resulted in poor yields and residues can replace the natural N-acetyl group.[84] α-(1→ 3) 1995, 107, 569. [4] C.-H. Wong, in Enzyme in Organic Synthesis, K. Drauz,, H. Waldmann [eds], VCH, Weinheim, 1995, 279. [5] C. H. regioselectivities.[80-83] Galactosyltransferase is reported to be capable of galactosyl Wong, G. M. Whitesides, in Enzymes in Synthetic Organic Chemistry, Tetrahedron Organic Chemistry Series, Vol. 12, Elsevier Science Ltd, Oxford, 1994, 252. [6] K. M. Koeller, C.H. Wong, Chem.Rev., 2000, 100, 4465. [7] P. G. Wang, et al., Curr. Opin. in Drug Discovery & Using recombinant α-(1→ 3) Galactosyltransferase, α-Gal transfer to an unnatural hindered tertiary hydroxyl of the Development, 2000, 3[6], 756. [8] for a collection of papers on glycoconjugates please see: Carbohydr. Res., 1987, 164. [9] A. Varki, acceptor sugar.[90] Glycobiology, 1993, 3, 97. [10] R. A. Dwek, Chem.Rev., 1996, 96, 683. [11] P. Sears, C.-H. Wong, Cell. Mol. Life Sci., 1998, 54, 223. [12] J. C. epitopes and several derivatives were synthesized on preparative Paulson, in The Receptors, P. M. Cohn [ed.], Academic Press, New York, 1985, Vol. 2, 131. [13] M. R. Sairam, in The Receptors, P.M. Cohn [ed.], Academic Press, New York, 1985, Vol. 2, 307. [14] S. Hakomori, Cancer Res., 1985, 45, 2405. [15] V. Kren, et al., J. Chem.Soc. Perkin Trans I, 1994, 2481. [16] S. Riva, J. of Molecular Catalysis B: Enzymatic 19-20, 2002, 43. [17] G. Ashwell, J. Harford, J. Ann. Rev. Biochem., 1982, 51, Table 2. Acceptors and products of α(1→3)GalT catalyzed transfer of galactose. 531. [18] E. G. Berger, et al., FEBS Lett., 1986, 203, 64. [19] W. B. Jacoby [ed.]: Enzymatic Bases of Detoxification, Academic Press, New York, 1980, Vol. 2. [20] H. Schachter, Biochem. Cell Biol., 1985, 64, 163. [21] Jenkins, R. A., et al., Nat. Biotechnol., 1996, 14, 975. [22] H. Paulsen, Angew, Chem. Int. Ed. Engl., 1982, 21, 155. [23] H. Paulsen, Chem. Soc. Rev., 1984, 13, 15. [24] H. Kunz, Angew, Chem. Int. Ed. Engl., 1987, Acceptor Substrate → Product Ref. 26, 294. [25] L. F. Leloir, Science, 1971, 172, 1299. [26] R. Kornfeld, S. Kornfeld, Ann. Rev. Biochem., 1985, 54, 631. [27] W. M. Watkins, Carbohydr. Res., 1986, 149, 1. [28] A. T. Beyer, et al., Adv. Enzymol., 1981, 52, 24. [29] J. E. Sadler, et al., Method. Enzymol., 1982, 83, 458. [30] → [85] M. J. Morin, et al., J. Biochem. Pharm., 1983, 32, 553. [31] W. McDowell, et al., Biochem. J., 1987, 248, 523. [32] V.N. Shibaev, Pure Appl. Chem., 1978, 50, 1421. [33] H. H. Higa, J. C. Paulson, J. Biol. Chem., 1985, 260, 8838. [34] H. S. Conradt, et al., FEBS Lett., 1984, 170, 295. [35] H. J. Gross, et al., Eur. J. Biochem., 1987, 168, 595. [36] C. Augé, C. Gautheron, Tetrahedron Lett., 1988, 29, 789. [37] C. Unverzagt, et al., J. Am. Chem. Soc., 1990, 112, 9308. [38] C. Augé, et al., Tetrahedron Lett., 1984, 25, 1467. [39] M. Ichikawa, et al., Methods Enzymol., 1994, 247, 107. [40] M. Ichikawa, et al., Tetrahedron Lett., 1995, 36, 8731. [41] S. Koizumi, et al., Nature Biotechnol., 1998, 16, 847. [42] T. Endo, et al., Carbohydr. Res., 1999, 316, 179. [43] K. Tabata, et al., Biotechnol. Lett., 2000, 22, 479. [44] T. Endo, et al., Appl. Microbiol. Biotechnol., 2000, 53, 257. [45] F. L. Schanbacher, K. E. Ebner, J. Biol. Chem., 1970, 245, 5057. [46] L. Berliner, et al., Mol. Cell. Biochem., 1984, 62, 37. [47] H. A. Nunez, R. Barker, , 1980, 19, 489. [48] I. P. Trayer, R.L. Hill., J. Biol. Chem., 1970, 245, 5057. [49] P. Andrews, FEBS Lett., 1970, 9, 297. [50] R. Barker, et al., J. Biol. Chem., 1972, 247, 7135. [51] A. K. Rao, et al., Biochemistry, 1976, 15, 5001. [52] G. Baisch, et al., Bioorg. Med. Chem. Lett., 1996, 6, 749. [53] M. M. Palcic, et al., Carbohydr. Res., 1987, 159, 315. [54] S. David, C. Augé,, Pure Appl. Chem., 1987, 59, 1501. β → β → α → β → β [ ] [ ] [ ] -Gal(1 4)- -Glc-N3 -Gal(1 3)- -Gal(1 4)- -Glc-N3 [85] 55 C. H. Wong, et al., J. Am. Chem. Soc., 1991, 113, 8137. 56 U. Zehavi, M. Herchman, Carbohydr. Res., 1984, 133, 339. 57 U. Zehavi, et al., Carbohydr. Res., 1983, 124, 23. [58] J. Thiem, T. Wiemann, Angew. Chem., 1990, 102, 78. [59] C. Unverzagt, et al., J. Am. Chem. Soc., 1990, 12 [ ] et al. Carbohydr. Res. 193 [ ] Angew. Chem. 108 et al. β → β → α → β → β 1 , 9308. 60 C. Augé, , , 1989, , 288. 61 G. Baisch, R. Öhrlein, , 1996, , 1949.[62] S. Riva, , -Gal(1 4)- -Glc-S-C6H5 -Gal(1 3)- -Gal(1 4)- -Glc-S-C6H5 [85] Ann. N.Y. Acad. Sci., 1998, 864, 70. [63] L.Panza, et al., J.Chem. Soc. Perkin Trans. I, 1997, 1255. [64] B. Danieli, et al., Helv. Chim. Acta, 1997, 80, 1153. [65] S. Riva, et al., Carbohydrate Research,1998, 305, 525. [66] B. Danieli, et al., J. Org. Chem., 2001, 66, 262. [67] S. Gebhard, et al., Helv. Chim. Acta, 2002, 85, 1. [68] E. Leray, et al., J.Chem. Soc. Chem Commun., 1995, 1019. [69] L. Tarantini, et al., J. of Molecular Catalysis → [85] B: Enzymatic 11, 2001, 343. [70] U. Galili, Immunol. Today, 1993, 14, 480. [71] U. Galili, in: Evolution and Pathophysiology of the Human Natural Anti-α-Galactosyl IgG Antibody, Springer Semin. Immunopathol.; 1993, 15, 155. [72] K. Gustafsson, et. al., Immunol. Rev., 1994, 141, 59. [73] M. S. Sandrin, et. al., Transplant. Rev., 1994, 8, 134. [74] M. S. Sandrin, I. F. C. McKenzie, Immunol. Rev., 1994, 141, 169. [75] K. D. C. Cooper, et al., Immunol. Rev., 1994, 141, 31. [76] J.-C. Jacquinet, et al., J.Chem.Soc. Perkin Trans I., 1981, 326. [77] K. Koike, et al., Carbohydr. Res., 1987, 163, 189. [78] Y. Matsuzaki, et al., Tetrahedron Lett., 1993, 34, 1061. [79] G. V. Reddy, et al., Carbohydr. Res., 1994, 263, 67. [80] K. G. I. Nilsson, Tetrahedron Lett., 1997, 38, 133. [81] G. Vic, et al., J.Chem.Soc. Chem Commun., 1996, 1473. [82] G. Vic, et al., J.Chem.Soc. Chem Commun., 1997, 1169. [83] I. Mstsuo, et al., Bioorg. Med. Chem. Lett., 1997, 7, 255. [84] G. Baisch, et al., Bioorg. Med. Chem. Lett., 1998, 8, 1575. [85] J. Fang, et al., J. Am. Chem. Soc, 1998, 120, 6635. [86] C. H. Hokke, et al., Glycoconjugate J., 1996, 13, 687. [87] D. H. Joziasse, et al., Eur. J. Biochem., 1990, 191, 75. [88] K. Sujino, et al., Carbohydr. Res., 1998, 305, 483. [89] C. L. M. Stults, et al., Glycobiology., 1999, 9, 661. [90] X. Qian, et al., J. Am. Chem. Soc, 1999, 121, 12063. To learn more about our comprehensive portfolio of enzymes please have a look at the For technical assistance or to order, please call your local Sigma-Aldrich Office sigma-aldrich.com SIGMA-ALDRICH Enzyme Explorer – your research assistant on www.sigma-aldrich.com/enzymeexplorer. For questions about the pricing or to order, please contact your local Sigma-Aldrich Office (see back cover) 10 11 2. ENZYMES FOR ORGANIC SYNTHESIS 2.1. OXIDOREDUCTASES CONTINUED Our enzymes are listed according to their E.C. numbers in the following classes: → 2.1. Oxidoreductases → 2.3. Hydrolases Alcohol Dehydrogenase from Thermoanaerobium brockii 61310 100 mg → 2.2. Transferases → 2.4. Lyases Alcohol:NADP+ BioChemika, TBADH off-white, WHAT’S COMING UP NEXT? E.C. 1.1.1.2 ~250 U/mg protein (~10 mg/ml) [9028-12-0] Storage: 2-8°C → Recombinant α(2→6) Sialyltransferase and α(1→3) Fucosyltransferase VI! 1 U corresponds to the amount of enzyme which oxidizes → Corresponding Kits under development! 1 µmol of 2-butyl alcohol per minute at pH 7.8 and 40 °C L-Lactate Dehydrogenase from rabbit muscle Fluka R&D recently developed the fermentation process for human α(2→6)-Sialyltransferase and α(1→3)-Fucosyltransferase from Synthesis of chiral furan derivatives;[1] preparation of bifunctional recombinant source. These enzymes will become available to our customers soon. chirons;[2] conversion of secondary alcohols to corresponding L-LDH lactones;[3] synthesis of 8-methyldec-2-yl propanoate.[4] E.C. 1.1.1.27 To allow preparative sialylation and fucosylation, kits with the corresponding nucleotide sugar donor and further components for [9001-60-9] preparative oligosaccharide synthesis will be launched together with the enzymes. [1] D.G. Drueckhammer, et al., J. Org. Chem., 1988,53, 1607; [2] E. Keinan, et al. ,Biocatalysis , 1990, 3, 57; [3] A.J. Willetts, et al., J. Chem. Soc., Perkin 1 U corresponds to the amount of enzyme which reduces Trans. I, 1991, 1608; [4] E. Keinan, et al., J. Org. Chem., 1992, 57, 3631. 1 µmol pyruvate per minute at pH 7.0 and 25°C Available Soon from Fluka: 05655 1 mg, 5 mg Substrate specificity and use as a catalyst in the synthesis of α → NEW! 95638 (2 6)-Sialyltransferase, human, recombinant from Pichia pastoris BioChemika, powder, white, ~35 U/mg homochiral 2-hydroxycarboxylic acids; [1] inversion of chirality NEW! 61374 α-(2→6)-Sialyltransferase Kit Storage: –20 °C using an electroenzymatic reactor. [2] NEW! 81106 α-(1→3)-Fucosyltransferase VI, human, recombinant from Pichia pastoris [1] M.J. Kim, G.M. Whitesides, J. Am. Chem. Soc., 1988, 110, 2959; [2] J.M. NEW! 61843 α-(1→3)-Fucosyltransferase VI Kit Laval, et al., Ann. N.Y. Acad. Sci., 1992, 672, 213. Keep up-to-date by visiting http://www.sigma-aldrich.com/newproducts Glycerol dehydrogenase from Cellulomonas sp. 61311 25 mg, 100 mg E.C. 1.1.1.6 BioChemika, suspension in 2.1 M ammonium • Oxidoreductases • Oxidoreductases [9028-14-2] sulfate solution, pH ~6.0, white, ~500 U/mg protein 2.1. OXIDOREDUCTASES 1 U corresponds to the amount of enzyme which oxidizes (~10 mg/ml) Dehydrogenase from baker’s yeast 68482 1 ml 1 µmol of glycerol (49769) per minute at pH 10.5 and 25°C Storage: 2-8°C (S. cerevisiae) BioChemika, solution, light yellow, >20 U/ml Component of NADH recycling systems. E.C. 1.2.1.5 Storage: –20 °C 04356 NEW! 1 mg, 5 mg 61309 25 mg, 100 mg [9028-88-0] BioChemika, powder, faintly yellow ≥ 50 U/mg BioChemika, Enzymes for Organic Synthesis Enzymes for Organic Synthesis 1 U corresponds to the amount of enzyme which oxidizes Storage: –20 °C lyophilized, powder, off-white, ~140 U/mg 1 µmol (00070) to acetic acid per minute at Alcohol Dehydrogenase from Saccharomyces cerevisiae Storage: 2-8°C pH 8.0 and 25 °C Alcohol Dehydrogenase from yeast + Component of NADH and NADPH cofactor recycling systems Alcohol:NAD oxidoreductase Glycerol Dehydrogenase from Geotrichum candidum ADH E.C. 1.1.1.6 D-Lactate Dehydrogenase Lactobacillus leichmanii 82884 25 mg, 100 mg + BioChemika, lyophilisate, white, ≥1 U/mg E.C. 1.1.1.1 [9028-14-2] (R)-Lactate: NAD oxidoreductase Storage: –20 °C [9031-72-5] 1 U corresponds to the amount of enzyme which oxidizes D–LDH 1 U corresponds to the amount of enzyme which oxidizes 1 µmol of glycerol per minute at pH 8.0 and 25 °C E.C. 1.1.1.28 88307 50 ml 1 µmol ethanol per minute at pH 8.8 and 25 °C Asymmetric reduction of ketones.[1-2] [9028-36-8] 1 U corresponds to the amount of enzyme BioChemika, solution, slightly yellow, contains 50 mM Component of NADH cofactor recycling systems, [1] K. Nakamura, et al., Tetrahedron Lett., 1988, 29, 2453; [2] A. Liese, et potassium phosphate and 50% glycerol, ~1 U/ml biotransformations in organic solvents.[1,2] which will reduce 1 µmol of pyruvate to D-lactate per al., Biotechnol. Bioeng. , 1996, 51, 544. minute at pH 7.0 and 25 °C Storage: –20 °C [1] J.S. Deetz, J.D. Rozzell, Ann. N.Y. Acad. Sci., 1988, 542, 230; [2] F. Yang, 49860 10 mg, 50 mg 61306 1 ml, 5 ml A.J. Russell, Biotechnol. Prog., 1993, 9, 234. BioChemika, ~30 U/g BioChemika, suspension in 3.2 M ammonium 05640 100 mg, 25 mg, 1 g Storage: –20 °C sulfate solution, pH ~6.0, white, ~1000 U/ml Alcohol Dehydrogenase from Candida boidinii BioChemika, lyophilized, powder, stab. with ~35% Storage: 2-8 °C E.C. 1.1.1.1 sucrose, ~300 U/mg 1 U corresponds to the amount of enzyme which catalyzes Storage: –20 °C Dehydrogenase from sheep liver 49971 NEW! 1 ml, 5 ml the oxidation of 1µmol 2-propanol per minute at pH 7.5 L-Iditol Dehydrogenase BioChemika, suspension, yellow, protein only and 30 °C 05635 25 mg, 100 mg + L-Iditol: NAD 5-oxidoreductase partially soluble in water or buffer, ~1000 U/ml 91031 250 mg BioChemika, powder, off-white, ≥250 U/mg SDH ≥ Storage: 2-8 °C BioChemika, powder, light brown, 0.4U/mg Storage: –20 °C Polyol Dehydrogenase Storage: –20 °C E.C. 1.1.1.14 [9028-21-1] D-Lactate Dehydrogenase from Lactobacillus sp. Alcohol Dehydrogenase from Lactobacillus kefir 1 U corresponds to the amount of enzyme which converts D Alcohol Dehydrogenase from Candida parapsilosis + -LDH Alcohol:NADP oxidoreductase 1µmol D- to D-sorbitol per minute at pH 7.6 and 25°C E.C. 1.1.1.28 E.C. 1.1.1.1 E.C. 1.1.1.2 Reduction of L-iditol to L-sorbose. Reduction of ketones to [9028-36-8] 1 U corresponds to the amount of enzyme which liberates [9028-12-0] polyoles. 1 U corresponds to the amount of enzyme which reduces 1µmol ethyl 4-acetylbutyrate per minute at pH 8.0 and 1 U corresponds to the amount of enzyme which reduces 85535 10 mg 1 µmol pyruvate to D-lactate per minute at pH 7.0 and 25 °C 37°C 1 µmol acetophenone per minute at pH 7.0 and 25 °C to BioChemika, lyophilized, powder, white, ~6 U/mg 59023 10 mg, 50 mg 81083 10 ml phenylethanol (acetophenone, 00790), as substrate) Storage: –20°C BioChemika, solution, slightly red, contains 50% BioChemika, powder, white, ≥400 U/mg glycerol, ≥4 U/ml Component of NADPH cofactor recycling systems; Application in Storage: –20 °C biocatalysis. Storage: –20 °C L-Lactate Dehydrogenase from bovine heart C.W. Bradshaw et al.,J. Org. Chem., 1992, 57, 1532. (S)-Lactate: NAD+ oxidoreductase 05643 50 mg, 250 mg D-Lactate Dehydrogenase from Staphylococci L-LDH BioChemika, D-LDH Alcohol Dehydrogenase from Rhodococcus erythropolis E.C. 1.1.1.27 powder, beige, E.C. 1.1.1.28 E.C. 1.1.1.1 [9001-60-9] 1 U corresponds to the amount of enzyme which reduces ~0.4 U/mg 1 U corresponds to the amount of enzyme which reduces Storage: –20 °C 1 U corresponds to the amount of enzyme which reduces 1 µmol pyruvate per minute at pH 7.0 and 25°C 1 µmol ethyl (S)-3-hydroxybutyrate per minute at pH 9.5 1 µmol pyruvate per minute at pH 7.0 and 25°C and 30°C Reduction of α-ketoacids to a-hydroxycarboxylic acids.

