Inscribed Right Triangles

Total Page:16

File Type:pdf, Size:1020Kb

Inscribed Right Triangles Project AMP Dr. Antonio R. Quesada – Director, Project AMP Inscribed Right Triangles Inscribed Right Triangles This lesson introduces students to the properties of inscribed right triangles. The properties are: 1. If a right triangle is inscribed in a circle, then its hypotenuse is a diameter of the circle. 2. If one side of a triangle inscribed in a circle is a diameter of the circle, then the triangle is a right triangle and the angle opposite the diameter is the right angle. Keywords: Right Triangles, Inscribed, Diameter, Hypotenuse Existing Knowledge These above properties are normally taught in a chapter concerning circles. Students should have a clear understanding of vocabulary concerning circles and triangles. NCTM Standards Analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships. Learning Objectives Students will be able to identify the properties that exist when a right triangle is inscribed in a circle. Materials Cabri II or Geometer’s Sketchpad Procedure To introduce the lesson, the teacher may want to pose the question, “What is special about a right triangle inscribed in a circle?” If the students have previous experience with finding the circumcenter of a triangle, you may want to ask the question, “Given a right triangle, what is the easiest way to find the center of a circumscribed circle?” The teacher may assess the students based on questions throughout the lesson. Project AMP Dr. Antonio R. Quesada – Director, Project AMP Inscribed Right Triangles Team Members: ____________________ ____________________ File Name: ____________________ Activity Goal In this activity you will determine what properties exist when a right triangle is inscribed in a circle. Open a new page in Cabri II and follow the instructions below. Laboratory One 1. Construct a circle and label the center C. (circle tool) 2. Inscribe right DABD in circle C using the instructions below. a. Construct chord AB . (segment tool) b. Construct a line through B that is perpendicular to AB . (perpendicular line tool) c. Label the intersection of the circle and the line as D. (intersection point tool) d. Construct AD. (segment tool) e. Measure ÐABD to show that it is a right angle. (angle measure tool) 3. Are A-C-D collinear? ____ (collinear tool) Project AMP Dr. Antonio R. Quesada – Director, Project AMP 4. What is the relationship of AD to the circle? Explain. _____________________________________________________________________ 5. What is the relationship of AD to DABD ? Why? _______________________ ___________________________________________________________________________ 6. What is the relationship between the hypotenuse and the diameter of the circle? ___________________________________________________________________________ 7. Grab and move point B about the circle. 8. Does the measure of DABD change? _____ 9. Does the position of AD change? _____ 10. What can you conclude about any right triangle inscribed in a circle? ___________________ ___________________________________________________________________________ Project AMP Dr. Antonio R. Quesada – Director, Project AMP Laboratory Two 1. Construct a circle with center C. (circle tool) 2. Construct line m through point C. (line tool) 3. Label the intersections of line m and circle C as points A and B. (intersection point tool) 4. Construct AB and then hide line m. (segment tool and hide tool) 5. What is AB in relationship to the circle? _________________________________ 6. Put a point D on the circle and then construct the inscribed DABD . (point tool and triangle tool) 7. What is the measure of ÐADB? ____________________________ (measurement tool) 8. What kind of triangle is DADB ? ______________________________ 9. What is the hypotenuse of DADB ? ____________________________ 10. Grab and move point D about the circle. 11. What happens to the measure of ÐADB? ____________________________ 12. What can you conclude about any inscribed triangle which has one side as the diameter of the circle? _____________________________________________________________________ ___________________________________________________________________________ Project AMP Dr. Antonio R. Quesada – Director, Project AMP 13. Lab 2 is the converse of lab 1. Summarize each lab in your own words. Lab 1: ________________________________________________________________________ ______________________________________________________________________________ Lab 2: ________________________________________________________________________ ______________________________________________________________________________ Extension #1 Given a right triangle, what is the easiest way to find the center of a circumscribed circle? ______________________________________________________________________________ ______________________________________________________________________________ Extension #2 When you go to a concert, you want to be close to the stage, but you don’t want to have to move your eyes too much to see all the dancers and musicians on each end. In the diagram, the measure of ÐXYZ is called your viewing angle. You decide that the middle of the sixth row has the best viewing angle. If someone is sitting there, explain where else you could sit to have the same viewing angle. If necessary, make a diagram or use Cabri II. ______________________________________________________________________________ ______________________________________________________________________________ .
