PC25 Doc. 23 Add

Total Page:16

File Type:pdf, Size:1020Kb

PC25 Doc. 23 Add Original language: English PC25 Doc. 23 Addendum CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ___________________ Twenty-fifth meeting of the Plants Committee Online, 2-4,21 and 23 June 2021 Interpretation and implementation matters Regulation of trade ADDENDUM TO SPECIMENS GROWN FROM WILD-COLLECTED SEEDS OR SPORES THAT ARE DEEMED TO BE ARTIFICIALLY PROPAGATED 1. This document has been prepared by the Secretariat, in consultation with the representative of Oceania (Mr. Damian Wrigley), as the Plants Committee’s co-lead for Decisions 18.179 and 18.180 on Specimens grown from wild-collected seeds or spores that are deemed to be artificially propagated (see PC25 Doc. 7.2). Updates on progress since May 2020 2. Following the postponement due to the COVID-19 pandemic of the 25th meeting of the Plants Committee (PC25), scheduled to take place from 17 to 23 July 2020, the Committee took several intersessional decisions (see Notification to the Parties No. 2020/056 of 21 September 2020), including the approval of its workplan for 2020-2022 as outlined in document PC25 Doc. 7.2. Through its workplan, the Plants Committee agreed on the leads for the implementation of Decisions 18.179 and 18.180, as follows: Damian Wrigley, representative of Oceania; Daniel Wolf, alternate representative of Europe; and Shereefa Al-Salem, alternate representative of Asia. 3. In support of Decisions 18.179 and 18.180 on Specimens grown from wild-collected seeds or spores that are deemed to be artificially propagated, the Secretariat requested the World Conservation Monitoring Centre of the United Nations Environment Programme (UNEP-WCMC) to develop an analysis of the legal trade in Appendix-I artificially propagated plants (source codes A and D in the CITES trade database), including an assessment of conservation benefits to wild populations and any adverse effects of the conservation of Appendix-I species that have been subject to the implementation of paragraph 4 of Resolution Conf. 11.11 (Rev. CoP18) on Regulation of trade in plants. 4. The resulting report is included in the Annex to the present addendum, including the following key findings: a) According to the CITES trade database, international trade in artificially propagated Appendix I taxa consists primarily of exports of Araucaria araucana [Monkey puzzle tree] and orchids. Between 2009 and 2018, 529,415 live specimens of A. araucana were exported globally, approximately 525,500 specimens of which originated from the two registered nurseries in Chile under source code A. The species A. araucana is the most traded artificially propagated Appendix-I plant species. b) Three Parties (Chile, the Democratic Republic of the Congo and South Africa) were identified as potentially implementing the exemption outlined in paragraph 4 of Resolution Conf. 11.11 (Rev. CoP18). Further consultations with the respective CITES Management and Scientific Authorities were carried out by email in January 2021, and responses were received from Chile and South Africa. Chile is the only Party currently known to be implementing the exemption. South Africa implemented the exemption for Encephalartos latifrons, but to date no exports have taken place for any material from propagation. It is assumed that the Democratic Republic of Congo is not currently implementing the exemption. PC25 Doc. 23, Addendum – p. 1 c) Benefits: Incentives for indigenous communities in Chile and private landowners in South Africa are put in place to protect and preserve species for in-situ conservation and sustainable management of Appendix-I listed species. Ex-situ production of plant material is used for restoration purposes in Chile and South Africa. It is further noted that illegally harvested material from the wild could be reduced by satisfying the demand with artificially propagated CITES Appendix-I species. d) Adverse effects: Available data on A. araucana from Chile seems to indicate that illegal trade does not pose a risk to the species. However, additional data from CITES annual illegal trade reports would be needed to evaluate illegal trade. South Africa noted that wild E. latifrons continues to decline due to poaching and regeneration of wild population may have been affected considerably by the harvest of male cones of wild plants. Revised recommendations 5. The Plants Committee is invited to: a) review the report on Decision 18.179 contained in the Annex to this addendum; b) consider conservation benefits to wild populations and any adverse effects on the conservation of Appendix-I species that have been subject to the implementation of paragraph 4 of Resolution Conf. 11.11 (Rev. CoP18) on Regulation of trade in plants; c) consider whether any amendments to paragraph 4 of Resolution Conf. 11.11 (Rev. CoP18) are warranted; and d) report on the outcomes and recommendations of this work to the Standing Committee, as appropriate. PC25 Doc. 23, Addendum – p. 2 UNEP-WCMC technical report IMPLEMENTATION OF PARAGRAPH 4 OF RESOLUTION CONF. 11.11 (REV. COP18) An assessment of the exception allowing specimens grown from wild collected seeds or spores to be deemed as artificially propagated in support of Decision 18.179 CONFIDENTIAL Contents Executive Summary ................................................................................................................................... 1 Key findings ............................................................................................................................................ 1 Background ................................................................................................................................................ 