Contact us to learn more about our biocatalyst and biotransformation capabilities. For technical assistance or to order, please call your local Sigma-Aldrich Office sigma-aldrich.com To place an order or get a quote, please contact your local Sigma-Aldrich Fine Chemicals office For questions about the pricing or to order, please contact your local Sigma-Aldrich Office (see back cover) 12 13 2.1. OXIDOREDUCTASES CONTINUED 2.1. OXIDOREDUCTASES CONTINUED

17847 25 mg, 100 mg 49272 1 mg, 5 mg, 25 mg 49178 1 g, 5 g hydrophobisation of α-helices. [1,2] BioChemika, lyophilisate, white, ~120 U/mg BioChemika, lyophilized, powder, white, essentially BioChemika, lyophilized, powder, ~25 U/mg [1] V.I. Tishkov, et al., Biochem. Biophys. Res. Comm., 1993, 192, 976 ; [2] Storage: –20 °C sulfate free, ~210 U/mg Storage: –20°C A.M. Rojkova, et al., FEBS Lett., 1999, 445, 183. Storage: –20°C 75274 1 ml, 5 ml BioChemika, solution, contains ammonium sulfate (7 % 3-Hydroxybutyrate Dehydrogenase Alcohol Oxidase from Pichia pastoris of the saturation), 15 % glycerol, 15 mM EDTA, light from Rhodopseudomonas spheroides Glucose-6-phosphate Dehydrogenase from yeast Alcohol:oxygen oxidoreductase yellow, >150 U/ml (R)-3-Hydroxybutanoate: NAD+ oxidoreductase G-6-P-DH E.C. 1.1.3.13 Storage: 2-8°C 3-HBDH E.C. 1.1.1.49 [9073-63-3] E.C. 1.1.1.30 [9001-40-5] 1 U corresponds to the amount of enzyme which oxidizes [9028-38-0] 1 U corresponds to the amount of enzyme which oxidizes 1 µmol methanol to formaldehyde per minute at pH 7.5 Formate Dehydrogenase, Pseudomonas spec., NADP- 1 U corresponds to the amount of enzyme which catalyzes 1 µmol glucose-6-phosphate per minute at pH 7.6 and 25°C and 25°C dependant recombinant mutant to 79900 from E. coli the oxidation of 1 µmol D-3-hydroxybutyrate to Component of a cofactor recycling system for NADH or NADPH. 92705 1 ml E.C. 1.2.1.2 acetoacetate per minute at pH 8.0 and 25°C 49270 1 mg, 5 mg, 25 mg BioChemika, solution, contains 0.1M potassium [9028-85-7] 54975 5 mg, 25 mg BioChemika, standardized with bovine serum phosphate, 30% saccharose, pH ~8.0, red to deep red, 1 U corresponds to the amount of enzyme which oxidizes 1 ≥ BioChemika, suspension in 3.2 M ammonium albumin, crystalline suspension in 3.2 M ammonium 400 U/ml µmol formiate per minute at pH 7.0 and 30°C (NADP as sulfate solution, pH ~6.0, white, 4-10 U/mg protein sulfate solution, pH ~6, ~120 U/mg protein (~5 mg Storage: –20°C cofactor) (~5 mg protein/ml) protein/ml) The introduced mutation has the effect that the enzyme has a higher Storage: 2-8°C Formate Dehydrogenase from Candida boidinii Storage: 2-8°C affinity to NADP (KM of 0.3 mM) than to NAD (KM of 1 mM). Formate: NAD+ oxidoreductase Enzyme employed in a new efficient procedure to regenerate NADPH. K. Seelbach, et al., Tetrahedron Lett., 1996 , 37, 1377. • Oxidoreductases • Oxidoreductases 49273 1 mg, 5 mg FDH Glucose Dehydrogenase from Pseudomonas sp. BioChemika, lyophilized, powder, off-white, E.C. 1.2.1.2 79331 1 ml, 5 ml E.C. 1.1.1.47 ~160 U/mg [9028-85-7] BioChemika, solution, contains ammonium sulfate (10 % [9028-53-9] Storage: 2-8°C 1 U corresponds to the amount of enzyme which oxidizes of the saturation), 20 % glycerol, 15 mM EDTA, light 1 U corresponds to the amount of enzyme which oxidizes 1 µmol sodium formate (71539) per minute at pH 7.6 and yellow, ~50 U/ml 1 µmol β-D-glucose to D-glucono-δ-lactone per minute at 25°C Storage: 2-8°C pH 8.0 and 37 °C Glucose-6-phosphate Dehydrogenase from torula yeast Preferred enzyme for regeneration of NADH from NAD.[1] Enzymes for Organic Synthesis Enzymes for Organic Synthesis [2] NADH regenerating enzyme. G-6-P-DH Stereoselective lactone preparation. 19359 10 mg E.C. 1.1.1.49 [1] K. Drauz , H. Waldmann, in Organic Synthesis, VCH, L- Dehydrogenase from Bacillus subtilis ≥ Weinheim, 1995, 597. + BioChemika, powder, white, 250 U/mg [9001-40-5] [2] G. Grogan, et al. , Biotechnol. Lett., 1992, 14, 1125. L-Alanine: NAD oxidoreductase (deaminating) Storage: –20°C 1 U corresponds to the amount of enzyme which oxidizes 47753 1 ml, 5 ml E.C. 1.4.1.1 1 µmol glucose-6-phosphate per minute at pH 7.6 and 25°C BioChemika, clear liquid clear, brown, ~50 U/ml [9029-06-5] Component of a cofactor recycling system for NADH or NADPH. Storage: 2-8°C 1 U corresponds to the amount of enzyme which converts Glucose-6-phosphate Dehydrogenase from Leuconostoc 49279 1 mg, 5 mg 1 µmol L-alanine to pyruvate and NH3 per minute at pH mesenteroides BioChemika, suspension, contains 3.2 M ammonium 47709 50 mg, 250 mg 10.0 and 25°C G-6-P-DH sulfate, ~15% sodium citrate, pH ~7.5, white, ~180 BioChemika, powder, 0.3-0.6 U/mg Characterization,[1,2] Production of L-alanine with coenzyme [3] E.C. 1.1.1.49 U/mg protein (~1 mg protein/ml) Storage: –20°C regeneration. Storage: 2-8°C [1] Y. Nitta, et al., J. Bacteriol., 1974, 117, 588; [2] A. Yoshida, E. Freese, [9001-40-5] Biochim. Biophys. Acta, 1965, 96, 248 ;[3] T. Fujii , et al. , Biotechnol. 1 U corresponds to the amount of enzyme which oxidizes Bioeng. , 1991 , 38 , 1166. 1 µmol of glucose-6-phosphate per minute at pH 7.8 and Formate Dehydrogenase, Pseudomonas spec., 05192 1 mg, 5 mg 30°C (NAD as coenzyme) Glucose Oxidase from Aspergillus niger recombinant from E. coli BioChemika, suspension in 2.4 M ammonium sulfate β ≥ Catalyses the conversion of D-glucose-6-phosphate to D-glucono- -D-Glucose: oxygen 1-oxidoreductase E.C. 1.2.1.2 solution, pH 7.0, white, 30 U/mg protein (~10 mg γ protein/ml) -lactone-6-phosphate. Used for the determination of glucose, GOD [9028-85-7] fructose and/or ATP. Storage: 2-8°C E.C. 1.1.3.4 1 U corresponds to the amount of enzyme which oxidizes Component of a cofactor recycling system for NADH or NADPH. [9001-37-0] 1 µmol formiate per minute at pH 7.0 and 30°C (NAD as Under optimum conditions, the activity found with NAD is ~1.8x 1 U corresponds to the amount of enzyme which oxidizes cofactor) higher than with NADP. At pH 7.8 and 30°C the activity is 1.7x from bovine liver 1 µmol glucose per minute at pH 7.0 and 25°C The wildtype enzyme (Fluka 79900) has a K of 100 mM for NAPD higher than at pH 7.4 and 25 °C. Oxidation of free and terminal bound glucose. M L-Glutamate: NAD[P] + oxidoreductase (deaminating) and a K of 0.08 mM for NAD 49275 5 mg, 25 mg Biotransformations in a bioelectrochemical cell. M L-GLDH 79900 1 ml, 10 ml BioChemika, lyophilized, powder, slightly beige, C. Laane, et al., Enzyme Microb. Technol., 1984, 6, 165. E.C. 1.4.1.3 BioChemika, solution, contains ammonium sulfate (5 ~170 U/mg 49177 10 ml, 50 ml [9029-12-3] % of the saturation), 15 % glycerol, 15 mM EDTA, light Storage: –20 °C BioChemika, clear solution in 0.1 M sodium acetate 1 U corresponds to the amount of enzyme which reduces yellow, ~100 U/ml buffer, pH 4.0, yellow, ~1000 U/ml 1 µmol 2-oxoglutarate (75893) per minute at pH 7.9 and Storage: 2-8°C Storage: 2-8°C 25°C Glucose-6-phosphate Dehydrogenase from baker’s yeast Determination of urea, L-glutamate, 2-ketoglutarate. [1,2] (S. cerevisiae) 49180 250 mg, 1 g Formate Dehydrogenase, Pseudomonas spec., [1] M.G. Gore, Int. J. Biochem., 1981, 13, 879; [2] H.F. Fischer, Meth. G-6-P-DH BioChemika, lyophilized, powder, ~200 U/mg Enzymol., 1985, 113, 16. recombinant mutante to 79900 from E. coli E.C. 1.1.1.49 Storage: –20°C 49392 100 mg, 1 g E.C. 1.2.1.2 [9001-40-5] BioChemika, lyophilized, powder, >30 U/mg [9028-85-7] 1 U corresponds to the amount of enzyme which oxidizes 49182 250 mg, 1 g, 5 g Storage: –20°C 1 U corresponds to the amount of enzyme which oxidizes 1 µmol glucose-6-phosphate per minute at pH 7.6 and 25 °C BioChemika, powder, yellow, ~150 U/mg 1 µmol formiate per minute at pH 7.0 and 30°C (NAD as Component of a cofactor recycling system for NADH or NADPH. Storage: –20°C 49390 1 ml, 5 ml cofactor) 49271 1 mg, 5 mg, 10 mg BioChemika, solution in 50% sodium phosphate buffer The indroduced mutations have the effect that the enzyme has a BioChemika, crystalline, suspension in 3.2 M 49181 250 mg, 1 g, 5 g pH 7.3; 50% glycerol, viscous, amber, ~1600 U/ml higher affinity to NAD (KM of 0.04) than the wildtype enzyme ammonium sulfate solution, pH ~6, BioChemika, powder, yellow, ~130 U/mg (Fluka 79900). Furthermore, the mutant enzyme has a higher Storage: 2-8°C ~240 U/ mg protein (~1 mg protein/ml) Storage: –20°C thermal stability. Increased stability of a mutant of a bacterial Storage: 2-8 °C formate dehydrogenase with replaced Cys-255,

To learn more about our comprehensive portfolio of enzymes please have a look at the For technical assistance or to order, please call your local Sigma-Aldrich Office sigma-aldrich.com SIGMA-ALDRICH Enzyme Explorer – your research assistant on www.sigma-aldrich.com/enzymeexplorer. For questions about the pricing or to order, please contact your local Sigma-Aldrich Office (see back cover) 14 15 2.1. OXIDOREDUCTASES CONTINUED 2.1. OXIDOREDUCTASES CONTINUED