Recommended publications
  • Circle Theorems
    Circle theorems A LEVEL LINKS Scheme of work: 2b. Circles – equation of a circle, geometric problems on a grid Key points • A chord is a straight line joining two points on the circumference of a circle. So AB is a chord. • A tangent is a straight line that touches the circumference of a circle at only one point. The angle between a tangent and the radius is 90°. • Two tangents on a circle that meet at a point outside the circle are equal in length. So AC = BC. • The angle in a semicircle is a right angle. So angle ABC = 90°. • When two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference. So angle AOB = 2 × angle ACB. • Angles subtended by the same arc at the circumference are equal. This means that angles in the same segment are equal. So angle ACB = angle ADB and angle CAD = angle CBD. • A cyclic quadrilateral is a quadrilateral with all four vertices on the circumference of a circle. Opposite angles in a cyclic quadrilateral total 180°. So x + y = 180° and p + q = 180°. • The angle between a tangent and chord is equal to the angle in the alternate segment, this is known as the alternate segment theorem. So angle BAT = angle ACB. Examples Example 1 Work out the size of each angle marked with a letter. Give reasons for your answers. Angle a = 360° − 92° 1 The angles in a full turn total 360°. = 268° as the angles in a full turn total 360°.
    [Show full text]
  • Tetrahedra and Relative Directions in Space Using 2 and 3-Space Simplexes for 3-Space Localization
    Tetrahedra and Relative Directions in Space Using 2 and 3-Space Simplexes for 3-Space Localization Kevin T. Acres and Jan C. Barca Monash Swarm Robotics Laboratory Faculty of Information Technology Monash University, Victoria, Australia Abstract This research presents a novel method of determining relative bearing and elevation measurements, to a remote signal, that is suitable for implementation on small embedded systems – potentially in a GPS denied environment. This is an important, currently open, problem in a number of areas, particularly in the field of swarm robotics, where rapid updates of positional information are of great importance. We achieve our solution by means of a tetrahedral phased array of receivers at which we measure the phase difference, or time difference of arrival, of the signal. We then perform an elegant and novel, albeit simple, series of direct calculations, on this information, in order to derive the relative bearing and elevation to the signal. This solution opens up a number of applications where rapidly updated and accurate directional awareness in 3-space is of importance and where the available processing power is limited by energy or CPU constraints. 1. Introduction Motivated, in part, by the currently open, and important, problem of GPS free 3D localisation, or pose recognition, in swarm robotics as mentioned in (Cognetti, M. et al., 2012; Spears, W. M. et al. 2007; Navarro-serment, L. E. et al.1999; Pugh, J. et al. 2009), we derive a method that provides relative elevation and bearing information to a remote signal. An efficient solution to this problem opens up a number of significant applications, including such implementations as space based X/Gamma ray source identification, airfield based aircraft location, submerged black box location, formation control in aerial swarm robotics, aircraft based anti-collision aids and spherical sonar systems.
    [Show full text]
  • Theta Circles and Polygons Test #112
    Theta Circles and Polygons Test #112 Directions: 1. Fill out the top section of the Round 1 Google Form answer sheet and select Theta- Circles and Polygons as the test. Do not abbreviate your school name. Enter an email address that will accept outside emails (some school email addresses do not). 2. Scoring for this test is 5 times the number correct plus the number omitted. 3. TURN OFF ALL CELL PHONES. 4. No calculators may be used on this test. 5. Any inappropriate behavior or any form of cheating will lead to a ban of the student and/or school from future National Conventions, disqualification of the student and/or school from this Convention, at the discretion of the Mu Alpha Theta Governing Council. 6. If a student believes a test item is defective, select “E) NOTA” and file a dispute explaining why. 7. If an answer choice is incomplete, it is considered incorrect. For example, if an equation has three solutions, an answer choice containing only two of those solutions is incorrect. 8. If a problem has wording like “which of the following could be” or “what is one solution of”, an answer choice providing one of the possibilities is considered to be correct. Do not select “E) NOTA” in that instance. 9. If a problem has multiple equivalent answers, any of those answers will be counted as correct, even if one answer choice is in a simpler format than another. Do not select “E) NOTA” in that instance. 10. Unless a question asks for an approximation or a rounded answer, give the exact answer.