4 Introduction ................................................................................................................................................ 6 Methods...................................................................................................................................................... 7 Overview of CITES trade in artificially propagated plants ........................................................................ 9 Global trade in artificially propagated plants (source codes A and D) of Appendix I-listed taxa ....... 9 Global illegal trade in artificially propagated plants (source codes A and D) of Appendix I-listed taxa ............................................................................................................................................................... 12 Current implementation of the exception outlined in paragraph 4 of Resolution Conf. 11.11 (Rev. CoP18) ...................................................................................................................................................... 14 Identification of Parties with registered nurseries ............................................................................. 14 Consultation with Parties currently implementing the exception outlined in paragraph 4 of Resolution Conf. 11.11 (Rev. CoP18) .................................................................................................. 15 Trade in artificially propagated plants (source codes A and D) of Appendix I-listed taxa from range States with registered nurseries .......................................................................................................... 15 Cost-benefit analysis ............................................................................................................................... 18 References ............................................................................................................................................... 23 Annex ........................................................................................................................................................ 25 i Executive Summary This report provides a review of the implementation of paragraph 4 of Resolution Conf. 11.11 (Rev. CoP18) in support of the Plants Committee fulfilling Decision 18.179. It provides the following: an assessment of the scale at which Parties are currently implementing the exception allowing plant specimens grown from wild seeds or spores to be deemed as artificially propagated; a global overview of legal, international trade in Appendix I artificially propagated plants under source codes A and D; a global overview of illegal, international trade in all Appendix-I listed plant taxa; a cost/benefit analysis of the exception; and recommendations for consideration by the CITES Plants Committee. Key findings Only two Parties to CITES are currently known to implement the exception outlined in paragraph 4 of Resolution Conf. 11.11 (Rev. CoP18) on the Regulation of trade in plants: Chile is actively exporting plant material of the Appendix I tree Araucaria araucana (Monkey puzzle tree); and South Africa has reported implementing this provision for one species of cycad, Encephalartos latifrons (Albany cycad). For the latter, this involves active management of one population of the species, but South Africa has not yet reported any exports from this programme. Although the Democratic Republic of the Congo (DRC) has a registered nursery from which exports of the Appendix I-listed Encephalartos laurentianus could take place under the exception, no exports of artificially propagated specimens have been reported to date. Overview of trade According to the CITES Trade Database, international trade in artificially propagated Appendix I taxa consists primarily of exports of A. araucana and
Recommended publications
  • Chile: a Journey to the End of the World in Search of Temperate Rainforest Giants
    Eliot Barden Kew Diploma Course 53 July 2017 Chile: A Journey to the end of the world in search of Temperate Rainforest Giants Valdivian Rainforest at Alerce Andino Author May 2017 1 Eliot Barden Kew Diploma Course 53 July 2017 Table of Contents 1. Title Page 2. Contents 3. Table of Figures/Introduction 4. Introduction Continued 5. Introduction Continued 6. Aims 7. Aims Continued / Itinerary 8. Itinerary Continued / Objective / the Santiago Metropolitan Park 9. The Santiago Metropolitan Park Continued 10. The Santiago Metropolitan Park Continued 11. Jardín Botánico Chagual / Jardin Botanico Nacional, Viña del Mar 12. Jardin Botanico Nacional Viña del Mar Continued 13. Jardin Botanico Nacional Viña del Mar Continued 14. Jardin Botanico Nacional Viña del Mar Continued / La Campana National Park 15. La Campana National Park Continued / Huilo Huilo Biological Reserve Valdivian Temperate Rainforest 16. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 17. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 18. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued / Volcano Osorno 19. Volcano Osorno Continued / Vicente Perez Rosales National Park 20. Vicente Perez Rosales National Park Continued / Alerce Andino National Park 21. Alerce Andino National Park Continued 22. Francisco Coloane Marine Park 23. Francisco Coloane Marine Park Continued 24. Francisco Coloane Marine Park Continued / Outcomes 25. Expenditure / Thank you 2 Eliot Barden Kew Diploma Course 53 July 2017 Table of Figures Figure 1.) Valdivian Temperate Rainforest Alerce Andino [Photograph; Author] May (2017) Figure 2. Map of National parks of Chile Figure 3. Map of Chile Figure 4. Santiago Metropolitan Park [Photograph; Author] May (2017) Figure 5.