L- Dehydrogenase from Bacillus cereus 25810 1 ml from Micrococcus lysodeikticus from bovine milk α-L-α-Leucine: NAD+ oxidoreductase (deaminating) BioChemika, E.C. 1.11.1.6 donor: oxidoreductase E.C. 1.4.1.9 suspension in 0.1 M sodium phosphate, pH 4.0, [9001-05-2] E.C. 1.11.1.7 [9082-71-7] suspension, brown, >10000 U/ml 1 U corresponds to the amount of enzyme which [9003-99-0] 1 U corresponds to the amount of enzyme which catalyzes Storage: 2-8°C decomposes 1 µmol H O per minute at pH 7.0 and 25°C 1 U corresponds to the amount of enzyme which oxidizes 2 2 1 µmol ABTS per minute at pH 6.0 and 25°C the oxidation of 1 µmol L-leucine per minute at pH 10.7 60634 100 ml, 500 ml Properties [1,2], lactoperoxidase-catalyzed iodination as a tool for BioChemika, solution, dark brown, ~170000 U/ml and 30°C to 4-methyl-2-oxopentanoate and ammonia Catalase from Aspergillus niger investigation of proteins, [3,4] enzymatic method of incorporation + Storage: 2-8°C 125 [5] (NAD as cofactor) E.C. 1.11.1.6 of I into DNA. , lactoperoxidase-catalyzed oxidation of [6] 40453 1 ml [9001-05-2] thiocyanate and halides. BioChemika, solution, slightly brown, ~ 50 U/ml [1] B. Reiter, Immunol. Ser., 1985, 27, 123 ; [2] P.I Ohlsson , et al., Protides 1 U corresponds to the amount of enzyme which Catalase from microorganisms Biol. Fluids, 1984, 32, 125; [3] G.S. David, R.A. Reisfeld, Biochemistry, 1974, Storage: –20°C decomposes 1 µmol H O per minute at pH 7.0 and 25°C E.C. 1.11.1.6 2 2 13, 1014; [4] M. Morrison, Meth. Enzymology, 1980, 70, 214; [5] A. Gladek, [1] [2] Removal of hydrogen peroxide; properties; stability. [9001-05-2] M. Modarski, Arch. Immunol. Ther. Exp., 1983, 31, 541; [6] E.L. Thomas, 1 U corresponds to the amount of enzyme which L- Dehydrogenase from [1] K. Kikuchi-Torii, et al., J. Biochem., 1982, 92, 1449; [2] B.P. Wasserman, Immunol. Ser., 1985, 27, 31. H.O. Hultin, Arch. Biochem. Biophys, 1981, 212, 385. decomposes 1 µmol H O per minute at pH 7.0 and 25°C Rhodococcus sp. M4 2 2 61328 1 mg, 10 mg E.C. 1.4.1.20 60631 100 mg, 500 mg 60633 25 mg, 100 mg BioChemika, lyophilized, powder, light brown,~250 U/mg [69403-12-9] BioChemika, ~170 U/mg BioChemika, lyophilized, powder, brown, ~1700 U/mg Storage: –20°C Storage: –20°C 1 U corresponds to the amount of enzyme which catalyzes Storage: 2-8°C 61331 5 mg, 25 mg the oxidation of 1 µmol L-phenyl-alanine per minute at 60628 1 ml, 5 ml BioChemika, lyophilized, powder, yellow-brown, • Oxidoreductases • Oxidoreductases + pH 10.7 and 30°C to phenyl-pyruvate and ammonia (NAD BioChemika, suspension in 3.2 M ammonium sulfate from Arthromyces ramosus ~150 U/mg as cofactor) solution, pH 6, suspension, donor:hydrogen peroxide oxidoreductase Storage: –20°C 55001 1 ml dark green-brown, ~70000 U/ml E.C. 1.11.1.7 BioChemika, solution clear, light yellow, ~150 U/ml Storage: 2-8°C [9003-99-0] Storage: –20°C 1 U corresponds to the amount of enzyme which oxidizes 2-Tridecanone Monooxygenase 1 µmol ABTS (11557) per minute at pH 6.0 and 25°C from Pseudomonas cepacia Enzymes for Organic Synthesis Enzymes for Organic Synthesis Catalase from bovine liver 41366 10 mg, 50 mg E.C. 1.14.13.x Laccase from Agaricus bisporus E.C. 1.11.1.6 BioChemika, powder, light brown, >400 U/mg 1 U corresponds to the amount of enzyme which catalyzes E.C. 1.10.3.2 [9001-05-2] Storage: –20°C the 2-tridecanone-stimulated oxidation of 1 µmol NADPH 1 U corresponds to the amount of enzyme which converts 1 U corresponds to the amount of enzyme which per minute at pH 7.8 and 30°C 1 µmol catechol per minute at pH 6.0 and 25°C L.N. Britton, A.J. Markovetz, J. Biol. Chem., 1977, 252, 8561. decomposes 1 µmol H2O2 per minute at pH 7.0 and 25°C 40452 1 g, 5 g Removal of hydrogen peroxide; properties, [1,2] biocatalytic Peroxidase from horse radish 91530 5 mg, 25 mg BioChemika, powder, deep brown, ≥4 U/mg production of glyoxylic acid, [3] removal of oxidation prducts donor:hydrogen peroxide oxidoreductase BioChemika, ~0.5 U/g Storage: –20°C during production of gluconic acid in a disk reactor with E.C. 1.11.1.7 Storage: –20°C [4] immobilized glucose oxidase. [9003-99-0] [1] M.E. Percy, Can. J. Biochem. Cell Biochem., 1984, 62, 100; [2] L. Goth, 1 U corresponds to the amount of enzyme which oxidizes Laccase from Trametes versicolor Enzyme, 1989, 41, 191; [3] J.E. Seip, et al., J. Org. Chem., 1993, 58, 2253; [4] 1 µmol ABTS (11557) per minute at pH 6.0 and 25°C Cyclopentanone Monooxygenase former Laccase Coriolus versicolor H.N. Chang, et al., Biotechnol. Lett., 1984, 6, 487. Enantioselective sulfoxidations catalysed by chloroperoxidase from Pseudomonas sp. E.C. 1.10.3.2 60640 25 ml, 100 ml, 500 ml and , [1] use of chemically modified E.C. 1.14.13.16 (53739) 1 U corresponds to the amount of enzyme which BioChemika, for technical purposes, in 30% glycerol, peroxidase in benzene, [2] cross-linking of proteins, [3] enzyme- 1 U corresponds to the amount of enzyme which catalyzes converts 1 µmol catechol per minute at pH 4.5 and 25°C ≥200000 U/ml catalyzed polymerisation and precipitation of aromatic the cyclopentanone-stimulated oxidation of 1 µmol of (38429) 1 U corresponds to the amount of enzyme which Storage: 2-8°C compounds from waste water, [4] oxidation of N-substituted NADPH per minute at pH 7.7 and 30°C converts 1 µmol catechol per minute at pH 6.0 and 25°C aromatic amines. [5] Catalyses the first two steps in the cleavage of the carbocyclic 53739 NEW! 100 mg, 1 g 60630 50 mg, 250 mg [1] S. Colonna, et al., NATO ASI Ser.,Ser. C, 1992, 381, 323 ; [2] K. Takahashi, ring of cyclopentanone and related compounds. [1,2] BioChemika, powder, slightly beige, >20 U/mg BioChemika, crystalline, suspension in water, pH ~6, et al., Biochem. Biophys. Res. Comm., 1984, 121,216 ; [3] G. Matheis, J.R. [1] P.W. Trudgill, Meth. Enzymol., 1990, 188, 77; [2] B. Adger, et al., Chem. Storage: –20°C ~65000 U/mg protein (~20 mg protein/ml) Whitaker, J. Prot. Chem., 1984, 3, 35; [4] J.A. Nicell, et al., Water Sci. Comm., 1995, 1563. Storage: 2-8°C Technol., 1992, 25, 157; [5] J. Van der Zee, et al., J. Biol. Chem., 1989, 264, 29800 25 mg, 100 mg 38429 1 g, 10 g 19828. BioChemika, powder, off-white, ~ 10 U/g BioChemika, powder, light brown, ≥0.8 U/mg 60635 5 g, 25 g, 100 g 77334 10 mg, 50 mg, 250 mg Storage: –20°C Storage: 2-8°C BioChemika, lyophilized, powder, brown, ~ 2500 U/mg BioChemika, lyophilized, powder, red-brown,~850 U/mg Storage: –20°C Storage: –20°C Cyclohexanone Monooxygenase from Acinetobacter sp. Chloroperoxidase from Caldariomyces fumago 60632 5 g, 25 g, 100 g 77333 100 mg, 500 mg E.C. 1.14.13.22 Chloride peroxidase: hydrogen peroxide oxidoreductase BioChemika, powder, dark-brown, ~1300 U/mg BioChemika, lyophilized, powder, red-brown, ~700 U/mg 1 U corresponds to the amount of enzyme which catalyzes Chloride peroxidase Storage: –20°C Storage: –20°C the cyclohexanone-stimulated oxidation of 1 µmol of E.C. 1.11.1.10 NADPH per minute at pH 9.0 and 30°C [9055-20-3] 77335 100 mg, 500 mg Catalyst for the enantioselective synthesis of lactones from 1 U corresponds to the amount of enzyme which converts Catalase from Corynebacterium glutamicum BioChemika, powder, red-brown, ~550 U/mg achiral cyclohexanones and bicyclo[3.2.0]heptan-ones E.C. 1.11.1.6 Storage: –20°C introducing enantioselectivity to the classical Baeyer-Villiger 1 µmol of monochlorodimedone to dichlorodimedone per oxidation [1-4] minute at pH 2.75 and 25°C in the presence of KCl and H O [9001-05-2] 2 2 [1] N. Donoghue, et al., Eur. J. Biochem. , 1976, 63, 175 ; [2] M.J. Taschner, Chloroperoxidase in synthesis,[1] oxidation of aminopyrine, [2] 1 U corresponds to the amount of enzyme which 77332 100 mg, 500 mg [3,4] BioChemika, lyophilized, powder, beige,~150 U/mg D.J. Black, J. Amer. Chem. Soc., 1988, 110, 6892; [3] M.J. Taschner, L. chloroperoxidase-catalyzed asymmetric transformations. decomposes 1 µmol H O per minute at pH 7.0 and 25°C 2 2 Peddada, Chem. Comm., 1992, 1384; [4] D.R. Kelly, et al., J. Chem. Soc., [1] M.A. Pickard, et al., J. Ind. Microbiol., 1991, 7, 235 ; [2] H. Sayo, et al., Storage: –20°C 02071 NEW! 1 ml, 5 ml Perkin Trans. I, 1995, 2057. Chem. Pharm. Bull., 1989, 37, 3347 ; [3] H. Fu, et al., J. Org. Chem., 1992, BioChemika, solution, contains ~30% glycerol, 29170 25 mg, 100 mg 57, 7265 ; [4] S. Colonna, et al., NATO ASI Ser.,Ser. C, 1992, 381, 323. ≥ 10% ethanol, deep brown, 500000 U/ml BioChemika, powder, off-white, ~5 U/g Storage: 2-8°C Storage: –20°C Contact us to learn more about our biocatalyst and biotransformation capabilities. For technical assistance or to order, please call your local Sigma-Aldrich Office sigma-aldrich.com To place an order or get a quote, please contact your local Sigma-Aldrich Fine Chemicals office For questions about the pricing or to order, please contact your local Sigma-Aldrich Office (see back cover) 16 17 2.1. OXIDOREDUCTASES CONTINUED 2.2 TRANSFERASES 2.2 TRANSFERASES CONTINUED 2.3 HYDROLASES

Cyclohexanone Monooxygenase from Progesterone Monooxygenase Transaldolase from Candida utilis α(1→3)-Galactosyltransferase murine recombinant from E. coli Nocardia globerula from Cylindrocapron radicicola Dihydroxyacetone Transferase E.C. 2.4.1.151 E.C. 1.14.13.22 E.C. 1.14.99.4 E.C. 2.2.1.2 1 U corresponds to the amount of enzyme which catalyzes 1 U corresponds to the amount of enzyme which catalyzes 1 U corresponds to the amount of enzyme which catalyzes [9014-46-4] the transfer of 1 µmol galactose from UDP-galactose to N- the cyclohexanone-stimulated oxidation of 1 µmol the progesterone-stimulated oxidation of 1 µmol NADPH 1 U corresponds to the amount of enzyme, which converts acetyllactosamine per minute at pH 7.0 and 37°C NADPH per minute at pH 7.1 and 30°C per minute at pH 7.4 and 30°C 1 µmol D-fructose 6-phosphate and D-erythrose 4- Catalyst for enzymatic oligosaccharide synthesis Catalyst for enantioselective Baeyer-Villiger oxidation[1,2] E. Itagaki, J. Biochem., 1986, 99, 815. phosphate to glyceraldehyde-3-phosphate and 77038 1 ml [1] N. Donoghue, et al., Eur. J. Biochem. , 1976, 63, 175 ; [2] M.J. Taschner, 81703 25 mg, 100 mg sedoheptulose-7-phosphate per minute at pH 7.6 and 25 °C BioChemika, clear solution, contains 50% glycerol, 25 et al., NATO ASI Ser., Ser. C, 1992, 381, 347. BioChemika, powder, beige, ~0.6 U/g Catalyst for stereoselective aldol reactions [1,2] mM TRIS pH 8.0, 0.5 mM DTT, colorless, ~0.5 U/ml Storage: –20°C Storage: –20°C 29172 25 mg, 100 mg [1] B.L. Horecker, O. Tsolas, Meth. Enzymol., 1990, 182, 788; [2] A. BioChemika, powder, grey, ~4 U/g Moradian, S. Benner, J. Amer. Chem. Soc., 1992, 114, 6980. Storage: –20°C 89605 10 mg, 50 mg Glutamic-Oxalacetic Transaminase from porcine heart BioChemika, powder, slightly brown, ~0.9 U/mg L-Aspartate: 2-oxoglutarate aminotransferase 2.2 TRANSFERASES Storage: –20°C Cyclohexanone Monooxygenase from Xanthobacter sp. Aspartate Aminotransferase E.C. 1.14.13.22 Catechol-O-methyl Transferase from porcine liver GOT Pyrocatechol-O-methyl Transferase COMT E.C. 2.6.1.1 1 U corresponds to the amount of enzyme which catalyzes from Pseudomonas aurantiaca the cyclohexanone-stimulated oxidation of 1 µmol NADH S-Adenosyl-L-: catechol O-methyltransferase Sucrose-6-fructosyl-Transferase [9000-97-9] per minute at pH 7.5 and 30°C E.C. 2.1.1.6 E.C. 2.4.1.10 1 U corresponds to the amount of enzyme which converts 1 µmol 2-oxoglutarate to L-glutamate per minute at pH M.K. Trower, et al., Eur. J. Biochem., 1989, 181, 199. [9012-25-3] [9030-17-5] 7.5 and 37°C in the presence of L- 29174 25 mg, 100 mg 1 U corresponds to the amount of enzyme which forms 1 1 U corresponds to the amount of enzyme which liberates 49396 1 ml, 5 ml BioChemika, powder, off-white, ~6 U/g nmol 3-O-methylepinephrine from epinephrine and S- 1 µmol glucose per minute at pH 6.0 and 37°C from sucrose Storage: –20°C BioChemika, suspension suspension in 3 M (NH ) SO , adenosylmethonine per minute at pH 7.9 and 37°C Optimum temperature for levan formation: 0-20°C, the enzyme 4 2 4 0.05 M malate, 2.5 mM 2-oxoglutarate solution, pH