    [Show full text]
  • 20. Geometry of the Circle (SC)
    20. GEOMETRY OF THE CIRCLE PARTS OF THE CIRCLE Segments When we speak of a circle we may be referring to the plane figure itself or the boundary of the shape, called the circumference. In solving problems involving the circle, we must be familiar with several theorems. In order to understand these theorems, we review the names given to parts of a circle. Diameter and chord The region that is encompassed between an arc and a chord is called a segment. The region between the chord and the minor arc is called the minor segment. The region between the chord and the major arc is called the major segment. If the chord is a diameter, then both segments are equal and are called semi-circles. The straight line joining any two points on the circle is called a chord. Sectors A diameter is a chord that passes through the center of the circle. It is, therefore, the longest possible chord of a circle. In the diagram, O is the center of the circle, AB is a diameter and PQ is also a chord. Arcs The region that is enclosed by any two radii and an arc is called a sector. If the region is bounded by the two radii and a minor arc, then it is called the minor sector. www.faspassmaths.comIf the region is bounded by two radii and the major arc, it is called the major sector. An arc of a circle is the part of the circumference of the circle that is cut off by a chord.
    [Show full text]
  • Foundations of Geometry
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2008 Foundations of geometry Lawrence Michael Clarke Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Geometry and Topology Commons Recommended Citation Clarke, Lawrence Michael, "Foundations of geometry" (2008). Theses Digitization Project. 3419. https://scholarworks.lib.csusb.edu/etd-project/3419 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. Foundations of Geometry A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Lawrence Michael Clarke March 2008 Foundations of Geometry A Thesis Presented to the Faculty of California State University, San Bernardino by Lawrence Michael Clarke March 2008 Approved by: 3)?/08 Murran, Committee Chair Date _ ommi^yee Member Susan Addington, Committee Member 1 Peter Williams, Chair, Department of Mathematics Department of Mathematics iii Abstract In this paper, a brief introduction to the history, and development, of Euclidean Geometry will be followed by a biographical background of David Hilbert, highlighting significant events in his educational and professional life. In an attempt to add rigor to the presentation of Geometry, Hilbert defined concepts and presented five groups of axioms that were mutually independent yet compatible, including introducing axioms of congruence in order to present displacement.
    [Show full text]
  • "Perfect Squares" on the Grid Below, You Can See That Each Square Has Sides with Integer Length
    April 09, 2012 "Perfect Squares" On the grid below, you can see that each square has sides with integer length. The area of a square is the square of the length of a side. A = s2 The square of an integer is a perfect square! April 09, 2012 Square Roots and Irrational Numbers The inverse of squaring a number is finding a square root. The square-root radical, , indicates the nonnegative square root of a number. The number underneath the square root (radical) sign is called the radicand. Ex: 16 = 121 = 49 = 144 = The square of an integer results in a perfect square. Since squaring a number is multiplying it by itself, there are two integer values that will result in the same perfect square: the positive integer and its opposite. 2 Ex: If x = (perfect square), solutions would be x and (-x)!! Ex: a2 = 25 5 and -5 would make this equation true! April 09, 2012 If an integer is NOT a perfect square, its square root is irrational!!! Remember that an irrational number has a decimal form that is non- terminating, non-repeating, and thus cannot be written as a fraction. For an integer that is not a perfect square, you can estimate its square root on a number line. Ex: 8 Since 22 = 4, and 32 = 9, 8 would fall between integers 2 and 3 on a number line. -2 -1 0 1 2 3 4 5 April 09, 2012 Approximate where √40 falls on the number line: Approximate where √192 falls on the number line: April 09, 2012 Topic Extension: Simplest Radical Form Simplify the radicand so that it has no more perfect-square factors.
