PINE VALLEY Mount Wabi to Solitude Mountain Northeastern British Columbia

Total Page:16

File Type:pdf, Size:1020Kb

PINE VALLEY Mount Wabi to Solitude Mountain Northeastern British Columbia BRITISHCOLUMBIA DEPARTMENT OF MINES AND PETROLEUMRESOURCES HoN. D.L. BROTHERS,Minister K. B. BLAKEY,Deputy Minister ~~ BULLETIN No. 52 GEOLOGY of the PINE VALLEY Mount Wabi to Solitude Mountain Northeastern British Columbia by J. E. HUGHES GEOLOGY OF THE PINE .VALLEY Mount Wabi to Solitude Mountain Northeastern British Columbia SUMMARY 1. The map-area covers the Pine Valley, in the Rocky Mountain Foothills of northeastern British Columbia, from latitude 55 degrees 30 minutes to latitude 55 degrees 45 minutes north. 2. The exposed rocks are Triassic, Jurassic, and Cretaceous in age. The suc- cession (Ladinian to Cenomanian) is between 10,000 and 20,000 feet thick, and mostly of marine deposition. Most stratigraphic units thicken westward. 3. In the Triassic, the Grey Beds contain limestones, dolomites, siltstones, and sandstones; and the overlying PardonetFormation, argillaceous limestones with fossil shell beds of Halobia and Monotis. 4. The Fernie Group of Jurassic age consists of: thin limestone, interbedded shales and siltstones with cherty banding, the Nordegg Beds; followed by the Middle Shales; and in the upper part, interbedded shales, siltstones, and sandstone:;, the Transition Beds, which mark the change to Beaudette deposition. 5. The Beaudette Group of late Jurassic to early Cretaceous age has three formations: the Monteith, thick sandstones mostly, and with quartzites in the 'upper third part; the BeattiePeaks, interbedded shales, siltstones, andsandstones; and the Monach Formation,sandstones, with or without quartzite beds at the top. Facies changes and incomplete outcrops make it advisable to map Beaudette strata as an undivided unit to the west. 6. Coal measures overlying Beaudette strata are described by the term Crassier Group. The group is a continuous sequence of deposits in the field. They have a complex lithology: shales, mudstones, siltstones, sandstones, grits, conglome:rates, and coals, laid down in cyclic repetition. The sequence is undivided to the west. Eastwardit can be divided intothe Brenot, Dresser, and Gething Formations, according to their sand/shale ratios, the nature of the cyclothems, and the dirtribu- tion of the coarser clastics. 7. TheFort St. John Group contains alternations of shaleformations, the Moosebar in the lower part, the Hasler, and theCruiser, with sandstone formations, the Commotion, and the Goodrich. These units are marine, except for thin non- marine beds and coal measures in the Commotion Formation. 8. The Dunvegan strata are mostly non-marine, and they form the youngest formation of the Cretaceous in the map-area. 9. The sedimentary rocks were deformed and uplifted in the Rocky Mountain orogeny, one phase of the Laramide revolution. 10. The Rocky Mountain Foothills in the Pine area are in two parts: the Inner (or Western)Foothills and the Outer (or Eastern) Foothills. The structures of the Inner and Outer Foothills represent different tectonic styles. 11. Close folding and thrusting prevailed in the Inner Foothills, and t:he de- formation resembles that of the Rocky Mountains on the west. 12. The Outer Foothills contain long anticlines separated by wide synclimes, andhere the deformation was restricted tothe anticlinal folding,and fmlting 7 along the anticlines. The Outer FoothiUs belong to the orogenic foreland, Their structures can beascribed to block faulting inthe basement, though positive evidence is lacking. 