    [Show full text]
  • Amelanchier Alnifolia. Araucaria Araucana
    Woodland Garden Plants The present-day cultivation of large areas of single annual crops such as wheat might seem, on the surface, to be a very productive and efficient use of land (average wheat yields this century have increased more than three-fold to over 3 tons per acre). When other factors are taken into account, however, it can be argued that this is a very unproductive and unsustainable use of the land. A woodland, on the other hand, might seem to be a very unproductive area for human food (unless you happen to like eating acorns). By choosing the right species, however, a woodland garden can produce a larger crop of food than the same area of wheat, will require far less work to manage it and will be able to be sustainably harvested without harm to the soil or the environment in general. I do not intend to go into any more details of the pros and cons of annuals versus perennials here. If you would like more information on this subject then please see our leaflet Why Perennials. One of the main reasons why a woodland garden can be so productive is that such a wide range of plants can be grown together, making much more efficient use of the land. The greater the diversity of plants being grown together then the greater the overall growth of plant matter there is. Thus you can have tall growing trees with smaller trees and shrubs that can tolerate some shade growing under them. Climbing plants can make their own ways up the trees and shrubs towards the light, whilst shade- tolerant herbaceous plants and bulbs can grow on the woodland floor.
    [Show full text]
  • Street Tree Inventory Report Mill Park Neighborhood November 2015 Street Tree Inventory Report: Mill Park Neighborhood November 2015
    Street Tree Inventory Report Mill Park Neighborhood November 2015 Street Tree Inventory Report: Mill Park Neighborhood November 2015 Written by: Carrie Black, Kat Davidson, Angie DiSalvo, Jeremy Grotbo, and Jeff Ramsey Portland Parks & Recreation Urban Forestry 503-823-4484 [email protected] http://portlandoregon.gov/parks/treeinventory Staff Neighborhood Coordinator: Rob Hanifin Data Collection Volunteers: Tony Mecum GIS Technical Support: Josh Darling, Portland Parks & Recreation Financial Support: Portland Parks & Recreation Cover Photos (from top left to bottom right): 1) The unusual fruit of a glorybower (Clerodendrum sp.) 2) A closeup on the dry cone of a cypress (Cupressus sp.) 3) A young pecan (Carya illinoinensis), rare in Portland. 4) Rosy margins on the leaves of a tricolor beech (Fagus sylvatica 'Tricolor'). 5) Fall color and woody fruit of a stewartia (Stewartia sp.) 6) The lush foliage of a Douglas-fir Pseudotsuga( menziesii), an important tree type in Mill Park. 7) Spiky foliage emerges from the trunk of a monkey puzzle tree (Araucaria araucana). 8) Vibrant fall color on a young tupelo (Nyssa sp.) ver. 11/18/2015 Portland Parks & Recreation 1120 SW Fifth Avenue, Suite 1302 Portland, Oregon 97204 (503) 823-PLAY Commissioner Amanda Fritz www.PortlandParks.org Director Mike Abbaté Table of Contents Key Findings .......................................... 1 About Portland’s Street Tree Inventory . 3 Mill Park Street Tree Inventory ........................... 5 Neighborhood Characteristics ......................... 5 Urban Forest Composition............................ 6 Species diversity and tree type composition . 6 Functional tree type .............................. 8 Size class distribution ............................. 9 Mature tree form distribution ..................... 10 Importance value................................ 10 Tree Condition .................................... 11 Planting Site Composition and Stocking Level ........... 13 Planting sites..................................