    [Show full text]
  • Points, Lines, and Planes a Point Is a Position in Space. a Point Has No Length Or Width Or Thickness
    Points, Lines, and Planes A Point is a position in space. A point has no length or width or thickness. A point in geometry is represented by a dot. To name a point, we usually use a (capital) letter. A A (straight) line has length but no width or thickness. A line is understood to extend indefinitely to both sides. It does not have a beginning or end. A B C D A line consists of infinitely many points. The four points A, B, C, D are all on the same line. Postulate: Two points determine a line. We name a line by using any two points on the line, so the above line can be named as any of the following: ! ! ! ! ! AB BC AC AD CD Any three or more points that are on the same line are called colinear points. In the above, points A; B; C; D are all colinear. A Ray is part of a line that has a beginning point, and extends indefinitely to one direction. A B C D A ray is named by using its beginning point with another point it contains. −! −! −−! −−! In the above, ray AB is the same ray as AC or AD. But ray BD is not the same −−! ray as AD. A (line) segment is a finite part of a line between two points, called its end points. A segment has a finite length. A B C D B C In the above, segment AD is not the same as segment BC Segment Addition Postulate: In a line segment, if points A; B; C are colinear and point B is between point A and point C, then AB + BC = AC You may look at the plus sign, +, as adding the length of the segments as numbers.
    [Show full text]
  • Foundations for Geometry
    Foundations for Geometry 1A Euclidean and Construction Tools 1-1 Understanding Points, Lines, and Planes Lab Explore Properties Associated with Points 1-2 Measuring and Constructing Segments 1-3 Measuring and Constructing Angles 1-4 Pairs of Angles 1B Coordinate and Transformation Tools 1-5 Using Formulas in Geometry 1-6 Midpoint and Distance in the Coordinate Plane 1-7 Transformations in the Coordinate Plane Lab Explore Transformations KEYWORD: MG7 ChProj Representations of points, lines, and planes can be seen in the Los Angeles skyline. Skyline Los Angeles, CA 2 Chapter 1 Vocabulary Match each term on the left with a definition on the right. 1. coordinate A. a mathematical phrase that contains operations, numbers, and/or variables 2. metric system of measurement B. the measurement system often used in the United States 3. expression C. one of the numbers of an ordered pair that locates a point on a coordinate graph 4. order of operations D. a list of rules for evaluating expressions E. a decimal system of weights and measures that is used universally in science and commonly throughout the world Measure with Customary and Metric Units For each object tell which is the better measurement. 5. length of an unsharpened pencil 6. the diameter of a quarter __1 __3 __1 7 2 in. or 9 4 in. 1 m or 2 2 cm 7. length of a soccer field 8. height of a classroom 100 yd or 40 yd 5 ft or 10 ft 9. height of a student’s desk 10. length of a dollar bill 30 in.
    [Show full text]
  • 08. Non-Euclidean Geometry 1
    Topics: 08. Non-Euclidean Geometry 1. Euclidean Geometry 2. Non-Euclidean Geometry 1. Euclidean Geometry • The Elements. ~300 B.C. ~100 A.D. Earliest existing copy 1570 A.D. 1956 First English translation Dover Edition • 13 books of propositions, based on 5 postulates. 1 Euclid's 5 Postulates 1. A straight line can be drawn from any point to any point. • • A B 2. A finite straight line can be produced continuously in a straight line. • • A B 3. A circle may be described with any center and distance. • 4. All right angles are equal to one another. 2 5. If a straight line falling on two straight lines makes the interior angles on the same side together less than two right angles, then the two straight lines, if produced indefinitely, meet on that side on which the angles are together less than two right angles. � � • � + � < 180∘ • Euclid's Accomplishment: showed that all geometric claims then known follow from these 5 postulates. • Is 5th Postulate necessary? (1st cent.-19th cent.) • Basic strategy: Attempt to show that replacing 5th Postulate with alternative leads to contradiction. 3 • Equivalent to 5th Postulate (Playfair 1795): 5'. Through a given point, exactly one line can be drawn parallel to a given John Playfair (1748-1819) line (that does not contain the point). • Parallel straight lines are straight lines which, being in the same plane and being • Only two logically possible alternatives: produced indefinitely in either direction, do not meet one 5none. Through a given point, no lines can another in either direction. (The Elements: Book I, Def.