13. Foldingin the Foothills is of parallel type. The fold forms are con- centric, or angular. The angularfolds (that is, parallel folds of non-concentric form) include those of cuspate and lamhdate forms, in the writer's classification. Two types of concentric folds are distinguished-those of low and high fold ampli- tude respectively. 14. Concentric anticlines of low fold amplitude occur in the Outer Foothills. The Commotion anticline is the only example that has been drilled to depth. Its surface and subsurface structures differ considerably, and they are separated by a low angle thrust, or dtcollement, or a zone of complex folding and shearing. 15. High-amplitude concentric anticlines have fold centres at shallow levels, and may be underlain by cuspate and angular folds, as well as dkcollements. Con- centric folds of high amplitude, cuspate, and angular folds occur together in the Inner Foothills. 16. According to the writer's view, cuspate anticlines developed by replacing concentric anticlines during the folding compression. Lambdate folds are not spe- cially related to concentric folds, and the few examples noted lie close to fault planes. 17. The structures of the Pine Valley area form part of a larger tectonic frame- work, which includes: the junction of the northern and southern parts of the Rocky Mountains; and in the Plains, the junctions of three tectonic units of the foreland, the Halfway block, the Fort St. John arch, and theAlberta syncline. The junction of tectonic units of the foreland now occupy the site of the Peace River emhayment, a palzotectonic basin of differential subsidence and sedimentation lying transversely to the former miogeosyncline along the site of the Rocky Mountains and Foothills. 18. Observations, and analyses of structural geology presented here, are of use in exploring for petroleumand natural gas. Natural gas has been discovered in the Pine River anticline. Important reserves of coal occur in the Pine Valley. 8 CHAPTER1.-INTRODUCTION LOCATION 1954; K. Falconer and C. Wright, 1955; Y. Kamachi, 1956; R. M. Luning, 1957; and A. Jellinek, 1958. The writer is grateful to them for their work, and to the residents of the Pine Valley for their interest and many courtesies. Dr. J. A. Jeletzky identified the Upper Jurassic and Cretaceous faunas, and Dr. D. C. McGregor, the Cretaceous floras, at the GeologicalSurvey of Canada, Ottawa. Parts of the manuscript and its presentation were discussed by Drs. S. S. Hol- land and G. E. P. Eastwood. Full acknowledgments are due to Piofessors C. W. Stearn and P. Eakinsof McGill University for their advice, reading, and supervision of part of this work as a thesis. PREVIOUSGEOLOGICAL WORK The first reconnaissances of the Pine Valley were made by G. M. Dawson (1881)and R. G. McConnell (1893). Later, geological work was directedto explorations for petroleum by J. C. Gwillim (1920), J. A. Dresser (1920, 1921), E. M. Spieker (1921,1922), M. Y. Williams (1939); toexplorations of coal deposits by 3. Spivak (1944), W. H. Mathews (1947), N. D. McKechnie (1955); and to reconnaissanceby M. Y. Williams and J. B. Bocock (1932), and C. R. Stelck (1942). The geology of parts of the Pine