A Numerical Workshop for Rotorcraft Concepts Generation and Evaluation Pierre-Marie Basset, Philippe Beaumier, Thomas Rakotomamonjy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WHIRLYBIRDS, U.S. Marine Helicopters in Korea
WHIRLYBIRDS U.S. Marine Helicopters in Korea by Lieutenant Colonel Ronald J. Brown U.S. Marine Corps Reserve, Retired Marines in the Korean War Commemorative Series About the Author ieutenant Colonel Ronald J. LBrown, USMCR (Ret), is a freelance writer, a high school football coach, and an educa- THIS PAMPHLET HISTORY, one in a series devoted to U.S. Marines in the tional consultant. The author of Korean War era, is published for the education and training of Marines by several official histories (A Brief the History and Museums Division, Headquarters, U.S. Marine Corps, Washington, D.C., as part of the U.S. Department of Defense observance of History of the 14th Marines, the 50th anniversary of that war. Editorial costs have been defrayed in part With Marines in Operation by contributions from members of the Marine Corps Heritage Foundation. To plan and coordinate the Korean War commemorative events and activi- Provide Comfort, and With ties of the Sea Services, the Navy, Marine Corps, and Coast Guard have Marine Forces Afloat in Desert formed the Sea Services Korean War Commemoration Committee, chaired by the Director, Navy Staff. For more information about the Sea Services’ Shield and Desert Storm), he commemorative effort, please contact the Navy-Marine Corps Korean War was also a contributing essayist for the best-selling book, Commemoration Coordinator at (202) 433-4223/3085, FAX 433-7265 (DSN288-7265), E-Mail: [email protected], Website: The Marines, and was the sole author of A Few Good www.history.usmc.mil. Men: The Fighting Fifth Marines. After almost four years KOREAN WAR COMMEMORATIVE SERIES active duty from 1968 to 1971, Brown returned to teach- DIRECTOR OF MARINE CORPS HISTORY AND MUSEUMS ing high school for the next three decades; intermittent- Colonel John W. -
Russian Helicopters Experience and Innovation
RUSSIAN HELICOPTERS EXPERIENCE AND INNOVATION © 2013 Russian Helicopters, JSC All rights reserved RUSSIAN HELICOPTERS AT A GLANCE Russian Helicopters, JSC is the sole manufacturer of “Mil” and “Kamov” civil and military helicopters. The company’s structure incorporates design bureaus, final assembly plants, components and parts manufacturers and service providers. Russian Helicopters consolidated the entire helicopter-building industry of Russia. We offer complete helicopter lifecycle from development to disposal. Russian Helicopters was founded in 2007 as a subsidiary of Oboronprom Corporation © 2013 Russian Helicopters, JSC All rights reserved FULLY INTEGRATED STRUCTURE Oboronprom TOTAL STAFF – 41,000 EMPLOYEES Russian Helicopters (98.5%) Mil Moscow Kazan Helicopters SMPP Helicopter Service Helicopter Plant (80.22%) (59.99%) Company (72.38%) (100.0%) Kamov Rostvertol Reduktor-PM (99.79%) (92.01%) (80.84%) Moscow and region NARP (9,000 employees) Kazan (95.1%) (6,500 employees) Ulan-Ude Aviation Plant (84.82%) Perm Progress Arsenyev (1,800 employees) Aviation Company Rostov-on-Don (93.14%) (7,900 employees) Kumertau Kumertau (4,000 employees) Novosibirsk Aviation PE (500 employees) (100.0%) Arsenyev (6,000 employees) Ulan-Ude (6,000 employees) © 2013 Russian Helicopters, JSC All rights reserved RUSSIAN HELICOPTERS AROUND THE WORLD Civil Total 37,530 Military Total 22,800 9% 91% 78% Civil Military Russian-made helicopters Key regions: account for nearly 14% of the Russia, CIS, India, China, Latin global fleet and are operated America, -
Rotorcraft (2011)
Rotorcraft Overview The rotorcraft industry produces aircraft, powered by either turboshaft or reciprocating engines, capable of performing vertical take-off and landing (VTOL) operations. The rotorcraft sector includes helicopters, gyrocopters, and tiltrotor aircraft. Helicopters, which employ a horizontal rotor for both lift and propulsion, are the mainstay of the industry. Gyrocopters are produced in much smaller quantities, primarily for use in recreational flying. Tiltrotor aircraft, such as the V-22 Osprey1, can take off vertically and then fly horizontally as a fixed-wing aircraft. Rotorcraft are manufactured in most industrialized countries, based on indigenous design or in collaboration with, or under license from, other manufacturers. Manufacturers in the United States of civilian helicopters include American Eurocopter, Bell, Enstrom, Kaman, MD Helicopters, Robinson, Schweizer (now a subsidiary of Sikorsky), and Sikorsky. Bell moved its civilian helicopter production to Canada, with the last U.S. product completed in 1993.2 American Eurocopter—a subsidiary of the European manufacturer and subsidiary of EADS NV—has manufacturing and assembly facilities in Grand Prairie, Texas and Columbus, Missouri. European producers include AgustaWestland, Eurocopter, NHIndustries, and PZL Swidnik. Russian manufacturers including Mil Moscow, Kamov and Kazan helicopters, as well as a number of other rotorcraft related companies, have been consolidated under the Russian government majority-owned OAO OPK Oboronprom.3 (See this report’s Russia -