    [Show full text]
  • Download the PDF File
    ISSN 2473-442X CONTENTS Message from Dr. Patrick Griffith, Co-chair, IUCN/SSC CSG 3 Official newsletter of IUCN/SSC Cycad Specialist Group Botanic Garden: In Focus Vol. IV I Issue 2 I December 2019 Montgomery Botanical Center’s Cycad Collection – Focus on research and conservation 5 Michael Calonje & Patrick Griffith Feature Articles Towards an approach for the conservation and illegal trade prevention of South Africa’s endangered Encephalartos spp. 10 James A. R. Clugston, Michelle Van Der Bankand Ronny M. Kobongo Fire is the most important threat for conservation of Dioon merolae (espadaña) in the hill Nambiyigua, municipality of Villaflores, Chiapas, Mexico 13 Miguel Angel Pérez-Farrera & Mauricio Martínez Martínez Ex-situ Cycad Conservation [1]: Public and Private Collections 16 Chip Jones & JS Khuraijam The Cycad Specialist Group (CSG) is a component of the IUCN Species Research and Conservation News Survival Commission (IUCN/SSC). It consists of a group of volunteer The Cycad Extinction Crisis in South Africa 19 experts addressing conservation Wynand van Eeden & Tim Gregory issues related to cycads, a highly What is Ceratozamia becerrae ? 21 threatened group of land plants. The Andrew P. Vovides, Miguel Angel Pérez-Farrera & José Said Gutiérrez-Ortega CSG exists to bring together the world’s cycad conservation expertise, Preliminary Finding: Seed longevity of Encephalartos in controlled storage 23 and to disseminate this expertise to Ngawethu Ngaka and Phakamani Xaba organizations and agencies which can use this guidance to advance cycad Meeting Reports conservation. 2nd Nong Nooch Cycad Horticulture Workshop 25 Official website of CSG: Anders Lindstrom http://www.cycadgroup.org/ Plant Conservation Genetics Workshop 26 Co-Chairs Caroline Iacuaniello, Stephanie Steele & Christy Powell John Donaldson Patrick Griffith CSG Members 28 Vice Chairs Michael Calonje Cristina Lopez-Gallego Red List Authority Coordinator De Wet Bosenberg CSG Newsletter Committee JS Khuraijam, Editor Irene Terry Andrew P.
    [Show full text]
  • Ventnor Botanic Garden
    Dinosaurs and plants DAWN REDWOOD – Metasequoia glyptostroboides The discovery of this conifer in Szechuan in 1947 created a The Isle of Wight is one of the most important dinosaur horticultural sensation. It was recognised as a descendant of discovery and excavation sites in the world. More than trees from the Carboniferous period, which means it dates back twenty types have now been found, all within a few miles to a time before even the dinosaurs had evolved. of Ventnor Botanic Garden. CYCADS – Cycas revolute In early Cretaceous times when dinosaurs ruled, plant Cycads were the most frequent plants in a life was abundant but very different from now. Just a few dinosaur landscape. Fossils of their 'dinosaur plants' have survived. Ventnor Botanic Garden distinctive cones – like pineapples, to Ventnor Botanic Garden is which they are related – are found on the fortunate to house some of the Island. Though no longer most important ‘living fossils’ widespread, many species of Cycad thrive that covered the Earth during in warmer climates. There is a Cycad with- the time of the dinosaurs. The Isle of Wight in the Early in the garden that is flowering—this is the Cretaceous period 125 million first flowering Cycad in 250 MILLION years ago years! Can you find it? MAGNOLIA – Magnolia spp GINKGO TREES – Ginkgo biloba This ancient and beautiful group of plants evolved towards the The Ginkgo tree has remained the same over 240 million end of the dinosaur age, and is one of the very first flowering years and its distinctive leaf shape is instantly recognisable plants.