Valley, the Mount Hulcross-Commotion Creek area, was mapped by R. T. D. Wickenden and G. Shaw at a scale of 1 inch to 1 mile, and the Mount Bickford area by W. H. Mathews at a scale of 1 inch to 2 miles. The preliminary geological maps, Sheet 93-0 Pine Pass by J. E. Muller (1961), and Sheet 93-P Dawson Creek by D. F. Stott (196181, at scales of 1 inch to 4 miles, also include the Pine Valley. In stratigraphic work completed in the Pine area, G. E. G. Westermann (1962) zoned the Monotis beds of the Triassic; J. E. Hughes (1964) describedJurassic and Cretaceous strata of the Bullhead succession; R. T. D. Wickenden and G. Shaw (1943) classified the Fort St. John Group, and later D. F. Stott (1961~)redescribed the group. References in the bibliographymark the debt to F. H. McLearn(1918 to 1960) for hispioneer studiesof Mesozoic fossils andstratigraphy in northeasternBritish Columbia. McLearnlaid the basis forlater geological work,and his studiesapply tothe geology of the Pine Valley. BIBLIOGRAPHY Ager, D. V., and Westermann, G. E. G. (1963) : New Mesozoic Brachiopods from Canada, Jour. Pal., Vol. 37, pp. 595-610. Arkell, W. J. (1956): Jurassic Geology of the World, Hafner Publishing Co. Inc. Armitage, J. H. (1962) : Triassic Oil and Gas Occurrences in Northeastern British Columbia, Canada, Alta. SOC.Pet. Geol., Jour., Vol. 10, pp, 35-56. Auhert, D. (1949) : Le Jura-Orogen. und Vorland, Zeif. fur A&. Geol., Band 37, pp. 2-17. Barnwell, G.: See Lees, G. M. (1952). Barton, D. C. (1925): Discussion-"Upthrust Salt Masses of Germany," by H. Stille, Am. Assn. Pet. Geol., Bull., Vol. 9, pp. 439-441, Beach. H. H.. and Soivak. J. f 1944) : Dunlevv-Portage- Mountain Mao-area. Brit- ish Columbia, Geol. Surv., Canada, Paper 44-19. Beckwith, R. H. (1938) : Structure of the Southwest Margin of the Laramie Basin, Wyoming, Geol. SOC. Am., Bull., Vol. 49, pp. 1519-1544. __ (1942): Strncture of theUpper Laramie River Valley, Colorado- Wyoming, Geol. Soc. Am., Bull., Vol. 53, pp. 1491-1532. Bell,W. A. (1956): Lower Cretaceous Floras of WesternCanada, Geol. Surv., Canada, Mem. 285. __ (1963) : Upper Cretaceous Floras of the Dunvegan, Bad Heart, and Milk River Formations of Western Canada, Geol. Surv., Canada, Bull. 94. 10 Berg, R. (1962): MountainFlank Thrusting in Rocky MountainForeland, Wyoming and Colorado, Am. Assn. Pet. Geol., Bull., Vol. 46, pp. 2019-2032. Billings, M. (1942) : Structural Geology, Prenlice-Hall Inc. Biot, M. A. (1961): Theory of Folding of Stratified Viscoelastic Media and Its Implications in Tectonics and Orogenesis, Geol. Soc. Am., Bull., Vol. 72, pp. 1595-1620. Biot, M. A.; Od6, H.; and Rower, W. L. (1961): Experimental Verification of the Theory of Folding of Stratified Viscoelastic Media, Geol. SOC.Am., Bull., Vol. 72, pp. 1621-1632. Bocock, J. B. (1929): Peace River Block, Pacific Great Eastern Railway La!lds, Survey of Resources. Bohm, J. (1903):tiber dieObertriadische Fauna der Bareninsel, K. Svenska Vetensk., Akad. Handl., Band 37, No. 3. British Columbia, Department of Mines and Petroleum Resources (1874 et seq.): Annual Reports. British Columbia, Department of Mines and Petroleum Resources (1960 et seq.) : Schedule of Wells Drilled for Oil and Gas in British Columbia. Burk, C. F. (1963): Structure,Isopach, and Facies Maps of Upper Cretaceous Marine Succession, West CentralAlberta and Adjacent British Columbia, Geol. Surv., Canada, Paper, 62-31.