28059 5 ml, 25 ml stable below 42°C; Optimum pH: 4.8-5.5 • Tranferases/Hydrolases 6.0, yellow, ~1400 U/ml BioChemika, suspension, brown-green, protein partially 53723 NEW! 25 mg, 100 mg, 500 mg Storage: 2-8°C 2-Hydroxybiphenyl 3-Monooxygenase recombinant BioChemika, powder lyophilized, light brown, ≥5 U/mg E.C. 1.14.13.44 soluble in water or buffer, >10 U/ml • Oxidoreductases/Tranferases Enzymes for Organic Synthesis Enzymes for Organic Synthesis Storage: 2-8°C 1 U corresponds to the amount of enzyme which catalyzes Storage: –20°C the 2-hydroxybiphenyl activated oxidation of 1 µmol Glutamic-Pyruvic Transaminase from porcine heart L-Alanine: 2-oxoglutarate aminotransferase NADH per minute at pH 7.2 and 30°C β(1→4)-Galactosyltransferase from bovine milk Transketolase from E. coli Alanine Aminotransferase 93043 5 mg Lactose Synthase Glycolaldehyde Transferase GPT BioChemika, solution, slightly yellow, ~2 U/ml E.C. 2.4.1.22 Storage: –20°C E.C. 2.2.1.1 E.C. 2.6.1.2 [9030-11-9] [9014-48-6] [9000-86-6] 1 U correspond to the amount of enzyme which transfers 1 U corresponds to the amount of enzyme which will 1 U corresponds to the amount of enzyme which converts 1 µmol galactose from UDP-galactose to D-glucose per (+)-Camphor Monooxygenase produce 1 µmol of glyceraldehyde-3-phosphate from 1 µmol alpha-ketoglutarate to L-glutamate per minute at minute at pH 8.4 and 30°C in the presence of alpha- from Pseudomonas putida pH 7.6 and 37°C in the presence of L-alanine xylulose-5-phosphate per minute at pH 7.7 and 25°C, in lactalbumin E.C. 1.14.15.x 49400 5 mg, 10 mg the presence of ribose-5-phosphate, thiamine Catalyst for enzymatic oligosaccharide synthesis 9030824 2+ BioChemika, suspension in 1.8 M ammonium sulfate pyrophosphate and Mg 48279 1 mg, 5 mg 1 U corresponds to the amount of enzyme which catalyzes aqueous solution, pH ~6.0, greenish-yellow, ≥100 [1,2] BioChemika, lyophilized, powder, off-white, ~1 U/mg the conversion of 1 µmol (+)-camphor (21300) per minute Catalyst for stereoselective aldol reactions U/mg protein (4-20 mg protein/ml) Storage: –20°C at pH 7.1 and 30°C Stereoselective lactone formation in vitro [1] K.G. Morris, et al., Tetrahedron: Asymmetry, 1996, 7, 2185; [2] R.P. Storage: 2-8°C applying coupled enzyme systems.[1,2] Chauhan, et al., Biotechnol. Bioeng., 1997, 56, 345. 48281 100 mg, 500 mg [1] G. Grogan, et al., Biotechnol. Lett., 1992, 14, 1125; [2] R. Gagnon, et al., 88804 5 mg, 25 mg BioChemika, powder, white, ~0.5 U/mg BioChemika, lyophilized, powder, ~8 U/g J. Chem. Soc., Perkin Trans I, 1994, 2539. Storage: –20°C 21332 5 mg, 25 mg, 100 mg Storage: –20°C 2.3 HYDROLASES BioChemika, ~0.3 U/g Storage: –20°C β → Transketolase from baker’s yeast (S. cerevisiae) (1 4)-Galactosyltransferase I human, recombinant from Esterase basic Kit Glycolaldehyde Transferase Saccharomyces cerevisiae Composition: β → D-Sedoheptulose-7-phosphate:D-glyceraldehyde-3- UDP-galactose-N-acetylglucosamine- (1 4) 01022 Acetylcholin Esterase from Electrophorus electricus 1 mg from mushrooms phosphate glycoaldehydetransferase galactosyltransferase 46062 Esterase from Bacillus sp. 10 mg Catechol Oxidase E.C. 2.2.1.1 N-Acetyllactosamine Synthase 46051 Esterase from Bacillus stearothermophilus 10 mg Polyphenol Oxidase E.C. 2.4.1.90 46054 Esterase from Bacillus thermoglucosidasius 10 mg Monophenol, dihydroxyphenylalanine: oxygen [9014-48-6] 46056 Esterase from Candida lipolytica 50 mg 1 U corresponds to the amount of enzyme which will [9054-94-8] oxidoreductase 1 U correspond to the amount of enzyme which transfers 46059 Esterase from Mucor miehei 50 mg produce 1 µmol of glyceraldehyde-3-phosphate from 46069 Esterase from horse liver 50 mg Monophenol Monooxygenase 1 µmol galactose from UDP-galactose to D-glucose per E.C. 1.14.18.1 xylulose-5-phosphate per minute at pH 7.7 and 25°C, in α 46071 Esterase from Saccharomyces cerevisiae 25 mg minute at pH 8.4 and 30°C in the presence of - 46058 Esterase from porcine liver 10 mg [9002-10-2] the presence of ribose-5-phosphate, thiamine lactalbumin 46061 Esterase from Thermoanaerobium brockii 50 mg 2+ 1 U corresponds to the amount of enzyme which increases pyrophosphate and Mg Catalyst for enzymatic oligosaccharide synthesis [1-4] 46041 1 kit the absorbance at 305 nm by 0.001 per minute at pH 6.5 Catalyst for carbohydrate syntheses [1-4] [1] Y.Nishida, et al., J. Amer. Chem. Soc., 1993, 115, 2636; [2] G.F. BioChemika, and 25°C (L- as substrate, 3.0 ml reaction mix); 30 Herrmann, et al., J. Org. Chem., 1994, 59, 6356; [3] T. Wiemann, et al., J. Storage: –20°C absorbance-U as described above are equivalent to ~1 U [1] J. Bolte, et al., Tetrahedron. Lett., 1987, 28, 5525; [2] C. Demuynck, et Org. Chem., 1994, 59, 6744; [4] Y. Kanie, et al., Anal. Biochem., 1998, 263, (when 1 U is the amount of enzyme which oxidizes 1µmol al., Tetrahedron. Lett., 1991, 32, 5085; [3] Y. Kobori, et al., J. Org. Chem. , 240. 4-methylcatechol per minute at pH 6.5 and 25°C). 1992, 57, 5899; [4] F. Effenberger, et al., Tetrahedron Lett., 1992, 33, 5157. 90261 100 mg, 500 mg 93898 10 mg, 50 mg, 250 mg 90197 1 mg, 5 mg BioChemika, powder, contains Tris buffer salts and BioChemika, lyophilized, powder, brown, ≥2000 U/mg BioChemika, powder, white, ~5 U/mg BSA, slightly yellow, ≥5 U/g Storage: –20°C Storage: –20°C Storage: –20°C

To learn more about our comprehensive portfolio of enzymes please have a look at the For technical assistance or to order, please call your local Sigma-Aldrich Office sigma-aldrich.com SIGMA-ALDRICH Enzyme Explorer – your research assistant on www.sigma-aldrich.com/enzymeexplorer. For questions about the pricing or to order, please contact your local Sigma-Aldrich Office (see back cover) 18 19 2.3 HYDROLASES CONTINUED 2.3 HYDROLASES CONTINUED

Esterase from Bacillus sp. Enantioselective hydrolysis of mono- and diesters; slightly higher 46064 1 g, 5 g Esterase from Thermoanaerobium brockii E.C. 3.1.1.1 ee`s compared to PLE are reported[1-3] BioChemika, moist pearls (dried material ~35%, E.C. 3.1.1.1 [9016-18-6] [1] L. Blanco, et al., Tetrahedron Lett., 1988, 29,1915; [2] J.E. Guibé, et al., particle diameter ~150 µm); ~500 U/g [9016-18-6] 1 U corresponds to the amount of enzyme which will Tetrahedron Lett., 1989, 30, 67; [3] E. Fouqué, G. Rousseau, Synthesis, Storage: 2-8°C 1 U corresponds to the amount of enzyme which hydrolyze 1 µmol ethyl valerate (30784) per minute at pH 1989, 661. hydrolyzes 1 µmol ethyl valerate (30784) per minute at pH 8.0 and 25°C 46069 100 mg, 500 mg 8.0 and 25°C 46062 25 mg BioChemika, lyophilized, powder, brown, 0.5-1.0 U/mg Esterase from Mucor miehei 46061 100 mg, 500 mg BioChemika, ~0.1 U/mg Storage: –20°C E.C. 3.1.1.1 BioChemika, powder, off-white, ~2 U/g Storage: 2-8°C [9016-18-6] Storage: 2-8°C 1 U corresponds to the amount of enzyme which Esterase from porcine liver hydrolyzes 1 µmol ethyl valerate (30784) per minute at pH Esterase from Bacillus stearothermophilus Esterase hog liver 8.0 and 25°C Esterase from Thermomyces lanuginosus, E.C. 3.1.1.1 Pig liver Esterase Used in esterifications in nonaqueous solvents. recombinant from Aspergillus oryzae [9016-18-6] PLE I.L. Gatfield, Ann. N.Y. Acad. Sci., 1984, 434, 569. E.C. 3.1.1.1 1 U corresponds to the amount of enzyme which releases Carboxyl esterase 46059 100 mg, 500 mg [9016-18-6] 1 µmol 4-nitrophenol per minute at pH 7.0 and 65°C (4- Carboxylic-ester BioChemika, powder, slightly brown, ~1 U/mg 1 U corresponds to the amount of enzyme which liberates nitrophenyl-n-caproate as substrate) E.C. 3.1.1.1 Storage: 2-8°C 1 µmol oleic acid per minute at pH 7.0 and 37°C (triolein, Esterase stable at elevated temperatures [9016-18-6] 62314 as substrate) • Hydrolases D.A. Cowan, Enzyme Microb. Technol., 1990, 12, 374. (46058; 70351) 1 U corresponds to the amount of enzyme 27637 5 ml, 25 ml • Hydrolases 46051 25 mg, 100 mg which hydrolyzes 1 µmol ethyl valerate (30784) per Esterase Rhizomucor miehei, recombinant from BioChemika, solution, light brown, >1200 U/ml BioChemika, ~0.4 U/mg minute at pH 8.0 and 25°C Aspergillus oryzae Storage: 2-8°C Storage: 2-8°C (46063) 1 U corresponds to the amount of enzyme which E.C. 3.1.1.1 hydrolyzes 1 µmol ethyl butyrate (19230) per minute at [9016-18-6] pH 8.0 and 25°C 1 U corresponds to the amount of enzyme which liberates Lipase basic Kit Esterase BS2 Bacillus subtilis, recombinant from E. coli Enantioselective hydrolysis of mono- and diesters[1,2] 1 µmol oleic acid per minute at pH 7.0 and 37°C (triolein, Composition: E.C. 3.1.1.1 Substrate specificity and stereoselectivity. [3] 62314 as substrate) 84205 Lipase from Aspergillus 100 mg [9016-18-6] 75900 10 ml, 50 ml 62299 Lipase from Candida Antarctica 50 mg [1] M. Ohno, M. Otsuka, Org. React., 1989, 37, 1; [2] L.-M. Zhu, M.C. ≥ 62316 Lipase from Candida cylindracea 1000 mg Enzymes for Organic Synthesis Enzymes for Organic Synthesis 1 U corresponds to the amount of enzyme which Tedford, Tetrahedron, 1990, 46, 6587; [3] C. Tamm , Pure Appl. Chem., BioChemika, solution, very deep brown, 250 U/ml Storage: 2-8°C 62298 Lipase from Mucor miehei 100 mg hydrolyzes 1 µmol ethyl valerate (30784) per minute at pH 1992, 64, 1187. 62309 Lipase from Pseudomonas cepacia 100 mg 8.0 and 25°C 46058 10 mg, 50 mg 95608 Lipase from Pseudomonas fluorescens 50 mg 54288 5 mg, 25 mg BioChemika, lyophilized, powder, contains 1,4- 62305 Lipase from Rhizopus arrhizus 1000 mg BioChemika, powder, slightly beige, ≥ 10 U/mg dithioerythritol, slightly beige, ≥130 U/mg Esterase from Rhizopus oryzae 62310 Lipase from Rhizopus niveus 1000 mg Storage: 2-8°C Storage: –20°C E.C. 3.1.1.1 62300 Lipase from hog pancreas 1000 mg [9016-18-6] 62327 1 kit 46063 1 ea 1 U corresponds to the amount of enzyme which liberates BioChemika Esterase from Bacillus thermoglucosidasius BioChemika, suspension in 3.2 M ammonium sulfate 1 µmol oleic acid per minute at pH 7.0 and 37°C (triolein, Storage: 2-8°C E.C. 3.1.1.1 solution, ~130 U/mg protein (~10 mg protein/ml) 62314 as substrate) [9016-18-6] Storage: 2-8°C 79208 5 g, 25 g 1 U corresponds to the amount of enzyme which BioChemika, powder, light-beige, ≥ 20 U/g Lipase extension Kit hydrolyzes 1 µmol ethyl valerate (30784) per minute at pH 70351 NEW! 500 mg Storage: 2-8°C Composition: 8.0 and 25°C 62285 Lipase from Aspergillus oryzae 100 mg BioChemika, powder, light beige, protein only 62303 Lipase from Candida lipolytica 1000 mg 46054 25 mg, 100 mg partially soluble in water or buffer 3 U/mg Esterase from Saccharomyces cerevisiae 62304 Lipase from Mucor javanicus 500 mg BioChemika, lyophilized, powder, beige, ~0.1 U/mg Storage: –20°C 62308 Lipase from Penicillium roquefortii 500 mg Storage: 2-8°C E.C. 3.1.1.1 28602 Lipase from Pseudomonas fluorescens 50 mg [9016-18-6] 62291 Lipase Rhizomucor miehei, Esterase Isoenzyme 1 hog liver 1 U corresponds to the amount of enzyme which recombinant from Aspergillus oryzae 50 mg Esterase from Candida lipolytica E.C. 3.1.1.1 hydrolyzes 1 µmol ethyl valerate per minute at pH 8.0 and 25°C 62306 Lipase from wheat germ 500 mg E.C. 3.1.1.1 [9016-18-6] Enzymatic resolution yielding enantiopure (S)-2-hydroxy 62333 Lipoprotein lipase from [9016-18-6] heptanoate. Chromobacterium viscosum 25 mg 1 U corresponds to the amount of enzyme which 62335 Lipoprotein lipase from Pseudomonas sp. 10 mg 1 U corresponds to the amount of enzyme which K. Ushio, et al., Biotechnol. Lett., 1991, 13, 495. hydrolyzes 1 µmol ethyl valerate (30784) per minute at pH 62336 Lipoprotein lipase from Pseudomonas sp. 50 mg α 46071 50 mg, 250 mg hydrolyzes 1 µmol -methyl-DL-phenylalanine-O-methyl 8.0 and 25°C 62323 1 kit BioChemika, lyophilized, powder, beige, ~2 U/g ester per minute at pH 7.5 and 25°C 46048 1 ml, 5 ml BioChemika Storage: 2-8°C Resolution of tertiary a-substituted carboxylic acid esters BioChemika, suspension in 3.2 M ammonium sulfate Storage: 2-8°C C. Yee, et al., J. Org. Chem., 1992, 57, 3525. solution, ~200 U/mg protein (~15 mg protein/ml) 46056 100 mg, 500 mg Storage: 2-8°C Esterase from Streptomyces diastatochromogenes, BioChemika, ~0.1 U/mg Lipase from Aspergillus sp. recombinant from E. coli Storage: 2-8°C E.C. 3.1.1.3 E.C. 3.1.1.1 Esterase, immobilized on Eupergit® C, from hog liver [9001-62-1] [9016-18-6] 1 U corresponds to the amount of enzyme which 1 U corresponds to the amount of enzyme which 1 U corresponds to the amount of enzyme which Esterase from horse liver hydrolyzes 1 µmol ethyl valerate (30784) per minute at pH hydrolyzes 1 µmol acetic acid per minute at pH 7.4 and hydrolyzes 1 µmol 4-nitrophenylacetate per minute at pH HLE 8.0 and 25°C 40°C (triacetin, 90240 as substrate) E.C. 3.1.1.1 Immobilized enzyme for the convenient synthesis of several 7.5 and 25°C 84205 100 mg, 500 mg [9016-18-6] 78042 100 mg BioChemika, lyophilisate, slightly brown, ~0.5 U/mg chiral building blocks. Immobilized on copolymer of ≥ 1 U corresponds to the amount of enzyme which methacrylamide, allyl-glycidyl ether and methylene- BioChemika, powder, slightly beige, 50 U/mg Storage: 2-8°C hydrolyzes 1 µmol ethyl butyrate (19230) per minute at bisacrylamide, Storage: 2-8°C pH 8.0 and 25°C K. Laumen, et al., Tetrahedron Lett., 1985, 26, 407. ® Registered Trademark of Röhm Pharma GmbH Contact us to learn more about our biocatalyst and biotransformation capabilities. For technical assistance or to order, please call your local Sigma-Aldrich Office sigma-aldrich.com To place an order or get a quote, please contact your local Sigma-Aldrich Fine Chemicals office For questions about the pricing or to order, please contact your local Sigma-Aldrich Office (see back cover) 20 21 2.3 HYDROLASES CONTINUED 2.3 HYDROLASES CONTINUED

Lipase from Aspergillus niger 62299 100 mg, 500 mg Lipase, immobilized in Sol-Gel-AK from Candida antarctica pH is 7.0 (highly active from pH 6-8), the activity is inhibited by Lipase AP6 BioChemika, powder, light brown, ~ 3 U/mg 1 U is the amount of immobilized enzyme which forms Ag+ and Pb+ E.C. 3.1.1.3 Storage: 2-8°C 1% octyl laurate (GC, area percent) from 0.5 mmol lauric 90860 5 g, 25 g [9001-62-1] acid and 1.0 mmol 1-octanol in 10 ml water-saturated BioChemika, powder, slightly beige, >2 U/mg Storage: 2-8°C 1 U corresponds to the amount of enzyme which 02569 100 mg, 500 mg isooctane in 1 hour at 20°C hydrolyzes 1 µmol acetic acid per minute at pH 7.4 and BioChemika, lyophilized, powder, beige, ~0.5U/mg M.T. Reetz, et al., Angew. Chem., 1995, 107, 373. Storage: 2-8°C 62277 1 g, 5 g 40°C (triacetin, 90240 as substrate) Lipase from Candida utilis BioChemika, ≥ 1 U/g 50 U as described above are equivalent to ~1 U using E.C. 3.1.1.3 triolein, 62314 as substrate, at pH Storage: 2-8°C Lipase A from Candida antarctica, [9001-62-1] Selective acylation and deacylation of furanose and pyranose 1 U corresponds to the amount of enzyme which liberates [1] recombinant from Aspergillus oryzae derivatives; enantioselective hydrolysis of 2-methyl-3-acetoxy 1 µmol of oleic acid per minute at pH 8.0 and 40°C [2] E.C. 3.1.1.3 Lipase from Candida cylindracea esters; resolution of the diols of bicycloheptane and (triolein, 62314, as substrate) bicyclooctane;[3] glyceride synthesis.[4] [9001-62-1] CCL 62307 50 mg, 250 mg [1] W.J. Hennen, et al., J. Org. Chem., 1988, 53, 4939; [2] H. Akita, et al., 1 U corresponds to the amount of enzyme which liberates E.C. 3.1.1.3 BioChemika, powder, brown, ~0.1 U/mg Tetrahedron Lett., 1986, 27, 5241; [3] K. Naemura, et al., J. Chem. Soc., 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, [9001-62-1] Perkin Trans. 1, 1992, 2337; [4] M.K. Tahoun, et al., Microbios. Lett., 1985, Storage: 2-8°C 28, 133. 62314, as substrate) 1 U corresponds to the amount of enzyme which liberates 62301 1 g, 5 g 1 U as described above is equivalent to ~0.15 U using 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, tributyrine, Fluka-No. 91010, as substrate, at pH 8.0. 62314 as substrate)