    [Show full text]
  • Cycad Forensics: Tracing the Origin of Poached Cycads Using Stable Isotopes, Trace Element Concentrations and Radiocarbon Dating Techniques
    Cycad forensics: Tracing the origin of poached cycads using stable isotopes, trace element concentrations and radiocarbon dating techniques by Kirsten Retief Supervisors: Dr Adam West (UCT) and Ms Michele Pfab (SANBI) Submitted in partial fulfillment of the requirements for the degree of Masters of Science in Conservation Biology 5 June 2013 Percy FitzPatrick Institution of African Ornithology, UniversityDepartment of Biologicalof Cape Sciences Town University of Cape Town, Rondebosch Cape Town South Africa 7701 i The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Table of Contents Acknowledgements iii Plagiarism declaration iv Abstract v Chapter 1: Status of cycads and background to developing a forensic technique 1 1. Why are cycads threatened? 2 2. Importance of cycads 4 3. Current conservation strategies 5 4. Stable isotopes in forensic science 7 5. Trace element concentrations 15 6. Principles for using isotopes as a tracer 15 7. Radiocarbon dating 16 8. Cycad life history, anatomy and age of tissues 18 9. Recapitulation 22 Chapter 2: Applying stable isotope and radiocarbon dating techniques to cycads 23 1. Introduction 24 2. Methods 26 2.1 Sampling selection and sites 26 2.2 Sampling techniques 30 2.3 Processing samples 35 2.4 Cellulose extraction 37 2.5 Oxygen and sulphur stable isotopes 37 2.6 CarbonUniversity and nitrogen stable of isotopes Cape Town 38 2.7 Strontium, lead and elemental concentration analysis 39 2.8 Radiocarbon dating 41 2.9 Data analysis 42 3.
    [Show full text]
  • Tortworth Arboretum
    4 5 bee 3 garden ARENA With the help of a team of dedicated volunteers we 2 have restored lost pathways, uncovered hidden redwoods 6 features and created new routes around the 7 arboretum. Below is a pick of our favourite trees! STILE 1 Hungarian Oak (Quercus frainetto) 2 Veteran Common Oak (Quercus robur) 8 3 DONKEY BRIDGE Veteran Sweet Chestnuts (Castanea sativa) 1 4 Monkey Puzzle (Araucaria araucana) 9 5 Caucasian Alder (Alnus subcordata) 6 Coastal Redwood (Sequoia sempervirens) PUBLIC FOOTPATH 7 Handkerchief Tree (Davidia involucrata) subsp. 8 (Fraxinus angustifolia 10 Narrow Leaved Ash angustifolia) GATE 11 MAIN 9 Contorted Hazel (Corylus avellana ‘Contorta’) CAMPFIRE 10 Indian Chestnut (Aesculus indica) 11 TOILET Japanese Chestnut (Aesculus turbinata) 12 12 Dawn Redwood (Metasequoia glyptostroboides) 13 Hornbeam (Carpinus betulus) Find us online for details of volunteering opportunities 13 and events, plus more maps and history of the arboretum. https://tortwortharboretum.org ENTRANCE GATE 1 Hungarian Oak (Quercus frainetto) 8 Narrow Leaved Ash (Fraxinus angustifolia subsp. angustifolia) One of our champion trees, over five meters in circumference. Look Grown on common ash root stock, this is a particularly large mature out for the large lobed leaves. (Southeastern Europe and Turkey) specimen for the UK. (Western Europe, northwest Africa) 2 Common Oak (Quercus robur) 9 Contorted Hazel (Corylus avellana ‘Contorta’) This vetern ‘English Oak’ is estimated to be over 350 years old and A natural mutation of common hazel, famously first discovered in a predates the arboretum, being planted as part of a former deer hedgerow at Frocester in 1863. All contorted hazels, including this park.
    [Show full text]
  • Comparative Biology of Cycad Pollen, Seed and Tissue - a Plant Conservation Perspective
    Bot. Rev. (2018) 84:295–314 https://doi.org/10.1007/s12229-018-9203-z Comparative Biology of Cycad Pollen, Seed and Tissue - A Plant Conservation Perspective J. Nadarajan1,2 & E. E. Benson 3 & P. Xaba 4 & K. Harding3 & A. Lindstrom5 & J. Donaldson4 & C. E. Seal1 & D. Kamoga6 & E. M. G. Agoo7 & N. Li 8 & E. King9 & H. W. Pritchard1,10 1 Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK; e-mail: [email protected] 2 The New Zealand Institute for Plant & Food Research Ltd, Private Bag 11600, Palmerston North 4442, New Zealand; e-mail [email protected] 3 Damar Research Scientists, Damar, Cuparmuir, Fife KY15 5RJ, UK; e-mail: [email protected]; [email protected] 4 South African National Biodiversity Institute, Kirstenbosch National Botanical Garden, Cape Town, Republic of South Africa; e-mail: [email protected]; [email protected] 5 Nong Nooch Tropical Botanical Garden, Chonburi 20250, Thailand; e-mail: [email protected] 6 Joint Ethnobotanical Research Advocacy, P.O.Box 27901, Kampala, Uganda; e-mail: [email protected] 7 De La Salle University, Manila, Philippines; e-mail: [email protected] 8 Fairy Lake Botanic Garden, Shenzhen, Guangdong, People’s Republic of China; e-mail: [email protected] 9 UNEP-World Conservation Monitoring Centre, Cambridge, UK; e-mail: [email protected] 10 Author for Correspondence; e-mail: [email protected] Published online: 5 July 2018 # The Author(s) 2018 Abstract Cycads are the most endangered of plant groups based on IUCN Red List assessments; all are in Appendix I or II of CITES, about 40% are within biodiversity ‘hotspots,’ and the call for action to improve their protection is long- standing.
