1 Aerodynamic Study of a Small, Ducted VTOL Aerial Vehicle
Total Page:16
File Type:pdf, Size:1020Kb
-1 Aerodynamic Study of a Small, Ducted VTOL Aerial Vehicle by Kyrilian Dyer S.B. Mechanical Engineering, MIT 2000 Submitted to the Department of Aeronautics and Astronautics in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in AERONAUTICS & ASTRONAUTICS at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2002 © 2002 Kyrilian Dyer. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of Author: Depart-dnht of Aeronatis & Astronautics May 2002 Certified by: Sean George Charles Stark Draper Laboratory (' Thesis Sunevisor Certified by: Professor John Deyst Professor of Aeronautics & Astronautics . Yhesis Advisor , J / A A . I p Accepted by: Wallace E. Vander Velde Professor of Aeronautics and Astronautics MASSACHUSETTS STITUTE OF TECHNOLOGY Chair, Committee on Graduate Students AUG 1 3 002 ARO LIBRARIES [ THIS PAGE INTENTIONALLY LEFT BLANK ] 2 Aerodynamic Study of a Small, Ducted VTOL Aerial Vehicle by Kyrilian G. Dyer Submitted to the Department of Aeronautics and Astronautics on May 10, 2002 in partial fulfillment of the requirements for the Degree of Master of Science in Aeronautics and Astronautics. Abstract The Perching Unmanned Aerial Vehicle (PUAV) is a 9-inch diameter ducted vertical takeoff and landing reconnaissance vehicle with the capability of fast-forward cruise flight. Currently in the development stage, the program is envisaged to yield a man-portable craft that a foot soldier can use to provide over-the-hill observation. Several prototypes have been constructed and tested, with mixed results. Concerns regarding duct aerodynamics led to the proposal for further aerodynamic study to investigate effects of inlet lip radius and surface area, diffuser area ratio, blade tip clearance and rotor position on thrust, power and efficiency. This report covers the theory of rotorcraft and ducted propeller aerodynamics, and outlines the tests performed and results obtained. It also presents specifications of the test vehicle and methods that can be used in future ducted aircraft studies. Large angle diffusers tested showed reduced thrust and efficiency and increased power compared to smaller diffusers, contrary to theory. Reverse flow within the core appears to disrupt uniform exit flow and yields a conically divergent turbulent wake. Results of this study will be used in the redesign of a duct core fairing, which will act to control the airflow and reduce the tendency for reverse flow at the center where blade thrust is absent. Future studies will also consider twisted, cambered and tapered rotor blades in an effort to better address spanwise thrust distribution and optimized airflow. The test apparatus and methods developed for this report, in addition to results of initial testing, will be instrumental to further development of small ducted UAVs. Findings and methods are not limited to exact duplicates of PUAV-like aircraft, but can be used in a wide range of applications including lift and thrust-producing ducts. Technical Supervisor: Mr. Sean George Title: Charles Stark Draper Laboratory Thesis Advisor: Professor John Deyst Title: Professor, Aeronautics and Astronautics 3 Acknowledgments June, 2002 This thesis was prepared at The Charles Stark Draper Laboratory, Inc., under Internal Company Sponsored Research Project 3019, Navigating Under the Canopy. Publication of this thesis does not constitute approval by Draper of the findings or conclusions contained herein. It is published for the exchange and stimulation of ideas. Cj (Author's signature) I would like to thank all those who have made this fun little project move forward. I am grateful to Sean George for devoting his time and wisdom to this project. Thanks to Jamie Anderson for giving me direction and to John Plump and Neil Gupta for conceiving the project and giving it life. I have enjoyed the friendship and enthusiasm of Neil and Paul Eremenko. Thanks also to Tim Barrows and Professor John Deyst for their input and wisdom. Without the help of Kailas Narendran and Dave Weagle, I wouldn't have had the hardware to go forward. I've enjoyed sharing a relaxed and friendly office, thanks to Dave, Kara, Carissa, Jeb and Matt. Of course, thanks to all my friends for their support and understanding. Finally, thank you Mom and Dad, for your quiet encouragement and gentle guidance. 4 Table of Contents Chapter 1: Introduction....................................................................................................... 9 Chapter 2: Background and H istory ................................................................................... 13 2.1 D esign Requirem ents .................................................................................................. 13 2.2 Survey of Sim ilar Aircraft............................................................................................ 15 2.2.1 H istory of V ertical Takeoff A ircraft ................................................................... 15 2.2.2 Current V ertical Takeoff U AV s.......................................................................... 16 2.3 PU A V D evelopm ent Evolution................................................................................... 20 2.3.1 Prelim inary D esign .............................................................................................. 22 2.3.2 A lpha Prototype Design ........................................................................................ 23 2.3.3 Beta Prototype Design ......................................................................................... 27 Chapter 3: Theoretical Perform ance................................................................................... 31 3.1 Rotorcraft A erodynam ics ............................................................................................ 31 3.1.1 M om entum Theory .............................................................................................. 31 3.1.2 Blade Elem ent Theory ......................................................................................... 39 3.1.3 Coaxial M om entum Theory .................................................................................. 44 3.1.4 D ucted Rotor Perform ance................................................................................... 46 3.2 Other Inlet and D iffuser Effects ................................................................................... 49 3.2.1 Inlet Thrust Augm entation ................................................................................... 50 3.2.2 Inlet Losses ........................................................................................ ...... 54 3.2.3 Duct and D iffuser Losses ..................................................................................... 57 3.3 PU A V Num erical M odel......................................................................................... .... 57 Chapter 4: Experimental Test Apparatus.......................................................................... 61 4.1 D rive Train ................................................................................ -- .. ---.............61 4.1.1 Driveline .................................................................................................................. 61 4.1.2 Test M otor................................................................................................................ 67 4.2 D uct Construction ....................................................................................................... 69 4.2.1 Inlets......................................................................................... -------------.......... 71 4.2.2 Exit D iffusers ............................................................................. .. .. ..... 73 4.3 D ata A cquisition............................................................................... ... .......... 75 4.3.1 H ardw are...................................................................................--------------------.......... 75 4.3.2 D ata A cquisition Software ................................................................................... 78 5 Chapter 5: Data Collection and Analysis ........................................................................... 81 5.1 Test M atrix Design .......................................................................................................... 81 5.2 Calibration....................................................................................................................... 83 5.2.1 M otor Calibration................................................................................................ 83 5.2.2 Servo Calibration .................................................................................................. 86 5.2.3 Differential Collective......................................................................................... 87 5.3 Experimental Results................................................................................................... 90 5.3.1 Inlet Size .................................................................................................................. 90 5.3.2 Diffuser Angle..................................................................................................... 92 5.3.3 Num ber of Rotors................................................................................................ 95 5.3.4 Blade Tip