Elisa Izaurralde 1959–2018

Total Page:16

File Type:pdf, Size:1020Kb

Elisa Izaurralde 1959–2018 obituary Elisa Izaurralde 1959–2018 lisa Izaurralde, a leading RNA biologist established key roles for SMG proteins in and director of the Department of mRNA surveillance and delved into the EBiochemistry at the Max Planck molecular architecture of complexes that Institute for Developmental Biology in regulate mRNA translation by modulating Tübingen, Germany, passed away on the activity of the cytoplasmic cap-binding 30 April at the age of 58 after battling cancer. protein eIF4E. Elisa was born in Montevideo, Uruguay, Elisa’s institute not only excelled in and moved to the University of Geneva to its sustained, top-level productivity, but study biochemistry. She pursued a PhD in it also became an ideal training ground molecular biology studying the interaction for students, postdocs and junior faculty. of DNA with nuclear protein scaffolds, Elisa made it a priority to dedicate time under the guidance of Ulrich Laemmli. She to mentoring, conveying high standards then moved to Heidelberg to a postdoctoral of excellence and a supportive, can-do position in the laboratory of Iain Mattaj at attitude that made her a true role model. the European Molecular Biology Laboratory We remember how, without exception, (EMBL). There, she contributed seminal every student and postdoc from Elisa’s work leading to the identification of the lab would give outstandingly crisp, nuclear cap-binding complex (CBC), a Credit: Carolin Thiersch Photography convincing, perfectly prepared and protein heterodimer that recognizes the professionally delivered presentations at m7GpppG cap that is added to the 5′ end of An early highlight of this work was the international meetings, while her fellows eukaryotic RNA polymerase II transcripts. discovery and characterization of the cherished Elisa’s generosity with time and Further efforts established roles for the exon junction complex in collaboration her empowering smile. Unsurprisingly, CBC in pre-mRNA splicing and in nucleo- with Hervé Le Hir, Melissa Moore and many went on themselves to successful cytoplasmic export of mRNAs and uridylate- Lynne Maquat. This seminal discovery careers in research. rich small nuclear RNAs, and uncovered led to a long-term collaboration with the Elisa was a force of nature, passionately an elegant mechanism for coupling of RNA structural biologist Elena Conti, who had motivated to dissect molecular mechanisms, export from and protein import to the also established her group at EMBL. Their scientifically rigorous, intellectually fearless nucleus, mediated by importins. collaboration unearthed major insights into and wholeheartedly dedicated to her work, When Elisa returned to the University the molecular basis of mRNA transport, her group and her collaborators. She was also of Geneva to start her own independent the function of the exon junction complex a generous supporter of her field and beyond, research group, she remained fascinated by and mechanisms of mRNA degradation, serving on numerous advisory boards of the question of how mRNAs are exported especially by nonsense-mediated decay. institutes, funding agencies and journals. from the nucleus to the cytoplasm, at the Elisa and Elena jointly received the She was an elected member of the European time a largely unexplored area. Her detailed Leibniz Prize, Germany’s highest research Molecular Biology Organization (EMBO), of knowledge of the literature, an analytical award, in 2008 for the “exceptional value, the German Academy of Sciences Leopoldina mind and her intuition led her to use a originality and elegance of the mechanisms and a former member of the board of sequence motif involved in the export of identified.” Elisa also developed an interest directors of the RNA Society. For her viral mRNAs as a probe to investigate the in microRNA-mediated regulation and outstanding contributions, she also received mechanisms underlying the export process. quickly became a point of reference in the Ernst Jung Prize for Medicine in 2012. This triggered the discovery of TAP, a this particularly complex field. Following Elisa lived and breathed science. Her human protein that mediates mRNA export. her genuine thirst for mechanistic scientific contributions will have a long- TAP interacts with other RNA-binding understanding and her uncompromising lasting impact, as they fill many wonderful proteins as well as with nucleoporins, thus attention to detail, her group made pages of the fascinating, life-like saga offering a paradigm for how an export factor landmark discoveries on the role of the that mRNA molecules follow from their negotiates interactions between mRNP CCR4–NOT deadenylase complex and transcriptional birth to decay. She will be complexes and the nuclear pore. This was the DCP1–DCP2 decapping complex in sorely missed by her family, friends and by a defining moment in Elisa’s career, which microRNA-induced mRNA turnover. a legion of colleagues around the world, and swiftly made her a leader in the field of RNA After highly productive years at EMBL, remembered for her brilliant intellect and trafficking. The work already carried her where she was promoted to senior scientist her warm, winning smile. ❐ signature of a multidisciplinary approach, and coordinator of the Gene Expression strong biochemistry, rigorous functional Programme, Elisa was recruited as scientific Matthias W. Hentze1* and Juan Valcárcel2 dissection of mechanisms and attention to director to the Max Planck Institute for 1Director of the European Molecular Biology detail, which remained a constant of her Developmental Biology in Tübingen in Laboratory (EMBL), Heidelberg, Germany. 2President scientific endeavors. 2005. There, she built a widely admired of the RNA Society, Center for Genomic Regulation, When Elisa joined the Gene Expression Department of Biochemistry, integrating Universitat Pompeu Fabra, Barcelona, Spain. Programme at EMBL as a group leader molecular, structural and systems biology *e-mail: [email protected] in 1999, she naturally expanded her approaches to unravel particularly intricate interests into other aspects of mRNA questions in translational repression and Published online: 18 June 2018 metabolism and their interconnections. mRNA decay. Research at this department https://doi.org/10.1038/s41594-018-0081-1 NATURE STRUCTURAL & MOLECULAR BIOLOGY | VOL 25 | JULY 2018 | 547 | www.nature.com/nsmb 547.