    [Show full text]
  • Mountains Influence Distribution
    South America - mountains influence distribution The continent joins Mesoamerica, the landbridge from Panama to Mexico, connecting the South Winteraceae - One of Tasmania’s South American relatives Winteraceae family distribution American plant communities to the North American. Captain John Winter was one of Sir Francis Drake’s captains at the start of Drake’s raiding, in the years 1577 and Our collection includes plants from cooler southern end of the continent and from the higher 1578, of the Spanish colonies in what are now Chile and Peru. mountain areas of the Andes. Winter discovered the healing properties of the tree bark while on this expedition from England, and it became known as “Winter’s Bark”. It was used in a tea to treat the effects of scurvy. Mountain influences The specific name winterii is in commemoration of John Winter. Its local common name is canelo. The tree is in the family Winteraceae, again commemorative, along with the Tasmanian endemic, mountain pepper [Tasmannia The Andes stretch down the western side of South America as the Rockies do through North America, both formed by lanceolata]. continental plate movement. These mountain ranges reach up to 6,000m in altitude and cross from the polar through the The Winteraceae also occur on the Atlantic Coast of Brazil and other places in the north of South America and in Central America, around temperate to the tropical zones. the Tasman and Coral Seas and through Papua New Guinea to Borneo and the Philippines. Many other Southern hemisphere plant families Mountains influence plant distribution, acting as climate modifiers, physical barriers to plant distribution, and as refuges have these wide global distributions, evidence of continental drift.
    [Show full text]
  • Trees of Bayview Cemetery
    1 Bigleaf Maple (n) Acer macrophyllum 40 English Midland Hawthorn Crataegus laevigata 2 Japanese Dwarf Maple Acer palmatum 41 Japanese Snowbell Tree Styrax japonica 3 Norway Maple Acer platanoides 42 Yulan Magnolia Magnolia denudata 3a Crimson King Norway Acer platanoides ‘Crimson King’ 43 Dawn Redwood Metasequoia glyptostroboides Trees of Bayview Cemetery Maple ‘ 44 Monkey Puzzle Araucaria araucana 4 Paperbark Maple Acer griseum 45 Flowering Pear Pyrus calleryana ‘Cleveland Select’ This map shows one representative tree from each species found at 5 Red Maple Acer rubrum ‘Cleveland Select’ Bayview. For a complete map, please visit Park Operations, located 6 Vine Maple (n) Acer circinatum 46 White Ash Fraxinus americana across the street from Bayview Cemetary at 1400 Woburn St. 7 Red Snakebark Maple Acer capillipes 47 Smoothleaf Elm Ulmus minor clone or hybrid 8 Sugar Maple Acer saccharum clone or hybrid Trees of 9 Western Redcedar (n) Thuja plicata 47a Jersey or Guernsey Elm Ulmus minor ‘Sarniensis’ 10 Northern White Cedar Thuja occidentalis 48* Wych Elm Ulmus glabra 11 Oriental Arborvitae Thuja orientalis 49 Rhododendron Rhododendron sp. Bayview 12* Port Orford Cedar Chamaecyparis lawsoniana 50 Persian Ironwood Parrotia persica 13 Sawara Cypress Chamaecyparis pisifera 51 Austrian Pine Pinus nigra 13a Plume Sawara Cypress Chamaecyparis pisifera f. plumosa 52 Common Horse Chestnut Aesculus hippocastanum 13b Moss Sawara Cypress Chamaecyparis pisifera f. squarrosa 53 Ginkgo or Maidenhair Tree Ginkgo biloba Cemetery 13c Threadbranch Sawara Chamaecyparis pisifera f. filifera 54 Goldenchain Laburnum anagyroides Cypress 55 Atlas Cedar Cedrus atlantica 14 Mazzard Cherry Prunus avium 56 European Hazel Corylus avellana 15 Canada Red Chokecherry Prunus virginiana 57 Black Locust Robinia pseudoacacia ‘Canada Red’ 58 Sweetgum Liquidambar styraciflua 16 Cherry Plum Prunus ceracifera 59 Eastern Redcedar Juniperus virginiana 16a Purpleleaf Plum Prunus ceracifera 60 English Holly Ilex aquifolium f.