BioChemika, powder fine, ~200 U/g • Hydrolases

• Hydrolases Lipase from Mucor javanicus S.A. Patkar, et al., Ind. J. Chem. 32B, 1993, 76. Highly stereospecific catalyst employed in the preparative Storage: 2-8°C [1] Triacylglycerol lipase 62287 50 mg, 250 mg resolution of racemic acids and alcohols; stereoselective ester [2] Triacylglycerol acylhydrolase BioChemika, powder, beige, ~2 U/mg synthesis , benzyl-alkyl transesterification under mild neutral [3] E.C. 3.1.1.3 Storage: 2-8°C conditions. Lipase, immobilized in Sol-Gel-AK from Aspergillus niger [1] B. Cambou, A.M. Klibanov, Biotechnol. Bioeng., 1984, 26, 1449; [2] Y. [9001-62-1] 1 U is the amount of immobilized enzyme which forms Ikushima, et al., Chem. Lett., 1993, 109; [3] A. Gutman, et al., Tetrahedron, 1 U corresponds to the amount of enzyme which liberates 1% octyl laurate (GC, area percent) from 0.5 mmol lauric 1992, 48, 8775. 1 µmol fatty acid from triglycerides per minute at pH 8.0 acid and 1.0 mmol 1-octanol in 10 ml water-saturated Lipase B from Candida antarctica, 62302 100 mg, 500 mg recombinant from Aspergillus oryzae and 37°C (olive oil as substrate]. 2000 U as described isooctane in 1 hour at 20°C BioChemika, lyophilized, powder fine, 15-25 U/mg above (using olive oil) are equivalent to ~1 U using M.T. Reetz, et al., Angew. Chem., 1995, 107, 373. E.C. 3.1.1.3 Storage: 2-8°C triolein, 62314, as substrate. Enzymes for Organic Synthesis Enzymes for Organic Synthesis 62281 1 g, 5 g [9001-62-1] Purification and properties; [1] hydrolysis of the dibutyl ester of BioChemika, ≥ 1U/g 1 U corresponds to the amount of enzyme which liberates 62316 10 g, 50 g bishydroxymethyl-1,7-dioxaspiroundecane.[2] 1 µmol butyric acid per minute at pH 8.0 and 50°C BioChemika, powder, yellow-brown, ~2 U/mg Storage: 2-8°C [1] H. Ishihara, Biochim. Biophys. Acta, 1975, 388, 413; [2] J.-G. Gourcy, et (tributyrin, 91010, as substrate) Storage: 2-8°C al., Tetrahedron Asym., 1991, 2, 31. 62288 50 mg, 250 mg 62304 1 g, 5 g BioChemika, powder, beige, ~9 U/mg Lipase from Aspergillus oryzae BioChemika, powder fine, ~10 U/mg Storage: 2-8°C E.C. 3.1.1.3 Lipase, immobilized in Sol-Gel-AK Storage: 2-8°C [9001-62-1] from Candida cylindracea 1 U corresponds to the amount of enzyme which liberates 1 U is the amount of immobilized enzyme which forms Lipase B, recombinant, cross-linked enzyme crystals, 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, 1% octyl laurate (GC, area percent) from 0.5 mmol lauric Lipase from Mucor miehei Candida antarctica 62314 as substrate) acid and 1.0 mmol 1-octanol in 10 ml water-saturated Triacylglycerol lipase 1 U corresponds to the amount of enzyme which 62285 100 mg, 500 mg isooctane in 1 hour at 20°C Triacylglycerol acylhydrolase hydrolyzes 1 µmol acetic acid per minute at pH 7.4 and BioChemika, lyophilized, powder, white, ~50 U/mg M.T. Reetz, et al., Angew. Chem., 1995, 107, 373. E.C. 3.1.1.3 30°C (triacetin, 90240 as substrate 62278 1 g, 5 g Storage: 2-8°C [9001-62-1] BioChemika, ≥10 U/g Cross-linked enzyme crystals of Candida antarctica Lipase B. 1 U corresponds to the amount of enzyme which liberates Storage: 2-8°C 95184 1 g, 5 g A.M. Anderson, et al., Biocat. Biotransform., 1998, 16, 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, 86491 NEW! 10 mg, 50 mg BioChemika, powder, almost white, ~2 U/mg 62314 as substrate) Storage: 2-8°C BioChemika, suspension in 50 mM Tris pH 7.0, strongly [1,2] [3] ≥ Characterization; biocatalytic esterifications; synthesis of brown, 10 U/mg solid material (~150mg solid Lipase from Candida lipolytica fatty hydroxamic acids.[4] material/ml) E.C. 3.1.1.3 [1] B. Huge-Jensen, et al., Lipids, 1987, 22, 559; [2] B. Huge-Jensen, et al., Storage: 2-8°C [9001-62-1] Lipase from Burkholderia sp. J. Am. Oil Chem. Soc., 1988, 65, 905; [3] F. Servat, et al., J. Am. Oil Chem. 1 U corresponds to the amount of enzyme which liberates E.C. 3.1.1.3 Soc., 1990, 67, 646; [4] P.A.S.S. Marques, et al., J. Chem. Tech. Biotechnol., 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, [9001-62-1] Candida antarctica 1992, 55, 25. Lipase, immobilized from 62314 as substrate) 1 U corresponds to the amount of enzyme which liberates ® 62298 100 mg, 500 mg Novozym 435 Enzyme for the modification of fats and oils 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, BioChemika, powder, slightly brown, ~1 U/mg AS 1 U corresponds to the amount of enzyme which N. Bati, et al., J. Am. Oil Chem. Soc., 1984, 61, 1743. 62314 as substrate) Storage: 2-8°C liberates 1 µmol butyric acid per minute at pH 8.0 and 62303 1 g, 5 g 75577 100 mg, 500 mg 40°C (tributyrin, 91010, as substrate) BioChemika, lyophilisate, protein partially soluble in BioChemika, powder fine, ~1 U/g ®Registered Trademark of Norvo Nordisk Storage: 2-8°C water or buffer, slightly beige, ~12 U/mg 73940 1 g, 5 g Lipase from Mucor miehei, Storage: –20°C BioChemika, beads, slightly brown, >2 U/mg recombinant from Aspergillus oryzae Storage: 2-8°C E.C. 3.1.1.3 Lipase from Candida rugosa Lipase AY 30 Amano [9001-62-1] Lipase from Candida antarctica Lipase, immobilized on Eupergit®, Candida antarctica 1 U corresponds to the amount of enzyme which liberates E.C. 3.1.1.3 Triacylglycerol acylhydrolase 1 U corresponds to the amount of enzyme which liberates E.C. 3.1.1.3 1 µmol of butyric acid per minute at pH 7.0 and 25°C [9001-62-1] 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, (tributyrin as substrate) 20 U as described above are [9001-62-1] 1 U corresponds to the amount of enzyme which liberates 62314 as substrate) equivalent to ~1 U using triolein, 62314 as substrate, at 1 U corresponds to the amount of enzyme which liberates 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, ®Registered Trademark of Röhm Pharma GmbH pH 8.0 and 40°C 77926 NEW! 1 g, 5 g 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, 62314 as substrate) 62289 100 mg, 500 mg BioChemika, >3 U/g 62314 as substrate) H.P. Heldt-Hansen, et al., Biocatal. Agric. Biotechnol., ACS Symp.Ser., 1988, 389, 158. BioChemika, lyophilized, powder, brown, ≥ 200U/mg Storage: 2-8°C Enzyme activity: the optimum temperature is 45°C, the optimum Storage: 2-8°C To learn more about our comprehensive portfolio of enzymes please have a look at the For technical assistance or to order, please call your local Sigma-Aldrich Office sigma-aldrich.com SIGMA-ALDRICH Enzyme Explorer – your research assistant on www.sigma-aldrich.com/enzymeexplorer. For questions about the pricing or to order, please contact your local Sigma-Aldrich Office (see back cover) 22 23 2.3 HYDROLASES CONTINUED 2.3 HYDROLASES CONTINUED

73416 1 g, 5 g enantioselective transesterifications;[2] removal of lipid 17261 1 g, 25 g 1 U corresponds to the amount of enzyme which liberates BioChemika, powder, slightly brown, ~10 U/mg contaminants;[3] use in the continuous synthesis of glycerides.[4] BioChemika, powder, light beige, ~15000U/g 1 µmol of butyric acid per minute at pH 8.0 and 40°C Storage: 2-8°C [1] S. Ramaswamy, et al., Tetrahedron Lett., 1990, 31, 3405; [2] J. Shield Storage: 2-8°C (tributyrin, 91010 as substrate). Wallace, et al., J. Org. Chem., 1990, 55, 3544; [3] S. Misra, et al., Lipids, 5000 U as described above are equivalent to ~1 U using 1984, 19, 302; [4] M.M. Hoq, et al., J. Am. Oil Chem. Soc., 1984, 61, 776. triolein, 62314 as substrate, at pH 8. Lipozyme®, immobilized, from Mucor miehei 62313 5 mg, 25 mg Lipase from Pseudomonas fluorescens Catalyst for the interesterification of oils and fats;[1] removal of AS 1 U corresponds to the amount of enzyme which BioChemika, lyophilized, powder, ≥100 U/mg E.C. 3.1.1.3 interfering triglycerides in the electroimmunoassay of liberates 1 µmol oleic acid per minute at pH 8.0 and 40°C Storage: –20°C [9001-62-1] apolipoprotein B;[1] resolution of racemic epoxy esters through (triolein, 62314 as substrate) 1 U corresponds to the amount of enzyme which liberates enantioselective ester hydrolysis.[1] ® Registered Trademark of Norvo Nordisk 62300 25 g, 100 g, 500 g 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, [1] T. Kim, K. Chung, Enzyme Microb. Technol., 1989, 11, 528; [2] P. Lipase, immobilized on a macroporous ion-exchange resin, 1,3- BioChemika, powder, 15-35 U/mg 62314 as substrate Laburre, et al., Clin. Chem., 1985, 31, 787; [3] J.A. Laffitte, et al., Indian J. specific, for esterification and interesterification.[1,2] Storage: –20°C 28602 50 mg, 250 mg Chem., Sect. B, 1993, 32B, 94. [1] T.T. Hansen, P. Eigtved, Proc.- World Conf. Emerging Technol. Fats Oils BioChemika, powder, slightly beige, ~300 U/mg 62305 1 g, 5 g Ind. Ed. B.A. Richard, 1985, 365; [2] G. Nicolosi, et al., Tetrahedron Lett., Storage: –20°C BioChemika, powder fine, ~10 U/mg 1995, 36, 6545. Lipase, immobilized in Sol-Gel-AK porcine pancreas Storage: 2-8°C 62350 10 g, 50 g 1 U is the amount of immobilised enzyme which forms 1% 95608 100 mg, 500 mg BioChemika, granulated material, brown, >30 U/g octyl laurate (GC, area percent) from 0.5 mmol lauric acid BioChemika, powder, slightly beige, ~40 U/mg Storage: 2-8°C and 1.0 mmol 1-octanol in 10 ml water-saturated Storage: 2-8°C Lipase from Rhizopus delemar • Hydrolases isooctane in 1 hour at 20°C E.C. 3.1.1.3 • Hydrolases M.T. Reetz, et al., Angew. Chem., 1995, 107, 373. 71548 5 g, 25 g [9001-62-1] Lipase, immobilized in Sol-Gel-AK from Mucor miehei 62324 100 mg, 500 mg BioChemika, powder, almost white, ~2 U/mg 1 U corresponds to the amount of enzyme which liberates 1 U is the amount of immobilized enzyme which forms BioChemika, ≥40 U/g Storage: 2-8°C 1 µmol fatty acid from triglycerides per minute at pH 8.0 1% octyl laurate (GC, area percent) from 0.5 mmol lauric Storage: 2-8°C and 37°C (olive oil as substrate) acid and 1.0 mmol 1-octanol in 10 ml water-saturated 62328 50 mg isooctane in 1 hour at 20°C Lipase, immobilized on Eupergit C, BioChemika, ≥0.4 U/mg M.T. Reetz, et al., Angew. Chem., 1995, 107, 373. Lipase from Pseudomonas cepacia from Pseudomonas fluorescens Storage: 2-8°C 62282 1 g, 5 g PS Lipase E.C. 3.1.1.3 BioChemika, ≥2 U/g Enzymes for Organic Synthesis Triacylglycerol acylhydrolase [9001-62-1] Enzymes for Organic Synthesis Storage: 2-8°C E.C. 3.1.1.3 1 U corresponds to the amount of enzyme which liberates Lipase from Rhizopus niveus [9001-62-1] 1 µmol of oleic acid per minute at pH 8.0 and 40°C Triacylglycerol lipase 1 U corresponds to the amount of enzyme which liberates (triolein, Fluka-No. 62314, as substrate) Triacylglycerol acylhydrolase Penicillium camemberti Lipase from 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, 62319 1 g E.C. 3.1.1.3 Lipase G50 Amano 62314 as substrate) BioChemika, granules, brown, ≥0.4 U/mg [9001-62-1] E.C. 3.1.1.3 Chemoenzymatic synthesis of (-)-carboxy-7-deazaoxetanocin. Storage: 2-8°C 1 U corresponds to the amount of enzyme which liberates [9001-62-1] X. Chen, et al., Tetrahedron Lett., 1992, 33, 2249. 1 µmol fatty acid from a triglyceride per minute at pH 7.7 1 U corresponds to the amount of enzyme which liberates 62309 100 mg, 500 mg and 40°C (olive oil as substrate). 1 µmol oleic acid per minute at pH 7.0 and 37°C (triolein, BioChemika, powder, light beige, ~50 U/mg Lipase from Pseudomonas stutzeri 300 U as described above are equivalent to ~1 U using 62314 as substrate) Storage: –20°C E.C. 3.1.1.3 triolein, 62314, at pH 8.0 and 40°C as substrate 96888 5 g, 25 g ≥ [9001-62-1] P. Braun, et al., Synlett., 1990, 105. BioChemika, powder, slightly beige, 5 U/g 1 U corresponds to the amount of enzyme which liberates 62310 1 g, 5 g Storage: 2-8°C Lipase, immobilized in Sol-Gel-AK from Pseudomonas 1 µmol fatty acid per minute from triglycerides at pH 7.7 BioChemika, powder, fine, ~1.5 U/mg cepacia and 37 °C (olive oil as substrate) Storage: 2-8°C 1 U is the amount of immobilised enzyme which forms 1% 66727 100 mg, 1 g Penicillium roqueforti Lipase from octyl laurate (GC, area percent) from 0.5 mmol lauric acid BioChemika, powder, light beige, ≥4 U/mg E.C. 3.1.1.3 and 1.0 mmol 1-octanol in 10 ml water-saturated Storage: 2-8°C Lipase from Rhizopus oryzae [9001-62-1] isooctane in 1 hour at 20°C Lipase F-AP 15 1 U corresponds to the amount of enzyme which liberates M.T. Reetz, et al., Angew. Chem., 1995, 107, 373. E.C. 3.1.1.3 1 µmol fatty acid from triglycerides per minute at pH 8.0 62279 1 g, 5 g Lipase Rhizomucor miehei, recombinant [9001-62-1] and 37°C (olive oil as substrate); BioChemika, ≥40 U/g from Aspergillus oryzae 1 U corresponds to the amount of enzyme which releases 200 U as described above (using olive oil) are equivalent Storage: 2-8°C E.C. 3.1.1.3 1 µmol fatty acid from triglycerides per minute at pH 7.2 to ~1 U using triolein, 62314, as substitute [9001-62-1] and 37 C (olive oil as substrate) Substrate specificity: preferentially hydrolyzes the 1- and 3- 1 U corresponds to the amount of enzyme which liberates enzyme activity: the optimum temperature is 40°C, the position (short fatty acids); optimum pH 6.0-8.0; optimum Lipase, immobilized in Sol-Gel-AK on sintered glass from, 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, optimum pH is 7.2 (highly active from pH 6.5-7.5) temperature 30-40°C Pseudomonas cepacia 62314 as substrate). 80612 5 g, 25 g 62308 1 g, 5 g 1 U is the amount of immobilized enzyme which forms The stereoselectivity of this lipase was controlled via the surface BioChemika, powder, light brown, ≥30 U/mg BioChemika, powder fine, >0.4 U/mg 1% octyl laurate (GC, area percent) from 0.5 mmol lauric pressure Storage: 2-8°C Storage: 2-8°C acid and 1.0 mmol 1-octanol in 10 ml water-saturated E. Rogalska, et al., J. Biol. Chem., 1993, 268, 792. isooctane in 1 hour at 20°C 62291 100 mg, 500 mg M.T. Reetz, et al., Chem. Commun., 1996, 1397. BioChemika, powder, beige-brown, ~0.5 U/mg Lipase from Thermus aquaticus Lipase from porcine pancreas 62334 5 g, 25 g Storage: 2-8°C E.C. 3.1.1.3 ≥ PPL BioChemika, 10 U/g [9001-62-1] Triacylglycerol acylhydrolase Storage: 2-8°C 1 U corresponds to the amount of enzyme which liberates E.C. 3.1.1.3 Lipase from Rhizopus arrhizus 1 µmol palmitic acid per minute at pH 8.0 and 65°C from [9001-62-1] Triacylglycerol lipase p-nitrophenyl palmitate 1 U corresponds to the amount of enzyme which liberates Lipase, immobilized on Ceramic particles Triacylglycerol acylhydrolase 62293 25 mg, 100 mg 1 µmol fatty acid from triglycerides per minute at pH 8.0 from Pseudomonas cepacia E.C. 3.1.1.3 BioChemika, lyophilized, powder, ~3 U/g and 37°C (olive oil as substrate) 1 U corresponds to the amount of enzyme which liberates 1 µmol [9001-62-1] Storage: 2-8°C Selective acylation of primary alcohols in organic solvents;[1] oleic acid per minute at pH 8.0 and 40°C (triolein, 62314 as substrate) Contact us to learn more about our biocatalyst and biotransformation capabilities. For technical assistance or to order, please call your local Sigma-Aldrich Office sigma-aldrich.com To place an order or get a quote, please contact your local Sigma-Aldrich Fine Chemicals office For questions about the pricing or to order, please contact your local Sigma-Aldrich Office (see back cover) 24 25 2.3 HYDROLASES CONTINUED 2.3 HYDROLASES CONTINUED

