Designing eVTOL for Urban Air Mobility

Skye Weaver Worster Holton-Arms ’20

Emily Fisler Anubhav Datta Clark Doctoral Fellow Associate Professor Alfred Gessow Center Department of Aerospace Engineering Objectives for Summer Internship

• Learn about and analyze existing eVTOL vehicles

• Design a VTOL aircraft

• Test LiPo batteries

• Design an eVTOL aircraft using collected data

2 Power and Disk Loading for Various eVTOL Aircraft

Source: World eVTOL Directory http://evtol.news/aircraft/

3 Mission for My eVTOL

Range 14.7 miles, 12.8 nautical miles (25.6 round-trip) Additional 5 minute hover

4 Mission Criteria

Maximum weight (gross weight) 2000 lbs Payload (weight of people and cargo) 400 lbs

Edgewise rotor Lift/drag ratio = 5 Lift/drag ratio = 9 structure factor 0.24 structure factor 0.3 Cruise velocity 70 kt Cruise velocity 150 kt 5 Design Process

1. Objective and criteria

2. Conventional () design

3. Battery testing

4. Conversion to electric power

6 Convergence of Design

2000 Starting Weight 2000 1800

s Guess #1 = 2000 500

b

l

,

t 1600

h

g

i

e 1400

W

f

f

o 1200

e

k

a

T 1000

s

s

o r 800 Final weight ~1300

G

d Guess #2 = 500

e 600

t

c

i

d

e 400

r

P 200

0 0 2 4 6 8 10 12 14 16 18 20 Iteration Number Disk loading = 8 lb/sqft Structure weight = 0.24 GTOW 8 Disk Loading

푤푒𝑖𝑔ℎ푡 퐷퐿 = 푡표푡푎푙 푟표푡표푟 푎푟푒푎

퐴푟푒푎 = # 푟표푡표푟푠 × 휋 × 푟푎푑𝑖푢푠2

Surface area 푤푒𝑖𝑔ℎ푡 퐷퐿 = of 4 rotors # 푟표푡표푟푠 × 휋 × 푟푎푑𝑖푢푠2

9 Weight Predictions

2000

1800

1600

1400

1200

s

b

l

,

t h 1000

g

i

e

W 800

600 Payload Weight 400

200 Fuel Weight

0 4 6 8 10 12 14 Disk Loading, lbs/sqft 10 Rotor Radius

5

4.5

4

3.5

t

f

, 3

s

u

i

d a 2.5

R

r

o

t o 2

R

1.5

1

0.5

0 4 6 8 10 12 14 Disk Loading, lbs/sqft 13 Design Method

1. Objective and criteria

2. Conventional (turboshaft) design

3. Battery testing

4. Conversion to electric power

14 Battery Basics

Voltage Charge Current (Volts) (Coulomb, Ampere hour) (Ampere)

The force pushing The total energy in a battery The amount of electricity electricity through a circuit moving through a circuit

Charge (how full the water gun is)

Current (how fast water flows through the nozzle)

Voltage (the force put on the trigger)

15 Battery Discharge

Power C-Rate Energy (Watts) (Ampere hour) (Watt hours)

The rate at which electrical The rate at which a battery is discharged The total electrical force force is applied applied over time, usually Inversely effects discharge time: if a battery takes 1 kilowatt hours hour to discharge at 1 C, it will take 30 minutes at 2C

Power C–rate= Energy

푎푚푝푒푟푒 퐶표푢푙표푚푏 = 푊푎푡푡푠 = 푉표푙푡푠 ∗ 퐴푚푝푠 푠푒푐표푛푑 푊푎푡푡 ℎ표푢푟푠 = 푊푎푡푡푠 ∗ ℎ표푢푟 푉표푙푡 = 퐴푚푝푠 ∗ 푟푒푠𝑖푠푡푎푛푐푒

16 Batteries

Lithium Polymer Batteries (LiPo)

3 950 milliamp hours (0.95 Ah) 4 7.4 Volts 2 cells 1 1300 milliamp hours (1.3 Ah) 2 11.1 Volts 2 cells

17 Experiment Setup

LiPo battery Discharge unit

Fireproof battery Battery monitor safe bag

18 Raw Data

12.5

12 Test 1 Test 2 11.5 Test 3 11

]

V

[

e g 10.5

a

t

l

o

V 10

9.5

9

8.5 0 2 4 6 8 10 12 14 16 18 Time [min] 19 Data from Battery 1

LiPo1 103

102

]

g

k

/

W

[

r e 101

w

o

P

c

i

f

i

c

e

p

S 100

10-1

10 30 60 100 150 200 Specific Energy [Wh/kg] 20 Data from Battery 1

LiPo1 103

102

]

g

k

/

W

[

r e 101

w

o

P

c

i

f

i

c

e

p

S 100

10-1

10 30 60 100 150 200 Specific Energy [Wh/kg] 21 Data from Battery 1

LiPo1 103

102

]

g

k

/

W

[

r e 101

w

o

P

c

i

f

i

c

e

p

S 100

10-1

10 30 60 100 150 200 Specific Energy [Wh/kg] 22 Data from Battery 2

LiPo2 103

102

]

g

k

/

W

[

r e 101

w

o

P

c

i

f

i

c

e

p

S 100

10-1

10 30 60 100 150 200 Specific Energy [Wh/kg] 23 Data from Battery 3

LiPo3 103

102

]

g

k

/

W

[

r e 101

w

o

P

c

i

f

i

c

e

p

S 100

10-1

10 30 60 100 150 200 Specific Energy [Wh/kg] 24 Data from Battery 4

LiPo4 103

102

]

g

k

/

W

[

r e 101

w

o

P

c

i

f

i

c

e

p

S 100

10-1

10 30 60 100 150 200 Specific Energy [Wh/kg] 25 Final Data

All LiPo Batteries 103

102

]

g

k

/

W

[

r e 101

w

o

P

c

i

f

i

c

e

p

S 100

10-1

10 30 60 100 150 200 Specific Energy [Wh/kg] 26 Design Method

1. Objective and criteria

2. Conventional (turboshaft) design

3. Battery testing

4. Redesign for electric power

27 Redesign for Electric Power

• Engine  Motor

• Fuel  Battery

• Data collected from batteries used to estimate

gross takeoff weight, power, and energy

28 Weight Predictions

4000

3500

3000

2500

s

b

l

,

t h 2000

g

i

e

W 1500

1000

500 Payload Weight

0 2 4 6 8 10 12 14 Disk Loading, lbs/sqft 29 Rotor Radius

9

8

7

6

t

f

,

s

u

i 5

d

a

R

r

o 4

t

o

R 3

2

1

0 2 4 6 8 10 12 14 Disk Loading, lbs/sqft 32 Weight vs Rotor Size

Weight increases with disk loading… But rotor size decreases with disk loading! .

4000 9

3500 8

7 3000

6

t

2500 f

,

s

s

b

u

l

i 5

,

d

t

a h 2000

R

g

i

r

e

o 4

t

W

o

1500 R 3

1000 2

500 1

0 0 2 4 6 8 10 12 14 2 4 6 8 10 12 14 Disk Loading, lbs/sqft Disk Loading, lbs/sqft

33 Final eVTOL Specifications

lbs Disk Loading = 4 ft2 Gross takeoff weight = 1907 lbs

Payload = 400 lbs

Battery weight = 810 lbs

Rotor radius = 6.2 feet

Total Mission Time = 27 minutes

Mission Range = 25.6 nautical miles (29.5 miles) 34 Thank You!

35