Recommended publications
  • EMBC Annual Report 2007
    EMBO | EMBC annual report 2007 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION | EUROPEAN MOLECULAR BIOLOGY CONFERENCE EMBO | EMBC table of contents introduction preface by Hermann Bujard, EMBO 4 preface by Tim Hunt and Christiane Nüsslein-Volhard, EMBO Council 6 preface by Marja Makarow and Isabella Beretta, EMBC 7 past & present timeline 10 brief history 11 EMBO | EMBC | EMBL aims 12 EMBO actions 2007 15 EMBC actions 2007 17 EMBO & EMBC programmes and activities fellowship programme 20 courses & workshops programme 21 young investigator programme 22 installation grants 23 science & society programme 24 electronic information programme 25 EMBO activities The EMBO Journal 28 EMBO reports 29 Molecular Systems Biology 30 journal subject categories 31 national science reviews 32 women in science 33 gold medal 34 award for communication in the life sciences 35 plenary lectures 36 communications 37 European Life Sciences Forum (ELSF) 38 ➔ 2 table of contents appendix EMBC delegates and advisers 42 EMBC scale of contributions 49 EMBO council members 2007 50 EMBO committee members & auditors 2007 51 EMBO council members 2008 52 EMBO committee members & auditors 2008 53 EMBO members elected in 2007 54 advisory editorial boards & senior editors 2007 64 long-term fellowship awards 2007 66 long-term fellowships: statistics 82 long-term fellowships 2007: geographical distribution 84 short-term fellowship awards 2007 86 short-term fellowships: statistics 104 short-term fellowships 2007: geographical distribution 106 young investigators 2007 108 installation
    [Show full text]
  • ANNUAL REPORT 2010 Contents
    ANNUAL REPORT 2010 Contents I. Overviews ...............................................................................................................3 Year 2010 in review, Director of FIMM ............................................................................. 3 Views from the former and current Chair of the Board ...................................................5 II. FIMM Launch Event ................................................................................................ 6 III. How is the Nordic EMBL Partnership build-up progressing in Oslo and Umeå? ..........7 IV. Academician of Science, Professor Leena Peltonen-Palotie in memoriam .............. 8 V. Research ................................................................................................................ 10 Human Genomics ..........................................................................................................10 Medical Systems Biology and Translational Research ..................................................... 14 Research collaborations and highlights ..........................................................................21 Personalized medicine of cancer becoming a reality.......................................................25 Doctoral Training ...........................................................................................................26 VI. Technology Centre .................................................................................................28 Genomics Unit ..............................................................................................................28
    [Show full text]
  • IST Annual Report 2019
    Annual Report 2019 IST Austria administrative and The people of IST Austria technical support staff by nationality Austria 59.4% Nationalities on campus Germany 5.6% Hungary 3.1% Poland 2.5% Romania 2.5% Scientists as well as administrative and technical support staff come Italy 2.1% Russia 1.7% from all over the world to conduct and back research at IST Austria. Czech Republic 1.4% As of December 31, 2019, a total of 72 nationalities were represented India 1.4% Slovakia 1.4% on campus. Spain 1.4% UK 1.4% Other 16.1% North America Europe Asia Canada Albania Italy Afghanistan Cuba Andorra Latvia Bangladesh El Salvador Armenia Lithuania China Mexico Austria Luxembourg South Korea USA Belarus Macedonia India Belgium Malta Iran Bosnia and Netherlands Israel Herzegovina Norway Japan Bulgaria Poland Jordan Croatia Portugal Kazakhstan Cyprus Romania Lebanon Czech Republic Serbia Mongolia Denmark Slovakia Philippines Finland Slovenia Russia France Spain Singapore Georgia Sweden Syria Germany Switzerland Vietnam Greece Turkey Hungary UK Ireland Ukraine Africa Egypt Kenya IST Austria scientists by nationality Libya Austria 14.7% Nigeria Germany 10.9% South America Italy 7.4% Argentina India 5.9% Russia 4.7% Brazil Slovakia 4.1% Chile China 4.1% Colombia Hungary 3.7% Peru Spain 3.3% Uruguay USA 3.1% Czech Republic 2.9% UK 2.4% Oceania Other 32.8% Australia Content 2 HAPPY BIRTHDAY! 40 RESEARCH 4 Foreword by the president 42 Biology 5 Board member voices 44 Computer science 6 “An Austrian miracle” 46 Mathematics A year of celebration 48 Neuroscience
    [Show full text]
  • Dissertation