Lipase from Thermus flavus (cholesterol acetate as substrate) α-Glucosidase from Saccharomyces cerevisiae 21945 1 mg, 5 mg E.C. 3.1.1.3 Application in the selective hydrolysis or condensation of α-D-Glucosidase BioChemika, lyophilised powder (~ 10 % protein), [9001-62-1] carboxylic ester bonds. Maltase from yeast ~12 U/mg 1 U corresponds to the amount of enzyme which liberates R.J. Kazlauskas, J. Am. Chem. Soc., 1989, 111, 4953. α-D-Glucoside glucohydrolase Storage: –20°C 1 µmol palmitic acid per minute at pH 8.0 and 65°C from 26745 10 mg, 100 mg E.C. 3.2.1.20 p-nitrophenyl palmitate BioChemika, lyophilized, powder, white, ~35 U/mg [9001-42-7] 92269 1 mg, 5 mg 62295 25 mg, 100 mg Storage: –20°C 1 U corresponds to the amount of enzyme which BioChemika, powder, white, >60 U/mg BioChemika, powder, brown, ~0.7 U/g hydrolyzes 1 µmol p-nitrophenyl-α-D-glucopyranoside per Storage: –20°C Storage: 2-8°C minute at pH 6.8 and 37°C (after 1-2 h preincubation in 20 Lipoprotein Lipase from Chromobacterium viscosum mM borate, pH 9.1, 4°C) 21943 5 mg, 25 mg Diacylglycerol lipase Synthesis of various 1’-O-sucrose and 1-O-fructose esters. BioChemika, powder (~20 % protein), light brown, Lipase from Thermus thermophilus Diacylglycerol acylhydrolase G. Carrea, et al., J. Chem. Soc., Perkin Trans. I, 1989, 1057. ~20 U/mg E.C. 3.1.1.3 E.C. 3.1.1.34 63412 5 mg, 25 mg Storage: –20°C [9001-62-1] [9004-02-8] BioChemika, lyophilised powder, off-white, ~65 U/mg 1 U corresponds to the amount of enzyme which liberates 1 U corresponds to the amount of enzyme which liberates Storage: 2-8°C 1 µmol palmitic acid per minute at pH 8.0 and 65°C from 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, Carboxypeptidase Y, immobilized on Eupergit® C from p-nitrophenyl palmitate 62314 as substrate) 70797 1 g, 5 g baker’s yeast 62296 25 mg, 100 mg 62333 25 mg, 100 mg BioChemika, lyophilisate, beige, protein only partially 1 U corresponds to the amount of enzyme which • Hydrolases BioChemika, powder, brown, ~0.6 U/g BioChemika, lyophilized, powder, ~2500 U/mg after soluble in water or buffer, 4-8 U/mg hydrolyzes 1 µmol Z-L-phenylalanyl-L-alanine per minute • Hydrolases Storage: 2-8°C reconstitution Storage: –20°C at pH 6.8 and 25°C Storage: –20°C ®Registered Trademark of Röhm Pharma GmbH 21947 NEW! 250 mg, 1 g Lipase from wheat germ β-Glucosidase from almonds BioChemika, > 1 U/g Triacylglycerol lipase Lipoprotein Lipase from Pseudomonas sp. β-D-Glucoside glucohydrolase Storage: 2-8°C Triacylglycerol acylhydrolase Diacylglycerol lipase E.C. 3.2.1.21 E.C. 3.1.1.3 Diacylglycerol acylhydrolase [9001-22-3] α [9001-62-1] E.C. 3.1.1.34 1 U corresponds to the amount of enzyme which liberates -Chymotrypsin from bovine pancreas Enzymes for Organic Synthesis 1 U corresponds to the amount of enzyme which [9004-02-8] 1 µmol glucose per minute at pH 5.0 and 35°C (salicin as E.C. 3.4.21.1 Enzymes for Organic Synthesis hydrolyzes 1 µmol acetic acid per minute at pH 7.4 and 1 U corresponds to the amount of enzyme which liberates substrate) [9004-07-3] 40°C (triacetin, 90240 as substrate) 1 µmol oleic acid per minute at pH 8.0 and 40°C (triolein, Enzymatic hydrolysis of cellulose [1-2] ; Stereospecific attachment 1 U corresponds to the amount of enzyme, which 62314 as substrate) of carbohydrates to amino acid derivatives [3-4] ; Enzyme-catalyzed hydrolyzes 1 µmol Suc-(Ala) -Pro-Phe-4-NA per minute at Hydrolysis of N-Boc-cis-2,6-(acetoxymethyl) piperidine. 2 62335 10 mg, 50 mg synthesis of alkyl β-D-glucosides in organic media [5] pH 7.8 and 25°C R. Chênevert, M. Dickman, Tetrahedron: Asymmetry, 1992, 3, 1021. BioChemika, lyophilized, powder, 1500-2500 U/mg [1] J.G. Shewale, Int. J. Biochem., 1982, 14, 435; [2] G.P. Philippidis, et al., Application in the selective hydrolysis or condensation of 62306 1 g, 5 g [1,2] [3,4] Storage: –20°C Biotechnol. Bioeng., 1993, 41, 846; [3] N.J. Turner, M.C. Webberley, J. carboxylic ester bonds; catalyst used in peptide coupling; BioChemika, ~ 0.1U/mg Chem. Soc., Chem. Commun., 1991, 19, 1349; [4] D. Cantacuzene, et al., enzymatic synthesis of oligosaccharides on a chymotrypsin- Storage: 2-8°C Biomed. Biochim. Acta, 1991, 50, 231; [5] G. Vic, D. Thomas, Tetrahedron sensitive polymer support. [5] Epoxide Hydrolase, Aspergillus niger sp., Lett., 1992, 33, 4567. [1] J. Porter, et al., Int. J. Pep. Prot. Res., 1987, 30, 13; [2] E. Santaniello, et recombinant from Aspergillus niger 63412 5 mg, 25 mg al., J. Org. Chem., 1988, 53, 1567; [3] P. Kuhl, et al., Monatsh. Chem., 1984, Acetylcholine Esterase from licensed from CNRS BioChemika, lyophilised powder, >6 U/mg 115, 423; [4] K. Aso, Agr. Biol. Chem., 1989, 53, 729; [5] M. Zehavi, et al., Electrophorus electricus (electric eel) E.C. 3.3.2.3 Storage: 2-8°C Carbohydrate Res., 1984, 133, 339. Cholinesterase, AChE 27270 100 mg, 1 g, 5 g Acetylcholine acetylhydrolase [9048-63-9] 1 U corresponds to the amount of enzymes which BioChemika, lyophilised, powder, ~70 U/mg E.C. 3.1.1.7 Acetaminocinnamate Acylase from Brevibacterium sp. hydrolyzes 1 µmol (S)-NEPC ((2S,3S)-trans-3-Phenyl-2- Storage: –20°C [9000-81-1] ACA-Acylase oxiranylmethyl-4-nitrophenyl carbonate, 04088) per 1 U corresponds to the amount of enzyme which E.C. 3.4.13 minute at pH 8.0 and 25°C 27272 1 g, 5 g hydrolyzes 1 µmol acetylcholine per minute at pH 8.0 and 37°C 1 U corresponds to the amount of enzyme which BioChemika, powder, almost white, ~50 U/mg Catalyst for asymmetric hydrolysis of epoxides to optically active diols. Application in the selective hydrolysis or condensation of hydrolyzes 1 µmol N-Acetyldehydrophenylalanine per Storage: –20°C carboxylic ester bonds.[1-3] A. Archelas, R. Furstoss, Curr. Opin. Chem. Biol. 2001, 5(2), 112. minute at pH 8.5 and 30°C 71832 25 mg 52987 5 ml, 25 ml [1] D.R. Deardorff, et al., Tetrahedron Lett., 1986, 27,1255; [2] C.R. BioChemika, powder, light-brown, ~35 U/g Johnson, Th.D. Penning, J. Am. Chem. Soc., 1988, 110, 4726; [3] T.L. BioChemika, solution contains 50 % glycerol, 0.25 M α-Chymotrypsin, TLCK treated Storage: 2-8°C Rosenberg, et al., Meth. Enzymol., 1982, 82, 325. NaCl, 0.3 M K-phosphate, pH ~6.5, yellow, ≥3 U/ml TLCK-Chymotrypsin 01022 1 mg, 5 mg Storage: –20°C E.C. 3.4.21.1 [9004-07-3] BioChemika, powder, slightly yellow, ~850 U/mg Epoxide Hydrolase from Rhodococcus rhodochrous Storage: –20°C 1 U corresponds to the amount of enzyme, which E.C. 3.3.2.3 Carboxypeptidase Y from baker’s yeast (S. cerevisiae) hydrolyzes 1 µmol Suc-(Ala)2-Pro-Phe-4-NA per minute at [9048-63-9] 01023 5 mg, 25 mg Serine carboxypeptidase pH 7.8 and 25°C 1 U corresponds to the amount of enzymes which BioChemika, lyophilized, crystals, brown, 200-600 U/mg Peptidyl-L-amino acid hydrolase Useful in protein hydrolysis where no foreign trypsin activity hydrolyzes 1 µmol (S)-NEPC ((2S,3S)-trans-3-phenyl-2- should be present.[1,2] Storage: –20°C E.C. 3.4.16.1 oxiranylmethyl-4-nitrophenyl carbonate, 04088) per [9046-67-7] [1] Y. Okamoto, T. Sekine, J. Biochem. (Tokyo), 1985, 98, 1143; [2] E. minute at pH 8.0 and 25°C. Asymmetric hydrolysis of 1 U corresponds to the amount of enzyme which Santaniello, et al., J. Org. Chem., 1988, 53, 1567. [1,2] epoxides to optically active diols. hydrolyzes 1 µmol Z-L-phenylalanyl-L-alanine per minute 27280 25 mg, 100 mg BioChemika, lyophilised, powder, white, 60 U/mg Cholesterol Esterase from porcine pancreas [1] P. Hechtberger, et al., Tetrahedron: Asymmetry, 1993, 4, 1161; [2] M. at pH 6.75 and 25°C Mischitz, et al, Tetrahedron: Asymmetry, 1996, 7, 2041. Storage: –20°C [1-4] Cholesterol Esterase hog pancreas 45299 250 mg, 1 g Catalyst used in peptide coupling Sterol-ester acylhydrolase BioChemika, lyophilisate, beige, ≥0.5 U/g [1] W. Kullmann, J. Prot. Chem., 1983, 2, 289; [2] P. Kuhl, et al. , Mh. Chem., Trypsin from bovine pancreas E.C. 3.1.1.13 Storage: 2-8°C 1973, 114, 343; [3] P. Kuhl, H.-D. Jakubke, Pharmazie, 1990, 45, 393; [4] E.C. 3.4.21.4 [9026-00-0] Flörsheimer, M.-R. Kula, Monatsh. Chem., 1988, 119, 1323. [9002-07-7] 1 U corresponds to the amount of enzyme which liberates 1 U corresponds to the amount of enzyme which increases 1 µmol cholesterol per minute at pH 7.0 and 37°C the absorbance at 253 nm by 0.001 per minute at pH 7.6 To learn more about our comprehensive portfolio of enzymes please have a look at the For technical assistance or to order, please call your local Sigma-Aldrich Office sigma-aldrich.com SIGMA-ALDRICH Enzyme Explorer – your research assistant on www.sigma-aldrich.com/enzymeexplorer. For questions about the pricing or to order, please contact your local Sigma-Aldrich Office (see back cover) Enzymes for Organic Synthesis 26 • Hydrolases