    [Show full text]
  • Different Types of Loading on Right Angle Joints
    HIGH STRENGTH RIGHT ANGLE COMPOSITE JOINTS FOR CIVIL ENGINEERING APPLICATIONS Gerard M Van Erp, Fibre Composites Design and Development (FCDD), University of Southern Queensland (USQ), Toowoomba, Queensland, 4350, Australia, SUMMARY: This paper presents initial results of an ongoing research project that is concerned with the development of strong right angle composite joints for civil engineering applications. Experimental, analytical and numerical results for four different types of monocoque right angle joints loaded in pure bending will be presented. It will be shown that a significant increase in load carrying capacity can be obtained through small changes to the inside corner of the joints. The test results also demonstrate that there is reasonable correlation between the failure mode of the joints and the location and severity of the stress concentrations predicted by the FE method. KEYWORDS: Joining, Civil Application, Testing, Structures. INTRODUCTION Plane frames are common load carrying elements in buildings and civil engineering structures. These frames are combinations of beams and columns, rigidly jointed at right angles. The rigid joints transfer forces and moments between the horizontal and the vertical members (Fig. 1a) and play a major role in resisting lateral loads (Fig. 1b). Figure 1a: Frame subjected to vertical loading b: Frame subjected to horizontal loading Figure 1c: Different types of loading on right angle joints Depending on the type of loading and on the location of the joint in the frame, the joint will be subjected to a closing action (Fig. 1: case A and B) or an opening action (Fig. 1: case C). This paper will concentrate on joints with an opening action only.
    [Show full text]
  • Math 1330 - Section 4.1 Special Triangles
    Math 1330 - Section 4.1 Special Triangles In this section, we’ll work with some special triangles before moving on to defining the six trigonometric functions. Two special triangles are 30 − 60 − 90 triangles and 45 − 45 − 90 triangles. With little additional information, you should be able to find the lengths of all sides of one of these special triangles. First we’ll review some conventions when working with triangles. We label angles with capital letters and sides with lower case letters. We’ll use the same letter to refer to an angle and the side opposite it, although the angle will be a capital letter and the side will be lower case. In this section, we will work with right triangles. Right triangles have one angle which measures 90 degrees, and two other angles whose sum is 90 degrees. The side opposite the right angle is called the hypotenuse, and the other two sides are called the legs of the triangle. A labeled right triangle is shown below. B c a A C b Recall: When you are working with a right triangle, you can use the Pythagorean Theorem to help you find the length of an unknown side. In a right triangle ABC with right angle C, 2 2 2 a + b = c . Example: In right triangle ABC with right angle C, if AB = 12 and AC = 8, find BC. 1 Special Triangles In a 30 − 60 − 90 triangle, the lengths of the sides are proportional. If the shorter leg (the side opposite the 30 degree angle) has length a, then the longer leg has length 3a and the hypotenuse has length 2a.
    [Show full text]
  • Circles JV Practice 1/26/20 Matthew Shi
    Western PA ARML January 26, 2020 Circles JV Practice 1/26/20 Matthew Shi 1 Warm-up Questions 1. A square of area 40 is inscribed in a semicircle as shown: Find the radius of the semicircle. 2. The number of inches in the perimeter of an equilateral triangle equals the number of square inches in the area of its circumscribed circle. What is the radius, in inches, of the circle? 3. Two distinct lines pass through the center of three concentric circles of radii 3, 2, and 1. The 8 area of the shaded region in the diagram is 13 of the area of the unshaded region. What is the radian measure of the acute angle formed by the two lines? (Note: π radians is 180 degrees.) 4. Let C1 and C2 be circles of radius 1 that are in the same plane and tangent to each other. How many circles of radius 3 are in this plane and tangent to both C1 and C2? 1 Western PA ARML January 26, 2020 2 Problems 1. Each of the small circles in the figure has radius one. The innermost circle is tangent to the six circles that surround it, and each of those circles is tangent to the large circle and to its small-circle neighbors. Find the area of the shaded region. 2. A square has sides of length 10, and a circle centered at one of its vertices has radius 10. What is the area of the union of the regions enclosed by the square and the circle? 3.
    [Show full text]