Recommended publications
  • Post-Carboniferous Stratigraphy, Northeastern Alaska by R
    Post-Carboniferous Stratigraphy, Northeastern Alaska By R. L. DETTERMAN, H. N. REISER, W. P. BROSGE,and]. T. DUTRO,JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 886 Sedirnentary rocks of Permian to Quaternary age are named, described, and correlated with standard stratigraphic sequences UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Detterman, Robert L. Post-Carboniferous stratigraphy, northeastern Alaska. (Geological Survey Professional Paper 886) Bibliography: p. 45-46. Supt. of Docs. No.: I 19.16:886 1. Geology-Alaska. I. Detterman, Robert L. II. Series: United States. Geological Survey. Professional Paper 886. QE84.N74P67 551.7'6'09798 74-28084 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02687-2 CONTENTS Page Page Abstract __ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ __ __ _ _ __ __ __ _ _ _ _ __ 1 Stratigraphy__:_Continued Introduction __________ ----------____ ----------------____ __ 1 Kingak Shale ---------------------------------------- 18 Purpose and scope ----------------------~------------- 1 Ignek Formation (abandoned) -------------------------- 20 Geographic setting ------------------------------------ 1 Okpikruak Formation (geographically restricted) ________ 21 Previous work and acknowledgments ------------------ 1 Kongakut Formation ----------------------------------
    [Show full text]
  • 7. Gas (Tight) Sands
    Tight-Gas Sands Committee Report EMD Annual Meeting, April 2014 by Fran Hein, P. Geol., Chair Vice Chairs: • TBA, (Vice-Chair, Industry) • Dean Rokosh (Vice-Chair, Government) • Linyun Tan, (Vice-Chair, Academic) Advisory Committee: • Faruk Alpak, Shell International E&P, AAPG Gulf Coast Section • Mohammed S. Ameen, Saudi Aramco, Saudi Arabia, AAPG Middle East Section • Jamel Assad, New Mexico Institute of Mining and Technology, AAPG Gulf Coast Section • Dean Rokosh, Alberta Geological Survey, Edmonton, Alberta, Canada, AAPG Canadian Section • Robert Cluff, The Discovery Group, Denver, Colorado, AAPG Rocky Mountain Section • Anthony Cortis, JinQiu Venture, Chengdu, China, AAPG Asia/Pacific Section • Mohamed El Deghedy, Cairo University, President of AAPG Cairo University Chapter, AAPG Africa Section • Christopher Ezeh, Enugu State University of Science and Technology, AAPG Africa Section • Matthew Grove, ExxonMobil, AAPG Gulf Coast Section • Brent Hale, William M. Cobb & Associates, AAPG Southwest Section • Frances J. Hein, Alberta Energy Regulator, Calgary, Alberta, Canada, AAPG Canadian Section • Xavier Moonan, Petrotin, AAPG Latin America Section • Rebecca Morgan, Baker Hughes, AAPG Gulf Coast Section • Renfang Pan, Yangtze University, China, AAPG Asia Pacific Section • Salma Rafi, Department of Geology, University of Karachi, Karachi, Pakistan, AAPG Middle East Section • Christopher Simon, SM-Energy, AAPG Gulf Coast Section • Linyun Tan, Chongqing Institute of Geological and Mineral Resources, China, AAPG Asia Pacific Section • Jia Zheng, China University of Petroleum, AAPG Asia Pacific Section 1 Executive Summary Tight gas is an unconventional type of hydrocarbon resource within reservoirs that are low permeability (millidarcy to microdarcies range) and low porosity, as in ‘tight sand’. “Distal” unconventional tight-gas sands (with high sandy silt/siltstone content, low clay/shale content, but with self sourced organics) have more recently been called “hybrid” shales.
    [Show full text]
  • Organic Carbon Isotope Chemostratigraphy of Late Jurassic Early Cretaceous Arctic Canada
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences Finding the VOICE: organic carbon isotope chemostratigraphy of Late Jurassic Early Cretaceous Arctic Canada Galloway, JM http://hdl.handle.net/10026.1/15324 10.1017/s0016756819001316 Geological Magazine Cambridge University Press (CUP) All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Proof Delivery Form Geological Magazine Date of delivery: Journal and vol/article ref: geo 1900131 Number of pages (not including this page): 15 This proof is sent to you on behalf of Cambridge University Press. Please check the proofs carefully. Make any corrections necessary on a hardcopy and answer queries on each page of the proofs Please return the marked proof within 2 days of receipt to: [email protected] Authors are strongly advised to read these proofs thoroughly because any errors missed may appear in the final published paper. This will be your ONLY chance to correct your proof. Once published, either online or in print, no further changes can be made. To avoid delay from overseas, please send the proof by airmail or courier. If you have no corrections to make, please email [email protected] to save having to return your paper proof. If corrections are light, you can also send them by email, quoting both page and line number.