sigma-aldrich.com substrate) Storage: 2-8°C BioChemika, powder,~90U/mg 93613 Storage: 2-8°C BioChemika, powder,white, ~1500U/mg 93615 Storage: –20°C BioChemika, 93614 substrate) substrate) substrate) and 25°C( the absorbanceat253nmby0.001perminutepH7.6 1 Ucorrespondstotheamountofenzymewhichincreases [9002-07-7] E.C. 3.4.21.4 Trypsin hogpancreas Trypsin from Storage: –20°C BioChemika, powdercrystalline,~7500U/mg 93630 Flörsheimer, M.-R.Kula, bonds. Application intheselectivehydrolysisorcondensationofamide activity withoutaffectingthetrypsinactivity. Treatment withTPCKirreversiblyinhibitsthechymotrypsin- and 25°C( the absorbanceat253nmby0.001perminutepH7.6 1 Ucorrespondstotheamountofenzymewhichincreases [9002-07-7] E.C. 3.4.21.4 TPCK-Trypsin Trypsin, TPCKtreatedfrom Storage: –20°C 6000-12000 U/mg BioChemika, lyophilized,powder,off-white, 93611 P. Hermann, amino acids. Synthesis ofpeptidederivativescontaining3-thia-analogues Treatment withDPCCreducesanychymotrypsinpresent. and 25°C( the absorbanceat253nmby0.001perminutepH7.6 1 Ucorrespondstotheamountofenzymewhichincreases [9002-07-7] E.C. 3.4.21.4 DPCC-Trypsin Trypsin, DPCCtreated,from Storage: –20°C slightly beige,~9000U/mg BioChemika, essentiallysaltfree,lyophilized,powder, 93610 T. Sakurai, carboxylic esterbonds; Application intheselectivehydrolysisorcondensationof and 25°C( 2.3 HYDROLASES et al. et al. N N N N , ≥ -benzoyl- -benzoyl- -benzoyl- J. Am.Chem.Soc. porcine pancreas -benzoyl-l- ethylester,12880,as , 10000 U/mg Amino Acids To place anorderorget aquote,please contactyour local Sigma-Aldrich FineChemicals office Monatsh. Chem. Contact us tolearnmore aboutourbiocatalyst andbiotransformation capabilities. L L L -arginine ethylester,12880,as -arginine ethylester,12880,as -arginine ethylester,12880,as , 1992 , bovine pancreas 1988 bovine pancreas CONTINUED , 3 , 105. , , 1988 110 , 7236. , 119 50 g,2501kg , 1323. 250 mg,1g,5g 1 g,525g 250 mg,1g 250 mg,1g 25 mg Commun. hydrolyzes 1µmol 1 Ucorresponds totheamountof enzyme which [9001-73-4] E.C. 3.4.22.2 Papain from Storage: 2-8°C BioChemika, powder,lightbrown, ~6U/mg 85967 Storage: 2-8°C BioChemika, finewhitecrystals, 85968 [1] A.N.Glazer, transpeptidation. Serine endoproteinaseusedintransesterificationand pH 6-10 temperature isstableupto55°C),theoptimumpHrangefrom Enzyme activity:theoptimumtemperatureis50°C(the Protease from Storage: 2-8°C BioChemika, lyophilized,powder,~20U/mg 82490 [1] H.Kitaguchi, enzymatic regioselectiveacylationinpyridine. synthesis ofesterdeoxynojirimycinandcastanospermineby anhydrous organicsolvents; Regioselective biocatalystforpeptidebondformationin 51290, assubstrate) as tyrosine)perminuteatpH7.5and37°C(hemoglobin, 1 µmolfolin-positiveaminoacidsandpeptides(calculated 1 Ucorrespondstotheamountofenzymewhichliberates [9014-01-1] E.C. 3.4.21.14 Subtilo peptidaseA Subtilisin CarlsbergBacillussubtilisvar.biotecusA Proteinase from Storage: –20°C BioChemika, powder,off-white,~10U/mg 82518 as substrate) as tyrosine)perminuteatpH7.5and37°C(casein,22078, 1 µmolfolin-positiveaminoacidsandpeptides(calculated 1 Ucorrespondstotheamountofenzymewhichliberates [9001-92-7] E.C. 3.4.21.14 Nagarse Subtilisin Carlsberg,bacterial Proteinase, bacterial J. Biol.Chem. acids viaenzymatichydrolysisoftheir Tetrahedron Lett. et al. as substrate) as tyrosine)perminuteatpH7.5and37°C(casein,22078, 1 µmolfolin-positiveaminoacidsandpeptides(calculated 1 Ucorrespondstotheamountofenzymewhichliberates [9014-01-1] E.C. 3.4.21.14 Alcalase Subtilisin fromBacilluslicheniformis Proteinase fromBacilluslicheniformis , Can. J.Chem. , 1990 , 1968 , 16686. J. Biol.Chem. Carica papaya et al. , 1990 Bacillus globigii [1-3] , 243 Bacillus subtilisvar.biotecusA , , Tetrahedron Lett. , N 1990 , 1344;[3]R.Brieva, 31 -benzoyl- , 3093. , , 68 1968 [1] , 960;[3]D.L.Delinck,A.L.Margolin, resolution of , 241 L -arginine ethyl ester(BAEE, , , 635;[2]A.O.Barel,A.N.Glazer, ( Bacillus licheniformis 1988 ≥ 25 mg,100500mg ~12 U/mg et al. , N 29 -acyl methylesters; , 5487;[2]R.Chênevert, , β 100 mg,500mg 100 mg,500mg .Ce.Sc,Chem. J. Chem.Soc., [3] -hydroxy- 25 mg,100mg α -amino ) [2] 2.3 HYDROLASES J. Chem. Biotechnol. Bioeng. Margolin, 501; [2]N.P.Boley, 12880) perminuteatpH6.2and25°C 1 µmol4-nitrophenolperminuteatpH4.6and25°C(N 1 Ucorrespondstotheamountofenzymewhichreleases [37189-34-7] E.C. 3.4.22.32 Bromelain pineapplestem Storage: –20°C white, >100U/mgprotein BioChemika, lyophilized,protein~80%,powder, 27549 12880) perminuteatpH7.1and2°C determination; Z-L--4-nitrophenyl esterassubstrate) enzymatic hydrolysisoftheir Employed inpeptide synthesis and 37°C(Hemoglobin, Fluka-No.51290,as substrate). the absorbanceat280nmby 0.001perminuteatpH2.0 1 Ucorrespondstotheamount ofenzymewhichincreases [9001-75-6] E.C. 3.4.23.1 Pepsin A Pepsin hogstomach Pepsin porcinegastricmucosa Storage: –20°C BioChemika, powder,yellow-brown,2-5U/mg 16990 [1] A.Ritonja, protease; hydrolyzes 1µmolof 1 Ucorrespondstotheamountofenzymewhich Papain, immobilizedonEupergit®C,from Storage: 2-8°C BioChemika, powder,~0.5U/mg 76222 Storage: 2-8°C BioChemika, powder,~3U/mg 76220 Storage: –20°C BioChemika, powder,almostwhite,~12U/mg 76218 [1] A.N.Glaze,E.L.Smith, Specificity; hydrolyzes 1µmol 1 Ucorrespondstotheamountofenzymewhich [9028-00-6] E.C. 3.4.22.8 Proteinase fromClostridiumhistolyticum Clostridiopeptidase B Clostripain from Storage: 2-8°C BioChemika, granulatedmaterialmoist,lightbrown,~60U/g 76221 Trademark ofRöhmPharmaGmbH (12880) perminuteatpH6.2and25°C.®Registered For questions about thepricingor toorder,please contact yourlocalSigma-Aldrich Office (seeback cover) , 1990 J. Prot.Chem. [1] et al. , release ofsyntheticcoloursfromfoodfortheir 68 [2] , 960. , catalyst forpeptidebondformation. , FEBS Lett. 1992 [1] et al. Clostridium histolyticum N resolution of , , -benzoyl- 1983 40 , The Enzymes,P.D.Boyered.,3rdEd., Analyst , 432. , , 1989 N 2 -benzoyl- , 289;[4]M.Y.Gololobov,E.V.Kozlova, N -acyl methylesters. [1,2] , , CONTINUED 247 L 1979 -arginine ethylester(BAEE, , 419;[2]R.Chênevert, β -hydroxy- , 104 L -arginine ethylester 50 mg,2501g , 472;[3]J.Green,A.L. α -amino acidsvia Carica papaya [2] 100 g,500g 25 g,100g 25 g,100g [3, 4] 1 g,5g et al. 1971 1 ea , Can. , 3 α - , Seyler’s Z.Physiol.Chem. Biochem. Bioorg. Med.Chem.Lett. Storage: –20°C pH 7.5,20-40U/mgprotein (~70 mgprotein/ml) BioChemika, solutionin0.1 M phosphatebuffer, 76427 [1] T.A.Savidge,M.Cole, Characterisation; and 37°C hydrolyzes 1µmolbenzylpenicillinperminuteatpH7.6 1 Ucorrespondstotheamountofenzymewhich [9014-06-6] E.C. 3.5.1.11 Penicillin amidohydrolase Penicillin Acylase Penicillin Amidasesolution,from Storage: –20°C BioChemika, lyophilized,powder,~40U/mg 88303 Carlsberg Res.Commun. [1] J.Feder, Thermostable neutralprotease; and 37°C(caseinassubstrate) and peptides(calculatedastyrosine)perminuteatpH7.2 under testconditions1µmolfolin-positiveaminoacids 1 Ucorrespondstotheamountofenzymewhichliberates [9073-78-3] E.C. 3.4.24.27 Thermophilic-bacterial protease Protease fromBacillusthermoproteolyticusrokko Thermolysin from Storage: 2-8°C BioChemika, powder,slightlybeige,>2U/mg 96887 as substrate) as tyrosine)perminuteatpH7.5and37°C(casein,22078, 1 µmolfolin-positiveaminoacidsandpeptides(calculated 1 Ucorrespondstotheamountofenzymewhichliberates [9001-92-7] E.C. 3.4.24.4 Subtilo peptidaseA Proteinase fromBacillussubtilis Storage: 2-8°C BioChemika, powder,light-beige,200-600U/mg 77163 Storage: 2-8°C BioChemika, powder,slightlybeige,600-1200U/mg 77160 Storage: 2-8°C BioChemika, powder,slightlybeige,1200-2400U/mg 77151 Fruton, [1] C.A.AbdelMalak, ampicillin andbenzylpenicillin. Carlsberg Res.Commun. , 1988 et al. , 177 , [1] , 313. Dev. Ind.Microbiol. employed inchiralresolution; et al. Bacillus thermoproteolyticusrokko , , Meth. Enzymol. 1984 , 1984 1993 , Int. J.Pep.Prot.Res. , , , 365 , 1984 49 3 [1] [3] , 1435. , 1041;[3]V.Kasche, , 231;[3]M.Reslow, employed inpeptidesynthesis , 49 , , , 41. 1975 1977 E. coli , , 43 18 , 705;[2]A.Guy, , , 267;[2]J.S.Fruton, 1993 25 mg,100mg 1 g,525g 100 g,500g , 250 mg,1g [2] 25 g,100g et al. 41 et al. synthesis of , 97;[2]J.S. 5 g,25g , , Hoppe- Eur. J. et al. [2,3] ,

For technical assistance or to order, please call your local Sigma-Aldrich Office 27 Enzymes for Organic Synthesis • Hydrolases Enzymes for Organic Synthesis 28 • Hydrolases

sigma-aldrich.com 2.3 HYDROLASES Bioprocess Technol. Biochemistry, al. hydrolyzes 1µmol 1 Ucorrespondstotheamountofenzymewhich Resolution ofN-acylatedaminoacids. and 37°C. hydrolyzes 1µmolbenzylpenicillinperminuteatpH7.6 1 Ucorrespondstotheamountofenzymewhich from [1] D.Jaworek, ® RegisteredTrademarkofRöhmPharmaGmbH D,L-racemates. amino acidsviaselectivedeacetylationofN-acetylamino in The immobilizedacylaseisusedfortheconvenientresolution of leads toahydrolysisdegreeof80%. used inafixedbedreactor,velocityofflow3volumes/h polymer waswashedwithwater(50timesbedvolumes);when addition ofCoCl Standard procedure:a10-20%substratesolution,pH6-8,with an Aminoacylase, immobilized,Plexazym Acylase I,immobilizedonEupergitCfrom Storage: 2-8°C BioChemika, powder,brown,>0.5U/mg 01818 Storage: –20°C BioChemika, powder,light-brown,2-5U/mg 17877 K. Uchida,M.Kainosho, by CoCl optimum pHis8.0(stableform6-10).Theenzymeactivated Enzyme activity:theoptimumtemperatureis40-45°C, hydrolyzes 1µmol 1 Ucorrespondstotheamountofenzymewhich [9012-37-7] E.C. 3.5.1.14 Acylase ‘Amano’ Aminoacylase Acylase Ifrom Storage: 2-8°C BioChemika, powder,wetmaterial,white,~150U/g 76428 Immobilized onapolyacrylamidecopolymer 7.6 and37°C hydrolyzes 1µmolofbenzylpenicillinperminuteatpH 1 Ucorrespondstotheamountofenzymewhich Penicillin GAmidase,immobilized,from Storage: 2-8°C BioChemika, powder,beige,~100U/g 76429 E. Baldaro ®Registered TrademarkofRöhmPharmaGmbH Used intheresolutionofseveralsecondaryalcohols. Penicillin Amidase,immobilizedonEupergit Storage: 2-8°C acylase, pearl diameter50-100µm), covalent fixationofthe BioChemika, moistpearls(dried substance~30%, 01824 pH 8.0and25°C pH 8.0and37°C , Chem. Ing.Tech. E. coli 2 in therangeof10 et al. ≥ 50 U/g W.H. Scouten,Ed.,NewYork, SIGMA-ALDRICH Enzyme Explorer–your researchassistant onwww.sigma-aldrich.com/enzymeexplorer. et al. , [1-4] Tetrahedron: Asymmetry 2 Aspergillus melleus , (10 , 1993 Meth. Enzymol. , -4 1980 J. LabelledCompd.Radiopharm. To learn moreaboutour comprehensive portfolioofenzymes please have alookat the , N N moles) at33°Cwasused.Priortouse,the 16 -acetyl- -acetyl- , 3. , -4 52 to 10 , 607;[3]J.Tramper,in CONTINUED L L , -methionine perminuteat -methionine perminuteat -3 1976 M. , 1993 , 1983 44 , 195;[2]W.Kuhlmann, , , 393;[4]T.Sato,Tosa, ® 4 , 1031. AC E. coli Aspergillus , ® 250 mg,1g 1991 C, 5 g,25g 5 g,25g Solid Phase , 1 g,5g 1 g,5g 29 , 867. et Appl. Biochem. ed. Wandrey ,in 1989 6354; [3]J.Martens,H.Weigel, pH 8.0and37°C hydrolyzes 1µmol 1 Ucorrespondstothe amount ofenzymewhich [9012-37-7] E.C. 3.5.1.14 L-Aminoacylase Acylase from Storage: –20°C BioChemika, lyophilisate,lightbrown,~0.15U/mg 94810 pH 8.0and37°C amide bonds. hydrolyzes 1µmol 1 Ucorrespondstotheamountofenzymewhich [9012-37-7] E.C. 3.5.1.14 L-Aminoacylase Acylase from Storage: –20°C BioChemika, lyophilized,powder,~15U/mg 01821 Storage: –20°C BioChemika, powder,yellow-brown,~30U/mg 01816 1961 [1] J.P.Greenstein,M.Winitz, yielding L-aminoacidenantiomersexclusively; Enantioselective hydrolysisofracemicN-acetylaminoacids L-leucine andL-, pH 7.0and25°C hydrolyzes 1µmol 1 Ucorrespondstotheamountofenzymewhich [9012-37-7] E.C. 3.5.1.14 N Aminoacylase Acylase Ifrom Storage: 2-8°C BioChemika, powder,lightbrown,1-2U/mg 50606 pH 8.0and37°C hydrolyzes 1µmol 1 Ucorrespondstotheamountofenzymewhich [9012-37-7] E.C. 3.5.1.14 L-Aminoacylase Acylase from Storage: 2-8°C acylase, >15U/g pearl diameter50-100µm),covalentfixationofthe BioChemika, moistpearls(driedsubstance~30%, 50837 -Acylamino acidamidohydrolase , Dordrecht,Holland, , , 111 1 , 728;[2]G.M.Whitesides, , 6354. Enzymes asCatalystsinOrganicChemistry,M.P.Schneider, , [2,4-6] 1987 Streptomyces hachijoensis Streptomyces griseocarneus Penicillium sp. porcine kidney , 9 , 251;[6]H.K.Chenault, 1986 N N N N -acetyl- -acetyl- -acetyl- -acetyl- , [3] Chemistry ofAminoAcids,Vol.1 263 selective hydrolyses/condensationsof Liebigs Ann.Chem. ; [5]C.Sambale,M.R.Kula, et al. DL DL L L -methionine perminuteat -methionine perminuteat -methionine perminuteat -methionine perminuteat , J. Amer.Chem.Soc. et al. 100 mg,500mg , J. Amer.Chem.Soc. , [1,2] 1983 , separationof 100 mg,1g 250 mg,1g 250 mg,1g , 2052;[4]C. 5 g,25g , , NewYork, Biotechnol. 1989 , 111 , , 2.3 HYDROLASES hydrolyzes 1µmol 1 Ucorrespondstotheamountofenzymewhich [9012-37-7] E.C. 3.5.1.14 L-Aminoacylase Acylase from Storage: –20°C hydrolyzes 1µmol 1 Ucorrespondstotheamountofenzymewhich [9012-37-7] E.C. 3.5.1.14 L-Aminoacylase Acylase from Storage: –20°C BioChemika, lyophilisate,light-brown, 82856 conversion of3-phenylpropionitrile to3-phenylpropionicacid 1 µmolammoniaperminute atpH7.5and30°Cwiththe 1 Ucorrespondstotheamountofenzymewhichliberates [9024-90-2] E.C. 3.5.5.1 Nitrilase from Storage: 2-8°C BioChemika, powder,brown,~400U/g 53763 and 40°C hydrolyzes 1µmolhydantoin(53760)perminuteatpH9.0 1 Ucorrespondstotheamountofenzymewhich [9030-74-4] E.C. 3.5.2.2 D-Hydantoinase fromAzukibeans Dihydropyrimidinase D-Hydantoinase from Storage: –20°C BioChemika, lyophilisate,light-brown,~0.25U/mg 75288 pH 8.0and37°C hydrolyzes 1µmol 1 Ucorrespondstotheamountofenzymewhich [9012-37-7] E.C. 3.5.1.14 L-Aminoacylase Acylase from Storage: –20°C BioChemika, lyophilisate,lightbrown,~40U/g 94734 pH 8.0and37°C BioChemika, lyophilisate,light-brown, 90222 pH 8.0and37°C Storage: –20°C BioChemika, powder,slightly red,~15U/g 82429 T. Nagasawa For questions about thepricingor toorder,please contact yourlocalSigma-Aldrich Office (seeback cover) et al. Streptomyces chartreusis Streptomyces toyocaensis Streptomyces zaomyceticus , Alcaligenes faecalis Eur. J.Biochem. N N N -acetyl- -acetyl- -acetyl- Vigna angularis , DL DL DL CONTINUED 1990 -methionine perminuteat -methionine perminuteat -methionine perminuteat , 194 , 765. 2.4 LYASES (adzuki bean) ≥ ≥ 0.1U/mg 30U/g 10 mg,50mg 100 mg,1g 250 mg,1g 100 mg,1g 100 mg,1g 100 mg,1g Osswald, nitriles tocarboxylicacids; F. Effenberger,S.Osswald, (±)-arylacetonitriles. 1 Ucorresponds totheamountofenzyme whichconverts [9026-97-5] E.C. 4.1.2.4 DERA AldolasefromLactobacillus plantarum from 2-Deoxyribose-5-phosphate Aldolase 2.4 LYASES 76713 Gradley, C.J.Knowles, [1] T.C.Bhalla, Enantioselective hydrolysisofnitriles. 78424 N. Layh, Enantioselective hydrolysisof 53841 [1] F.Effenberger,S.Osswald, Catalyst forthe(E)-selectivehydrolysisof( dinitriles tomonocarboxylicacids; Nitrilase, 72295 conversion ofbenzonitriletobenzoicacid 1 µmolammoniaperminuteatpH7.5and30°Cwiththe 1 Ucorrespondstotheamountofenzymewhichliberates [9024-90-2] E.C. 3.5.5.1 Nitrilase from Storage: –20°C BioChemika, powder,slightlybeige,~10U/g conversion ofbenzonitriletobenzoicacid 1 µmolammoniaperminuteatpH8.0and30°Cwiththe 1 Ucorrespondstotheamountofenzymewhichliberates [9024-90-2] E.C. 3.5.5.1 Nitrilase from Storage: –20°C BioChemika, powder,slightlyyellow thiopheneacetic acid conversion of2-thiopheneacetonitrileto2- 1 µmolammoniaperminuteatpH7.5and30°Cwiththe 1 Ucorrespondstotheamountofenzymewhichliberates [9024-90-2] E.C. 3.5.5.1 Nitrilase from Storage: –20°C BioChemika, powder,lightbeige,0.3-1.0U/mg conversion of3-phenylpropionitrileto3-phenylpropionicacid 1 µmolammoniaperminuteatpH8.0and35°Cwiththe 1 Ucorrespondstotheamountofenzymewhichliberates [9024-90-2] E.C. 3.5.5.1 Storage: –20°C >0.1 U/mg powder, slightlyred, BioChemika, Lactobacillus plantarum NEW! NEW! NEW! NEW! et al. Tetrahedron: Asymmetry Arabidopsis thaliana , Arch. Microbiol. et al. Rhodococcus rhodochrous Pseudomonas fluorescens Rhodococcus sp. , Appl. Microbiol.Biotechnol. Biotechnol. Lett. [3] Synthesis Tetrahedron: Asymmetry , 1992 [1] O , 2001 selective hydrolysisofaliphatic -acetylmandelonitrile. , , 158 [2] , 2001 , recombinantfrom 1994 , enantioselective hydrolysisof 12 , 405. [1,2] , 279. , 1866;[3]F.Effenberger,S. , 16 ≥ , 41. , E,Z 10-15 U/g 1992 )- , 10 mg,50mg 10 mg,50mg 10 mg,50mg 10 mg,50mg α 2001 , , 37 β -unsaturated , 184;[2]M.L. , 12 , 2581;[2] E. coli