Over Thirty Years After the Wright Brothers
ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph). -
Historical Perspective September 2011 11
Helicopter heroes It was 50 years ago that a prototype helicopter first flew and a legend was born—the CH-47 By Mike Lombardi urrently serving on the front lines The advantage of this unique design Just as earlier Chinooks proved of the global fight against terror- allows for low load-per-rotor area, elimi- themselves in wartime, the D model Cism, the CH-47 Chinook is the nates the need for a tail rotor, increases has played a key role for U.S. and epitome of the innovative tandem-rotor lift and stability, and provides a large allied troops in the deserts of Iraq helicopter designs produced through range for center of gravity. and the mountains of Afghanistan. the genius of helicopter pioneer Frank The HRP was followed by the U.S. The highly modified MH-47 series is Piasecki, founder of the company that Navy HUP/UH-25, the first helicopter to operated by the U.S. Army Special would later develop into the Boeing incorporate overlapping tandem rotors, Operations Forces. operations near Philadelphia. and the U.S. Air Force CH-21, a long- When the Chinook first flew in 1961 The CH-47, having been continuously range helicopter transport designed for Boeing Magazine wrote: “There is a modernized, has provided unmatched use in the Arctic. saying in the aviation industry that you capability for U.S. and allied troops since Piasecki stepped down in 1955 as can tell a winner by its appearance. The hard work and dedication of the Boeing its introduction 50 years ago this month. -
The Market for Medium/Heavy Commercial Rotorcraft
The Market for Medium/Heavy Commercial Rotorcraft Product Code #F605 A Special Focused Market Segment Analysis by: Rotorcraft Forecast Analysis 4 The Market for Medium/Heavy Commercial Rotorcraft 2011-2020 Table of Contents Executive Summary .................................................................................................................................................2 Introduction................................................................................................................................................................2 Trends..........................................................................................................................................................................3 Competitive Environment.......................................................................................................................................7 Market Statistics .......................................................................................................................................................9 Table 1 - Medium/Heavy Commercial Rotorcraft Unit Production by Headquarters/Company/Program 2011 - 2020......................................................10 Table 2 - Medium/Heavy Commercial Rotorcraft Value Statistics by Headquarters/Company/Program 2011 - 2020 ......................................................12 Figure 1 - Medium/Heavy Commercial Rotorcraft Unit Production 2011-2020 (Bar Graph).....................................................................................14 -
PDF, 177.9 Kb
Ka-32 service and maintenance centre opens in the Republic of Korea 28 January 2013, Moscow The Korea Forest Service has formally opened a new service and maintenance centre for Ka-32 helicopters manufactured by Russian Helicopters, a subsidiary of Oboronprom, part of State Corporation Rostec. Representatives of Russian Helicopters took part in the opening ceremony for the centre, which will promote the use of Ka-32 helicopters in the Republic of Korea and other countries in the Asia- Pacific region and reduce waiting times for maintenance and repair of these helicopters. “The opening of the new service centre will first of all have a positive effect on prospects for promoting Russian-built Kamov-brand helicopters in East Asia,” said Russian Helicopters CEO Alexander Mikheev. “This is a key region for our industry, and we want to be able to offer helicopter operators high-quality maintenance services through the whole life-cycle of our helicopters.” The multi-role Ka-32 has been supplied to South Korea since 1993. The Korea Forest Service uses the helicopter for monitoring forests and for fire-fighting, the country’s Air Force flies it for search-and-rescue missions, while the Coast Guard deploys helicopters in patrolling its coastal waters. The Ka-32 is also used in the commercial sector for carrying cargo, construction work and other missions. In total 61 Ka-32 helicopters are operational in South Korea, and have racked up more than 100,000 flight hours between them. The Ka-32 service and maintenance centre is located in a new multi-purpose complex that also houses the headquarters of the Korea Forest Service. -