    [Show full text]
  • Palaeontological Spitsbergen Studies
    POLISH ACADEMY OF SCIENCES INSTITU'TE OF PALEOBIOLOGY PALAEONTOLOGIA POLONICA - NO. 43, 1982 PALAEONTOLOGICAL I SPITSBERGEN STUDIES - Part I (PALEONTOLOGICZNE BL4DANIA SPITSBERGENU - CzeSC I) GERTRUDA BIERNAT- and WANDA SZYMA~~SKA DAWNICTWO NAUKOWE KRZYSZTOF BIRKENMAJER, HALINA PUGACZEWSKA and ANDRZEJ WIERZBOWSKI THE JANUSFJELLET FORMATION (JURASSIC-LOWER CRETACEOUS) AT MYKLEGARDFJELLET, EAST SPITSBERGEN BIRKENMAJER,K; PU~ACZEWSKA,H. and WIERZBOWSKI,A.,: The Janusfjellet Formation (Jurassic-Lower Creiaceous) at Myklegardfjellet, east Spitsbergen. Palaeont. Polonica, 43,107- 140. Fossiliferous marine strata of the Janusfjellet Formation (Jurassic-Lower Cretaceous) are describ- ed from Myklegardfjellet, Agardhbukta area, east Spitsbergen. The invertebrate fauna collected by the first author from these beds in 1977 has been determined by the second author (serpulids, bivalves, belemnites) and by the third author (ammonites). This assemblage allows to distinguish the Upper Callovian, the Kirnrneridgian (Lower and Upper) and the Lower Volgian stages in the lower part of the Janusfjellet Formation (Agardhfjellet Member). The upper part of the Janusfjellet Formation (Rurikfjellet Member) yielded poorly preserved fossils of little stratigraphic value. Key words: Mesozoic, stratigraphy, ammonites, bivalves, belemnites, serpulids, Spitsbergen. K. Birkenmajer, 1nstY~utNauk Geologicznych, Polska Akademia Nauk, 31-002 Krakow, Senacka 3; H. Pugaczewska, Zaklad Paleobiologii, Polska Akadernia Nauk, 02-089 Warszawa,irwirki i Wigury 93; A. Wierzbowski,
    [Show full text]
  • Upper Cretaceous Deposits in the Northwest of Saratov Region, Part 2: Problems of Chronostratigraphy and Regional Geological History A
    ISSN 0869-5938, Stratigraphy and Geological Correlation, 2008, Vol. 16, No. 3, pp. 267–294. © Pleiades Publishing, Ltd., 2008. Original Russian Text © A.G. Olfer’ev, V.N. Beniamovski, V.S. Vishnevskaya, A.V. Ivanov, L.F. Kopaevich, M.N. Ovechkina, E.M. Pervushov, V.B. Sel’tser, E.M. Tesakova, V.M. Kharitonov, E.A. Shcherbinina, 2008, published in Stratigrafiya. Geologicheskaya Korrelyatsiya, 2008, Vol. 16, No. 3, pp. 47–74. Upper Cretaceous Deposits in the Northwest of Saratov Region, Part 2: Problems of Chronostratigraphy and Regional Geological History A. G. Olfer’eva, V. N. Beniamovskib, V. S. Vishnevskayab, A. V. Ivanovc, L. F. Kopaevichd, M. N. Ovechkinaa, E. M. Pervushovc, V. B. Sel’tserc, E. M. Tesakovad, V. M. Kharitonovc, and E. A. Shcherbininab a Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia b Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia c Saratov State University, Astrakhanskaya ul., 83, Saratov, 410012 Russia d Moscow State University, Vorob’evy Gory, Moscow, 119991 Russia Received November 7, 2006; in final form, March 21, 2007 Abstract—Problems of geochronological correlation are considered for the formations established in the study region with due account for data on the Mezino-Lapshinovka, Lokh and Teplovka sections studied earlier on the northwest of the Saratov region. New paleontological data are used to define more precisely stratigraphic ranges of some stratigraphic subdivisions, to consider correlation between standard and local zones established for different groups of fossils, and to suggest how the Upper Cretaceous regional scale of the East European platform can be improved.
