Designing Evtol for Urban Air Mobility
Total Page:16
File Type:pdf, Size:1020Kb
Designing eVTOL for Urban Air Mobility Skye Weaver Worster Holton-Arms ’20 Emily Fisler Anubhav Datta Clark Doctoral Fellow Associate Professor Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Objectives for Summer Internship • Learn about and analyze existing eVTOL vehicles • Design a VTOL aircraft • Test LiPo batteries • Design an eVTOL aircraft using collected data 2 Power and Disk Loading for Various eVTOL Aircraft Source: World eVTOL Directory http://evtol.news/aircraft/ 3 Mission for My eVTOL Range 14.7 miles, 12.8 nautical miles (25.6 round-trip) Additional 5 minute hover 4 Mission Criteria Maximum weight (gross takeoff weight) 2000 lbs Payload (weight of people and cargo) 400 lbs Edgewise rotor Tiltrotor Lift/drag ratio = 5 Lift/drag ratio = 9 structure factor 0.24 structure factor 0.3 Cruise velocity 70 kt Cruise velocity 150 kt 5 Design Process 1. Objective and criteria 2. Conventional (turboshaft) design 3. Battery testing 4. Conversion to electric power 6 Structure weight = 0.24 GTOW 0.24 = weight Structure lb/sqft8 = loading Disk Convergence of Design Convergence Guess #2 = 500 = #2 Guess 2000 = #1 Guess Final weight ~1300 weight Final 2000 Starting Weight 2000 1800 s 500 b l , t 1600 h g i e 1400 W f f o 1200 e k a T 1000 s s o r 800 G d e 600 t c i d e 400 r P 200 0 8 0 2 4 6 8 10 12 14 16 18 20 Iteration Number Disk Loading 푤푒ℎ푡 퐷퐿 = 푡표푡푎푙 푟표푡표푟 푎푟푒푎 퐴푟푒푎 = # 푟표푡표푟푠 × 휋 × 푟푎푑푢푠2 Surface area 푤푒ℎ푡 퐷퐿 = of 4 rotors # 푟표푡표푟푠 × 휋 × 푟푎푑푢푠2 9 Weight Predictions 2000 1800 1600 1400 1200 s b l , t h 1000 g i e W 800 600 Payload Weight 400 200 Fuel Weight 0 4 6 8 10 12 14 Disk Loading, lbs/sqft 10 Rotor Radius 5 4.5 4 3.5 t f , 3 s u i d a 2.5 R r o t o 2 R 1.5 1 0.5 0 4 6 8 10 12 14 Disk Loading, lbs/sqft 13 Design Method 1. Objective and criteria 2. Conventional (turboshaft) design 3. Battery testing 4. Conversion to electric power 14 Battery Basics Voltage Charge Current (Volts) (Coulomb, Ampere hour) (Ampere) The force pushing The total energy in a battery The amount of electricity electricity through a circuit moving through a circuit Charge (how full the water gun is) Current (how fast water flows through the nozzle) Voltage (the force put on the trigger) 15 Battery Discharge Power C-Rate Energy (Watts) (Ampere hour) (Watt hours) The rate at which electrical The rate at which a battery is discharged The total electrical force force is applied applied over time, usually Inversely effects discharge time: if a battery takes 1 kilowatt hours hour to discharge at 1 C, it will take 30 minutes at 2C Power C–rate= Energy 푎푚푝푒푟푒 퐶표푢푙표푚푏 = 푊푎푡푡푠 = 푉표푙푡푠 ∗ 퐴푚푝푠 푠푒푐표푛푑 푊푎푡푡 ℎ표푢푟푠 = 푊푎푡푡푠 ∗ ℎ표푢푟 푉표푙푡 = 퐴푚푝푠 ∗ 푟푒푠푠푡푎푛푐푒 16 Batteries Lithium Polymer Batteries (LiPo) 3 950 milliamp hours (0.95 Ah) 4 7.4 Volts 2 cells 1 1300 milliamp hours (1.3 Ah) 2 11.1 Volts 2 cells 17 Experiment Setup LiPo battery Discharge unit Fireproof battery Battery monitor safe bag 18 Raw Data 12.5 12 Test 1 Test 2 11.5 Test 3 11 ] V [ e g 10.5 a t l o V 10 9.5 9 8.5 0 2 4 6 8 10 12 14 16 18 Time [min] 19 Data Data from Battery 1 LiPo1 103 102 ] g k / W [ r e 101 w o P c i f i c e p S 100 20 10-1 10 30 60 100 150 200 Specific Energy [Wh/kg] Data Data from Battery 1 LiPo1 103 102 ] g k / W [ r e 101 w o P c i f i c e p S 100 21 10-1 10 30 60 100 150 200 Specific Energy [Wh/kg] Data Data from Battery 1 LiPo1 103 102 ] g k / W [ r e 101 w o P c i f i c e p S 100 22 10-1 10 30 60 100 150 200 Specific Energy [Wh/kg] Data Data from Battery 2 LiPo2 103 102 ] g k / W [ r e 101 w o P c i f i c e p S 100 23 10-1 10 30 60 100 150 200 Specific Energy [Wh/kg] Data Data from Battery 3 LiPo3 103 102 ] g k / W [ r e 101 w o P c i f i c e p S 100 24 10-1 10 30 60 100 150 200 Specific Energy [Wh/kg] Data Data from Battery 4 LiPo4 103 102 ] g k / W [ r e 101 w o P c i f i c e p S 100 25 10-1 10 30 60 100 150 200 Specific Energy [Wh/kg] Final Data Final All LiPo Batteries 103 102 ] g k / W [ r e 101 w o P c i f i c e p S 100 26 10-1 10 30 60 100 150 200 Specific Energy [Wh/kg] Design Method 1. Objective and criteria 2. Conventional (turboshaft) design 3. Battery testing 4. Redesign for electric power 27 Redesign for Electric Power • Engine Motor • Fuel Battery • Data collected from batteries used to estimate gross takeoff weight, power, and energy 28 Weight Predictions 4000 3500 3000 2500 s b l , t h 2000 g i e W 1500 1000 500 Payload Weight 0 2 4 6 8 10 12 14 Disk Loading, lbs/sqft 29 Rotor Radius 9 8 7 6 t f , s u i 5 d a R r o 4 t o R 3 2 1 0 2 4 6 8 10 12 14 Disk Loading, lbs/sqft 32 Weight vs Rotor Size 40009 Weight increases with disk loading… But rotor size decreases with disk loading! . 35008 7 3000 6 t 2500f , s s b u l i 5 , d t a h 2000 R g i r e o 4 t W o 1500R 3 1000 2 5001 0 2 4 6 8 10 12 14 Disk Loading, lbs/sqft 33 Final eVTOL Specifications lbs Disk Loading = 4 ft2 Gross takeoff weight = 1907 lbs Payload = 400 lbs Battery weight = 810 lbs Rotor radius = 6.2 feet Total Mission Time = 27 minutes Mission Range = 25.6 nautical miles (29.5 miles) 34 Thank You! 35.