Xtreme, and Often Exceptionally Far Away from What a Pilot May Experience, Even in Extreme Circumstances
Frontierswww.boeing.com/frontiers SEPTEMBER 2011 / Volume X, Issue V treme measures XTesting structures to the breaking point helps ensure Boeing products are safe PB BOEING FRONTIERS / SEPTEMBER 2011 1 BOEING FRONTIERS / SEPTEMBER 2011 On the Cover Pushing the limits Structural engineers with Boeing Test & Evaluation don’t necessarily like to go around breaking things, but often they do. Their 24 job is to make sure Boeing products such as jetliners, fighters and helicopters can be operated safely, and that means testing to the limit—and beyond. On any given day, Boeing structural labs are supporting testing requirements throughout the company. COVER IMAGE: SCOTT TEALL, LEFT, AND ANDY BAUGH OF BOEING TEST & EvaLUation prepare AN F-15 FOR fatigUE TESTING IN ST. LOUIS. BOB FERGUSON/BOEING PHOTO: CLOCKWISE FROM LEFT, PHILLIP JORDAN, MattHEW DUNCAN AND CatHERINE METTLACH ARE part OF THE TEAM CONDUCTING FULL-SCALE fatigUE TESTING ON AN F-15 IN ST. LOUIS. BOB FERGUSON/BOEING Ad watch The stories behind the ads in this issue of Frontiers. Inside cover: Page 6: Back cover: “787” is part of a series This ad recognizes Corporate citizenship of ads that reinforces the efforts of Dreamflight, refers to the work Boeing’s partnership with a U.K. charity that Boeing does, both Japan, a relationship takes seriously ill and as a company and that began more than disabled children, without through its employees, 50 years ago. The their parents but under to improve the world. campaign features the the care of a team This ad illustrates art of calligraphy, a of doctors and health Boeing’s commitment symbolic tradition of care professionals, to initiatives that Japanese culture that on a memorable nurture the visionaries communicates not only words but a deeper vacation to Orlando, Fla. -
Aircraft Designations and Popular Names
Chapter 1 Aircraft Designations and Popular Names Background on the Evolution of Aircraft Designations Aircraft model designation history is very complex. To fully understand the designations, it is important to know the factors that played a role in developing the different missions that aircraft have been called upon to perform. Technological changes affecting aircraft capabilities have resulted in corresponding changes in the operational capabilities and techniques employed by the aircraft. Prior to WWI, the Navy tried various schemes for designating aircraft. In the early period of naval aviation a system was developed to designate an aircraft’s mission. Different aircraft class designations evolved for the various types of missions performed by naval aircraft. This became known as the Aircraft Class Designation System. Numerous changes have been made to this system since the inception of naval aviation in 1911. While reading this section, various references will be made to the Aircraft Class Designation System, Designation of Aircraft, Model Designation of Naval Aircraft, Aircraft Designation System, and Model Designation of Military Aircraft. All of these references refer to the same system involved in designating aircraft classes. This system is then used to develop the specific designations assigned to each type of aircraft operated by the Navy. The F3F-4, TBF-1, AD-3, PBY-5A, A-4, A-6E, and F/A-18C are all examples of specific types of naval aircraft designations, which were developed from the Aircraft Class Designation System. Aircraft Class Designation System Early Period of Naval Aviation up to 1920 The uncertainties during the early period of naval aviation were reflected by the problems encountered in settling on a functional system for designating naval aircraft. -
Using Model-Scale Tandem-Rotor Measurements in Ground Effect to Understand Full-Scale CH-47D Outwash