    [Show full text]
  • Palaeoecology and Palaeoenvironments of the Middle Jurassic to Lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard
    NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 1 https://dx.doi.org/10.17850/njg99-1-02 Palaeoecology and palaeoenvironments of the Middle Jurassic to lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard Maayke J. Koevoets1, Øyvind Hammer1 & Crispin T.S. Little2 1Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway. 2School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom. E-mail corresponding author (Maayke J. Koevoets): [email protected] We describe the invertebrate assemblages in the Middle Jurassic to lowermost Cretaceous of the Agardhfjellet Formation present in the DH2 rock-core material of Central Spitsbergen (Svalbard). Previous studies of the Agardhfjellet Formation do not accurately reflect the distribution of invertebrates throughout the unit as they were limited to sampling discontinuous intervals at outcrop. The rock-core material shows the benthic bivalve fauna to reflect dysoxic, but not anoxic environments for the Oxfordian–Lower Kimmeridgian interval with sporadic monospecific assemblages of epifaunal bivalves, and more favourable conditions in the Volgian, with major increases in abundance and diversity of Hartwellia sp. assemblages. Overall, the new information from cores shows that abundance, diversity and stratigraphic continuity of the fossil record in the Upper Jurassic of Spitsbergen are considerably higher than indicated in outcrop studies. The inferred life positions and feeding habits of the benthic fauna refine our understanding of the depositional environments of the Agardhfjellet Formation. The pattern of occurrence of the bivalve genera is correlated with published studies of Arctic localities in East Greenland and northern Siberia and shows similarities in palaeoecology with the former but not the latter.
    [Show full text]
  • PDF Linkchapter
    Index [Italic page numbers indicate major references] Abietites, 21. 22, 231, 236 Araun tributaries, 264 south coast, 304, 310 linkii, 231 Amuro-Zejan Basin, 11, 264 west coast basins, 304, 318 Absaroka fault, 95 Anadyr River, 266 Azolla, 31 Absaroka thrust, 88 Anadyrian basin, 266 acrotelm, 3 anastomosing fluvial system, 231, back-barrier island, 220 Adavale basin fill, 304 232, 233, 242 back barrier/outer lagoon zones, 220 Adaville Formation, 69, 98 Anderson coal, 58, 63 backswamps, 343 channels, 88 Anderson mire, 63 Baculites mclearni, 140 coal seams, 82 andesite, 288 Baffin Island, 11 depositional history, 88 angiosperms, 10, 18, 19, 24, 28, 31, Baiera, 23, 26 lithofacies, 75 47, 180, 392 Baikalia, eastern, 288 regional paleogeography, 88 Ango-Paris Basin, 227 Bakony Mountains, 245 rock types, 70 ankerite, 64, 65 Bakonyjako area, 251 sedimentation model, 90 Anomia Balmer North Mine, 134, 138 stratigraphy, 70 gryphorynchus, 70 Balmer peat swamp, 135 Addis Ababa, Shewa province, 373 propatorius, 70 Balmer seam, 118, 135 Adelaide Island, 389 anoxia, 3 Banks Island, 1 I Adelie Land margin, 390 Antarctic Peninsula, 31, 388, 389, Baojiatun Formation, Xuetiandi, 298 Afikpo area, 378 392 Barclay Seam, 338 Africa, 20 Antarctica, 385, 393 Barents Sea Shelf, 209 West, 369, 373, 376 climatic model, 392 barite, 63 agglomerates, 287, 330 coal deposits (Cretaceous), 388 Barremian, 11, 209 aggradation, 215, 216, 223 coal potential (Cretaceous), 385 Barriada Member, 195 Ahaggar Mountains, 375 East, 385, 388, 393 barrier beach, 242 Ajka area, 245,248,249,