For technical assistance or to order, please call your local Sigma-Aldrich Office 29 Enzymes for Organic Synthesis • Hydrolases/Lyases Enzymes for Organic Synthesis 30 • Lyases

sigma-aldrich.com 2.4 LYASES H. Waldmann,Eds.,VCH,Weinheim, et al. Henderson, in 1 µmoldihydroxyacetone phosphatefrom fructose-1,6- 1 Ucorresponds totheamountofenzyme whichconverts [9024-52-6] E.C. 4.1.2.13 FDP-Aldolase phosphate- D-Fructose-1,6-bisphosphate-D-glyceraldehyde-3- Fructose-1,6-bisphosphate Aldolase from Storage: 2-8°C partially solubleinwaterorbuffer BioChemika, lyophilisate,slightlybeige,~30U/g 80753 [1] L.C.Packman,A.Berry, Catalyst forstereoselectivealdolreactions. coupled totriosephosphateisomerase. diphosphate perminuteatpH7.6and37°Cinasystem 1 µmoldihydroxyacetonephosphatefromfructose-1,6- 1 Ucorrespondstotheamountofenzymewhichconverts [9024-52-6] E.C. 4.1.2.13 FDP Aldolase phosphate-lyase D-Fructose-1,6-bisphosphate-D-glyceraldehyde-3- Fructose-1,6-bisphosphate Aldolasefrom Storage: –20°C BioChemika, lyophilisate,slightlyyellow,~0.2U/mg 96586 Herbert, [1] B.T.Lotz 1 µmol 1 Ucorrespondstotheamountofenzymewhichconverts E.C. 4.1.2.5 L- Aldolasefrom Storage: –20°C partially solubleinwaterorbuffer BioChemika, lyophilisate,slightlybeige,~10U/g 53806 [1] V.P.Vassilev, 1 µmol 1 Ucorrespondstotheamountofenzymewhichconverts E.C. 4.1.2.5 L-Threonine Aldolasefrom Storage: –20°C BioChemika, powder,slightlyyellow,~15U/g 41228 [1] C.H.Wong, by multi-substratealdolreactions. Enzyme forthestereoselectivesynthesisofcarbohydrates minute atpH7.5and25°C glyceraldehyde-3-phosphate andacetaldehydeper 1 µmol2-deoxy- Applied Microbiol.,Biotechn al. Catalyst forstereoselectivealdolreactions. minute atpH8.6and30°C Catalyst forstereoselectivealdolreactions. minute atpH8.6and30°C , Tetrahedron Lett. , J. Am.Chem.Soc. et al. L L -threonine toglycineandacetaldehydeper -threonine toglycineandacetaldehydeper et al. , Enzyme CatalysisinOrganicSynthesis,Vol.2 J. Chem.Soc. et al. et al. , , To place anorderorget aquote,please contactyour local Sigma-Aldrich FineChemicals office J. Chem.Soc. , J. Am.Chem.Soc. , 1996 Tetrahedron Lett. , CONTINUED 1995 , , Contact us tolearnmore aboutourbiocatalyst andbiotransformation capabilities. Chem. Commun. 37 D , , Eur. J.Biochem. , 2791. 1998 117 -ribose-5-phosphate to , , 7585. Chem. Commun. Pseudomonas putida , Candida humicola 1995 49 , , 70. 1995 , 1995 , 547. [1,2] , , 1993 117 , Staphylococcus aureus 36 , , 3333;[2]H.J.M.Gijsen, , 4081;[2]K.Shibata, 1995 , 205;[3]L.Q.Liu, , 1990 Bacillus subtilis [1,2] [1-3] [1,2] , 10 mg,50mg 10 mg,50mg 227 , 1107;[2]R.B. , K.H.Drauz , 510;[2]I. 250 mg 10 mg et al. D et - , Zannetti, Engl. Characterization coupled totriosephosphateisomerase. diphosphate perminuteatpH7.6and25°Cinasystem cyanohydrins. Catalyst forthesynthesisofopticallyactive minute atpH5.0and25°C 1 µmolmandelonitriletocyanideandbenzaldehydeper 1 Ucorrespondstotheamountofenzymewhichcleaves [9024-43-5] E.C. 4.1.2.37 Acetone-cyanohydrin Lyase (S)-Oxynitrilase from Storage: 2-8°C BioChemika, lyophilisate,yellow,~5U/g 05525 coupled totriosephosphateisomerase. diphosphate perminuteatpH7.6and25°Cinasystem 1 µmoldihydroxyacetonephosphatefromfructose-1,6- 1 Ucorrespondstotheamountofenzymewhichconverts [9024-52-6] E.C. 4.1.2.13 FDP-Aldolase phosphate-lyase D-Fructose-1,6-bisphosphate-D-glyceraldehyde-3- Fructose-1,6-bisphosphate Aldolasefrom Storage: –20°C BioChemika, lyophilisate,slightlybeige,~0.4U/mg 94864 [1] H.P.Brockamp,M.-R.Kula, Catalyst forstereoselectivealdolreactions. coupled totriosephosphateisomerase. diphosphate perminuteatpH7.6and25°Cinasystem 1 µmoldihydroxyacetonephosphatefromfructose-1,6- 1 Ucorrespondstotheamountofenzymewhichconverts [9024-52-6] E.C. 4.1.2.13 FDP-Aldolase phosphate-lyase D-Fructose-1,6-bisphosphate-D-glyceraldehyde-3- Staphylococcus carnosus Fructose-1,6-bisphosphate Aldolasefrom Storage: –20°C BioChemika, powder,white, 05522 F. Götz, 1 Ucorresponds totheamountofenzyme whichcleaves [9024-43-5] E.C. 4.1.2.37 Acetone-cyanohydrin lyase recombinant from (R)-Oxynitrilase, Storage: 2-8°C citrate/phosphate pH~5.4, BioChemika, turbidsolution,contains20mM 71811 [1] F.Effenberger, Tetrahedron , 1996 et al. et al. , 35 , , 2000 Eur. J.Biochem. , 437. , Chem. Eur.J. [1-3] , 56 Linum usitatissimum Chimia , 781;[3]S.Förster, Pichia pastoris Manihot esculenta , , 1999 , Tetrahedron Lett. 1999 1980 , ≥ , 5 , 3000 U/ml , 1882. ≥ 108 53 10 U/mg , 3;[2]D.V.Johnson, , 295. et al. , , Thermus aquaticus Angew. Chem.,Int.Ed. 1990 (flax), 100 mg,500mg (manioc) , [1,2] 31 , 7123;[2]M.T. 1 ml,5ml 5 mg 5 mg et al. , 2.4 LYASES cyanohydrins. and 30°C.Catalystforthesynthesisofopticallyactive hydrolyzes 1µmol 1 Ucorrespondstotheamountofenzymewhich [9024-43-5] E.C. 4.1.2.10 (R)-Oxynitrilase from hydrolyzes 1µmol 1 Ucorrespondstotheamountofenzymewhich [9024-43-5] E.C. 4.1.2.10 Mandelonitrile lyase Acetone cyanohydrinlyase (R)-Oxynitrilase frombitteralmonds Storage: 2-8°C BioChemika, solutionhazy,yellow, 38942 U. Kragl, [1] F.Effenberger, cyanohydrins. Catalyst forthesynthesisofopticallyactive minute atpH4.2and30°C 1 µmolacetonecyanohydrintocyanideandper Chem. Storage: 2-8°C BioChemika, powder,slightly brown, 91843 at pH3.8and30°C hydrolyzes 1µmol 1 Ucorrespondstotheamountofenzymewhich [9024-43-5] E.C. 4.1.2.10 Mandelonitrile lyase Acetone cyanohydrinlyase (S)-Oxynitrilase fromSorghum Storage: –20°C or buffer,white,~0.2U/mg BioChemika, powder,onlypartiallysolubleinwater 08788 and 30°C hydrolyzes 1µmol 1 Ucorrespondstothe amount ofenzymewhich [9024-43-5] E.C. 4.1.2.10 (S)-Mandelonitrile lyase (S)-Acetone cyanohydrinlyase (S)-Oxynitrilase from Storage: –20°C BioChemika, powder,lightbrown,>50U/mg 06989 minute atpH3.8and30°C For questions about thepricingor toorder,please contact yourlocalSigma-Aldrich Office (seeback cover) Storage: 2-8°C yellow, acetate, ~20mMZnCl BioChemika, clearsolution,contains~20mMsodium 77398 , 1996 et al. , 377 ≥ , 50 U/ml Ann. N.Y.Acad.Sci. , 611. [1,2] Chimia DL DL DL CONTINUED - , -mandelonitrile perminuteatpH3.8 -mandelonitrile perminuteatpH3.8 p 1999 Sorghum vulgare Prunus amygdalus(almonds) -hydroxymandelonitrile per minute DL 2 , - , ~1MNaCl,pH~5.7,slightly 53 p -hydroxymandelonitrile per , , 3;[2]H.Wajant,F.Effenberger, 1990 , 613 , 167. ≥ 30 U/ml ≥ 40 U/g 5 mg,25mg 250 mg 100 ml 10 mg 5 ml Biol. deaminates 1µmol 1 Ucorrespondstotheamountofenzymewhich [9024-28-6] E.C. 4.3.1.5 Phenylalanine Ammonia-Lyase Phenylalanine Deaminasefrom Storage: –20°C protein (~100mgprotein/ml) per minuteatpH8.5and30°C Storage: –20°C >0.4 U/mgprotein(~8mgprotein/ml) 3 mMTRISHCl,pH7.5and0.5Mammoniumsulfate, BioChemika, clear,colorlesssolutionin60%glycerol, 78085 Storage: –20°C BioChemika, lyophilized,powder,~0.2U/mg 78084 C.W. Abell,R.S.Shen, pyridoxal-5-phosphate (0.1mM),yellow, BioChemika, solution,containsglycerol(20%)and 52384 ammonia perminuteatpH7.0and37°C hydrolyzes 1µmoltryptophantoindole,pyruvateand 1 Ucorrespondstotheamountofenzymewhich [9024-00-4] E.C. 4.1.99.1 frommicroorganisms Storage: –20°C BioChemika, lyophilisate,white,~0.1U/mg 59892 [1] N.C.Floyed, Catalyst forstereoselectivealdolreactions. perminuteatpH8.4and37°C decarboxylates 1µmoloxalacetatetopyruvateand 1 Ucorrespondstotheamountofenzymewhich [9030-81-3] E.C. 4.1.3.16 2-Keto-4-hydroxyglutarate Aldolase KHG-Aldolase 4-Hydroxy-2-oxoglutarate Aldolasefrom Vol. 2 I , 1992 , K.H.DrauzH.Waldmann,Eds.,VCH,Weinheim, , 1085;[2]I.Hendersonin et al. , J. Chem.Soc.,PerkinTrans Meth. Enzymol. L -phenylalanine to Enzyme CatalysisinOrganicSynthesis, , 1987 Rhodotorula glutinis , 142 , 242. trans E. coli ≥ [1,2] 2.5 U/mg 1995 5 mg,25mg 1 mg,5mg 1 mg,5mg -cinnamate , 567. 10 mg

For technical assistance or to order, please call your local Sigma-Aldrich Office 31 Enzymes for Organic Synthesis • Lyases