JOURNAL OF THE AMERICAN HELICOPTER SOCIETY 62, 012004 (2017) Using Model-Scale Tandem-Rotor Measurements in Ground Effect to Understand Full-Scale CH-47D Outwash Manikandan Ramasamy∗ Gloria K. Yamauchi U.S. Army Aviation Development Directorate —AFDD Aeromechanics Office Aviation & Missile Research, Development & Engineering Center NASA Ames Research Center Research, Development & Engineering Command Moffett Field, CA Ames Research Center, Moffett Field, CA Downwash and outwash characteristics of a model-scale tandem-rotor system in the presence of the ground were analyzed by identifying and understanding the physical mechanisms contributing to the observed flow field behavior. A building block approach was followed in simplifying the problem, separating the effects of the fuselage, effects of one rotor on the other, etc. Flow field velocities were acquired in a vertical plane at four aircraft azimuths of a small-scale tandem rotor system using the particle image velocimetry technique for radial distances up to four times the rotor diameter. Results were compared against full-scale CH-47D measurements. Excellent correlation was found between the small- and full-scale mean flow fields (after appropriate normalization using rotor and wall jet parameters). Following the scalability analysis, the effect of rotor height on the outwash was also studied. Close to the aircraft, an increase in rotor height above ground decreased the outwash velocity at all aircraft azimuths. However, farther away, the longitudinal and lateral axes of the aircraft showed increasing and decreasing outwash velocities, respectively, with increasing rotor height. Baseline rotor measurements were made out-of-ground effect to understand the nature of inflow distribution for realistic rotor configurations and their modified characteristics in the presence of the ground. -
Russian Helicopters Today 16
DREAMS OF FLYING 1 Соntents: RUSSIAN HELICOPTERS AT A GLANCE 2 KEY 2015 HIGHLIGHTS 3 CHAIRman’s STATEMENT 10 DIRECTOR GENERal’s STATEMENT 12 RUSSIAN HELICOPTERS TODAY 16 MARKET OVERVIEW 26 Civil Helicopter 28 Military Helicopters 29 Company’s Market Positions 30 2015 – year of efficiency growth and strengthening the results obtained 34 Deliverie 34 Service and After-sales Support 36 Order Book 37 CAPEX 38 Organizational Development 39 2015 Financial Performance 39 strategy 44 Key objectives for 2016 45 social responsibility 46 corporate governance 47 Board of Directors 47 Management 57 Internal audit 62 Capital Markets and Investor Relations 63 risK ManageMent 64 ifrs financial stateMents for the year ended 31 deceMber 2015 70 2 DREAMS OF FLYING / ANNUAL REPORT 2015 KEY HIGHLIGHTS 3 RUSSIAN 20.15 HELICOPTERS EBITDA FIRM ORDER PROFIT AT A GLANCE 212 INCREASED BY BOOK TOTALED HELICOPTERS 39.5% TOTALED RUB 494 JSC “RUSSIAN HELICOPTERS” IS A LEADING PLAYER IN THE GLOBAL WERE SUPPLIED TO RUB 65.6 42.1 HELICOPTERS BILLION HELICOPTER INDUSTRY, THE SOLE RUSSIAN DESIGNER IN 2015 BILLION AS AT AND MANUFACTURER OF HELICOPTERS. 31.12. 2015 Headquartered in Moscow, “Russian Latin America, Russia, and the CIS Helicopters” Holding Company include countries. five helicopter plants, two design Although «Russian Helicopters» NON-CONTROLLING INTEREST IN THE SUBSIDIARIES IS bureaus, component production and was established only in 2007, some maintenance enterprise, a helicopter of the Company’s key entities have REVENUE service company, which ensures after- existed for more than 60 years. The EBITDA1 MARGIN GREW BY sales services in Russia and abroad new shape of the Holding Company AMOUNTED TO 29.5% and five aircraft repair enterprises. -
AERSP 407 and AERSP 504 Aerodynamics of V/STOL Aircraft
PENNSTATE 1 8 5 5 AERSP 407 and AERSP 504 Aerodynamics of V/STOL Aircraft Kenneth S. Brentner Department of Aerospace Engineering The Pennsylvania State University Kenneth S. Brentner, Dept. of Aerospace Engineering 1 PENNSTATE AERSP 407 and 504 1 8 5 5 Goals: To introduce and study key concepts related to aerodynamic loads, vehicle performance, basic rotor dynamics, and control of helicopters and tilt-rotor aircraft. Time: Monday, Wednesday, Friday: 1:25-2:15pm Place: 151 Willard Building Instructor: Dr. Kenneth S. Brentner 233 D Hammond Building Tel: (814) 865-6433 Email: [email protected] Office Hours: Monday and Wednesday 10:30-11:30am; by appointment; I also have an open door policy. Kenneth S. Brentner, Dept. of Aerospace Engineering 2 1 PENNSTATE Reference Materials 1 8 5 5 Textbook: Principles of Helicopter Aerodynamics, J. Gordon Leishman I will be basing lecture note primarily on this book. Other Good References: Aerodynamics of V/STOL Flight, B. W. McCormick, Jr. Helicopter Theory, W. Johnson Rotary-Wing Aerodynamics, W. Z. Stepniewski and C. N. Keys Aerodynamics of the Helicopter, A. Gessow and G. C. Meyers Kenneth S. Brentner, Dept. of Aerospace Engineering 3 PENNSTATE Outline 1 8 5 5 1. Introduction (also read Chapter 1) 2. Fundamentals of Rotor Aerodynamics (Chapter 2) 3. Blade Element Analysis (Chapter 3) 4. Blade Motion and Rotor Control (Chapter 4) 5. Basic Helicopter Performance (Chapter 5) 6. Conceptual Design of Helicopters (first part of Chapter 6) 7. Introduction to Unsteady Aerodynamics, Dynamic Stall, and Rotor Wakes – time permitting (portions of Chapters 7-10) This is my first time teaching this course, so I don’t have dates for when we will cover each of the sections.