    [Show full text]
  • Characteristic Jurassic Mollusks from Northern Alaska
    Characteristic Jurassic Mollusks From Northern Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 274-D Characteristic Jurassic Mollusks From Northern Alaska By RALPH W. IMLAY A SHORTER CONTRIBUTION TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 274-D A study showing that the northern Alaskan faunal succession agrees with that elsewhere in the Boreal region and in other parts of North America and in northwest Europe UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1955 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - BMMH§ts (paper cover) Price $1.00 CONTENTS Page Abstract_________________ 69 Introduction _________________ 69 Biologic analysis____________ 69 Stratigraphic summary. _______ 70 Ages of fossils________________ 73 Comparisons with other faunas. 75 Ecological considerations___ _ 75 Geographic distribution____. 78 Summary of results ___________ 81 Systematic descriptions__ _. 82 Literature cited____________ 92 Index_____________________ 95 ILLUSTRATIONS [Plates &-13 follow Index] PLATE 8. Inoceramus and Gryphaea 9. Aucella 10. Amaltheus, Dactylioceras, "Arietites," Phylloceras, and Posidonia 11. Ludwigella, Dactylioceras, and Harpoceras. 12. Pseudocadoceras, Arcticoceras, Amoeboceras, Tmetoceras, Coeloceras, and Pseudolioceras 13. Reineckeia, Erycites, and Cylindroteuthis. Page FIGXTKE 20. Index map showing Jurassic fossil collection localities in northern Alaska.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • Cadomin and Jasper Areas Willem Langenberg and John Waldron
    Field Guide to Selected Geological Sections of the Cadomin and Jasper Areas Willem Langenberg and John Waldron Edmonton Geological Society Field Trip Guide September 22-23, 2007 Introduction The Rocky Mountains can be divided into Foothills, Front Ranges, and Main Ranges as shown in the cartoon below (Fig. 1). Outcrops in the foothills are dominated by softer weathering Mesozoic rocks of the foreland basin: mainly sandstone and shale but also including conglomerates and coal. Most of the clastic rocks represent material eroded from earlier-formed parts of the orogen to the west, which was subsequently cannibalized as the thrustbelt advanced westward in late Mesozoic to early Cenozoic time. Locally in the foothills, the more resistant late Paleozoic carbonate rocks come to the surface in elongated ridges. Saturday's traverse will begin in the foothills of the Cadomin area and proceed southwest into the Front Ranges. In the Front Ranges carbonates dominate the landscape. These represent the late Paleozoic continental margin of the Laurentian continent, now sliced into multiple imbricated thrust sheets. Mesozoic clastics are confined to narrow valleys. On Sunday morning we will take the Yellowhead Highway further into the Front Ranges and eventually into the Main Ranges of the Rockies. In the Main Ranges, lower parts of the stratigraphy are preserved, including widespread outcrops of older, Early Paleozoic carbonates, clastics, and the underlying Proterozoic succession of the Windermere Supergroup. The structural style is different, too. Although thrust sheets are present, they are generally much larger in scale, and their dips are gentler. In addition, the rocks were more ductile when deformed, so that cleavage and folds are much more widely developed in the mudrocks.