    [Show full text]
  • Araucaria Araucana in West Norway*
    petala (Rosaceae), an interesting dwarf subshrub. This has pinnate dentate leaves, decorative fruits, and large single white flowers borne about 15 cm above the ground. Another attractive shrub in this area is Myrica tomentosa, related to the European M. gale. This grows to about 1m high, has a characteristic resinous smell and flowers before the pubescent young shoots and leaves appear. Also here are numerous tiny orchids of the genera Hammarbya, Platanthera, and Listera, which in most parts of Europe are rare or endangered, and, on the black beach, the pale blue, funnel-shaped flowers of Mertensia maritima. On the shores of Lake Nachikinsky (360 m above sea level) we had an unforgettable view of thousands of bright red, spawning sockeye salmon. From here we travelled on to the eastern, Pacific coast of Kamchatka, where the sand on the deserted beach was almost black, and the water considerably warmer than on the west coast. Here we camped behind a range of low semi-overgrown sandy dunes, which ran parallel to the ocean prior to merging inland into a large flat plain with heath-like vegetation, with tundra and aquatic species, especial- ly along streams and in hollows. This was the only place where we found Rosa rugosa, growing among scattered bushes of Pinus pumila. We ended our expedition high in the mountains, on the slopes of the Avachinsky and Korjaksky volcanoes, where perennial snowfields gave rise to numerous streams, an uncommon sight in the volcanic landscape of Kamchatka. Here, well above the tree line, the flora was again decidedly alpine, and this was the only place where we encoun- tered the unusual evergreen dwarf ericaceous shrub, Bryanthus gmelinii, with spikes of small pink flowers.
    [Show full text]
  • Pollination and Germination As Limiting Factors in the Propagation of Threatened Cycads, Encephalartos (Zamiaceae)
    Pollination and germination as limiting factors in the propagation of threatened cycads, Encephalartos (Zamiaceae) Phakamani M’Afrika Xaba A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the department of Biodiversity and Conservation Biology of the University of Western Cape. Date of submission: 12 November 2014 KEY WORDS Encephalartos latifrons Encephalartos altensteinii Pollen viability Pollen storage Pollen germination Artificial wet pollination Artificial dry pollination Seed storage Seed pre-treatment Seed germination i ABSTRACT Cycads are the most threatened living organisms assessed to date (IUCN, 2010). Encephalartos is an African cycad genus which in South Africa has a high diversity but threatened status. This study focuses on the Critically Endangered cycad Encephalartos latifrons, which exhibits low seed viability (< 10) in ex situ living collections in the Kirstenbosch National Botanical Garden (KNBG). This is the largest known ex situ collection of E. latifrons, and the conservation programme of this species has been negatively affected by the unknown cause of low seed germination. This study hypothesised that low seed germination in E. latifrons at KNBG was caused by: firstly, low pollen viability as a result of storage or environmental conditions; secondly by factors with the wet artificial pollination method and its synchronous application to the diurnal formation of pollination droplets in ovules; thirdly, seed storage factors (period and environmental conditions) and the lack of seed pre-treatment (scarification and hormone). This study compared E. latifrons to a more common cycad E. altensteinii with high seed viability (> 60%) at KNBG. Encephalartos latifrons pollen viability results show that fresh and stored pollen of specimens cultivated at KNBG was high (>60%) and comparable to pollen from the wild, that was above the recommended standard (>40%) (Stanley & Linskens, 1974), and only started losing viability after three years.
    [Show full text]