    [Show full text]
  • Phylogeny and Evolution of Ontogeny of the Family Oxytomidae Ichikawa, 1958 (Mollusca: Bivalvia) O
    ISSN 08695938, Stratigraphy and Geological Correlation, 2010, Vol. 18, No. 4, pp. 376–391. © Pleiades Publishing, Ltd., 2010. Original Russian Text © O.A. Lutikov, I.E. Temkin, B.N. Shurygin, 2010, published in Stratigrafiya. Geologicheskaya Korrelyatsiya, 2010, Vol. 18, No. 4, pp. 28–44. Phylogeny and Evolution of Ontogeny of the Family Oxytomidae Ichikawa, 1958 (Mollusca: Bivalvia) O. A. Lutikova, I. E. Temkinb, and B. N. Shuryginc aScientific Research Institute of Paleontology, Stratigraphy and Sedimentology, St. Petersbyrg, Russia email: [email protected] bDivision of Invertebrate Zoology, American Museum of Natural History, New York and Smithsonian Institution, PO Box 37012, MRC 163, Washington, DC 200137012, USA email: [email protected] cInstitute of Petroleum Geology and Geophysics, Siberian Branch, Russian Academy of Sciences pr. Akad. Koptyuga 3, Novosobirsk90, 630090 Russia email: [email protected] Received August 02, 2009; in final form, November 17, 2009 Abstract—We described ontogenies and reconstructed morphogeneses of hinges in some supraspecific taxa of the bivalve family Oxytomidae Ichikawa, 1958 from the Mesozoic of Russia. The phylogeny of the family is reconstructed using evolutionary and cladistic methods. The appearance of the endemic genus Arctotis Bodylevsky, 1960 in the epicontinental seas of Siberia can be explained in terms of gradual transformations of the ligament and byssal apparatus in the Northern Siberian members of Praemeleagrinella Lutikov et Shury gin, 2009 and Praearctotis Lutikov et Shurygin, 2009. Key words: bivalves, Oxytomidae, taxonomy, ontogeny, phylogeny, Mesozoic. DOI: 10.1134/S0869593810040027 INTRODUCTION according to the increase of the coefficients of similar ity in unweighted characters and that a phylogram is Bivalves of the family Oxytomidae Ichikawa, 1958 based on the principle of parsimony, without consider (superfamily Pectinoidea Rafinesque, 1815) are wide ing chronoclines (Krassilov, 1977; Eldredge, Cracraft, spread in the Jurassic and Cretaceous of Russia, North 1980; , 1988).
    [Show full text]
  • Petroleum Geology of Canada
    CANADA DEPARTMENT OF MINES AND RESOURCES MINES AND GEOLOGY BRANCH GEOLOGICAL SURVEY ECONOMIC GEOLOGY SERIES No. 14 PETROLEUM GEOLOGY OF CANADA BY G. S. Hume Geologist for Oil Controller for Canada OTI'AWA EDMOND CLOUTIER P RINTER TO THE KING'S MOST EXCELLENT MAJESTY 1944 Price, 25 cents CANADA DEPARTMENT OF MINES AND RESOURCES MINES AND GEOLOGY BRANCH GEOLOGICAL SURVEY ECONOMIC GEOLOGY SERIES No. 14 PETROLEUM GEOLOGY OF CANADA BY G. S. Hume Geologist for Oil Con troller for Can ada OTTAWA EDMOND CLOUTIER Pfl !NTER TO THE KTKG 'S MOST EXCELLENT MAJESTY 1944 Price. 25 cents CONTENTS PAGE Introduction ... .. ............. .. ........... ... .............. ...... 1 Hudson Bay Lo\Yland ........................... .... .. .. ... .. ...... 5 Gaspe, Quebec ......... .. .. .. ... .......... .. ..... ..................... ... 7 New Brunswick. .. ... ..... .. .. .... ..... .... .. .. .. .. .... .. .... 10 Prince Edward Island .. ..... .. ................................. .. .. .... .. 15 Nova Scotia. ..... .................. 15 Ontario........ ........ .... ....... ... ........... .. ..... ... ....... 17 The Interior Plains ........................................ ...... .. .... ........ 21 General statement.... .. ....... ............ ........ 21 Southern Alberta . ... ........... ....... .. .. .. .. .. ... ........... 25 East-ccn tral Alberta . ... .... ... .. .. .. .. ..... .... .. .... ..... 27 Northwest Alberta-Peace River area ..... ................ .... .. .... .. ... 30 Athabaska bituminous sands. ...... ..... ... ... 30 Foothills of south
    [Show full text]