    Regulation of gene silencing: From microRNA biogenesis to post-translational modifications of TNRC6 complexes DISSERTATION zur Erlangung des DOKTORGRADES DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der Fakultät Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von Johannes Danner aus Eggenfelden im Jahr 2017 Das Promotionsgesuch wurde eingereicht am: 12.09.2017 Die Arbeit wurde angeleitet von: Prof. Dr. Gunter Meister Johannes Danner Summary ‘From microRNA biogenesis to post-translational modifications of TNRC6 complexes’ summarizes the two main projects, beginning with the influence of specific RNA binding proteins on miRNA biogenesis processes. The fate of the mature miRNA is determined by the incorporation into Argonaute proteins followed by a complex formation with TNRC6 proteins as core molecules of gene silencing complexes. miRNAs are transcribed as stem-loop structured primary transcripts (pri-miRNA) by Pol II. The further nuclear processing is carried out by the microprocessor complex containing the RNase III enzyme Drosha, which cleaves the pri-miRNA to precursor-miRNA (pre-miRNA). After Exportin-5 mediated transport of the pre-miRNA to the cytoplasm, the RNase III enzyme Dicer cleaves off the terminal loop resulting in a 21-24 nt long double-stranded RNA. One of the strands is incorporated in the RNA-induced silencing complex (RISC), where it directly interacts with a member of the Argonaute protein family. The miRNA guides the mature RISC complex to partially complementary target sites on mRNAs leading to gene silencing. During this process TNRC6 proteins interact with Argonaute and recruit additional factors to mediate translational repression and target mRNA destabilization through deadenylation and decapping leading to mRNA decay.
    [Show full text]
  • The GW182 Protein Family in Animal Cells: New Insights Into Domains Required for Mirna-Mediated Gene Silencing
    Downloaded from rnajournal.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The GW182 protein family in animal cells: New insights into domains required for miRNA-mediated gene silencing ANA EULALIO, FELIX TRITSCHLER, and ELISA IZAURRALDE Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tu¨bingen, Germany ABSTRACT GW182 family proteins interact directly with Argonaute proteins and are required for miRNA-mediated gene silencing in animal cells. The domains of the GW182 proteins have recently been studied to determine their role in silencing. These studies revealed that the middle and C-terminal regions function as an autonomous domain with a repressive function that is independent of both the interaction with Argonaute proteins and of P-body localization. Such findings reinforce the idea that GW182 proteins are key components of miRNA repressor complexes in metazoa. Keywords: Argonaute; GW182; miRNAs; mRNA decay; P-bodies; RBD; RRM; TNRC6A INTRODUCTION are conserved in diverse organisms (for review, see Carthew and Sontheimer 2009; Kim et al. 2009). Among proteins MicroRNAs are genome-encoded small RNAs that post- that play a general role, those in the GW182 family have transcriptionally regulate gene expression and play critical emerged as key components of miRNA repressive com- roles in a wide range of important biological processes plexes in animal cells (for review, see Ding and Han 2007; including cell growth, division and differentiation, and Eulalio et al. 2007a, 2008a). organism metabolism and development. About 500–1000 The precise molecular function of GW182 proteins in the miRNA genes exist in vertebrates and plants, and 100 in miRNA pathway is not fully understood; yet, recent studies invertebrates, and each miRNA is predicted to have target have provided new insights into their role in silencing sites in hundreds of mRNAs, suggesting that miRNAs (Chekulaeva et al.
    [Show full text]
  • Awarded the 2014 Louis-Jeantet Prize for Medicine
    PRESS RELEASE Geneva, January 21, 2014 2014 LOUIS-JEANTET PRIZE FOR MEDICINE The 2014 LOUIS-JEANTET PRIZE FOR MEDICINE is awarded to the Italian biochemist Elena Conti, Director of the Department of Structural Cell Biology at the Max-Planck Institute of Biochemistry in Munich (Germany) and to Denis Le Bihan, the French medical doctor, physicist and Director of NeuroSpin, an institute at the French Nuclear and Renewable Energy Commission (CEA) at Saclay near Paris. The LOUIS-JEANTET FOUNDATION grants the sum of CHF 700'000 for each of the two 2014 prizes, of which CHF 625'000 is for the continuation of the prize-winner's work and CHF 75’000 for their personal use. THE PRIZE-WINNERS are conducting fundamental biological research which is expected to be of considerable significance for medicine. ELENA CONTI is awarded the 2014 Louis-Jeantet Prize for Medicine for her important contributions to understanding the mechanisms governing ribonucleic acid (RNA) quality, transport and degradation. In order to function properly, our cells need to degrade macromolecules that are faulty or no longer needed. The biochemist deciphered at the level of atomic resolution how faulty RNAs are recognized and eliminated. Notably, her group deciphered the three-dimensional architecture and molecular mechanisms of the exosome, a multiprotein complex that recognizes and degrades RNAs. The work revealed that several principles of the mechanism of this essential nano-machine are conserved in different forms of life. Elena Conti will use the prize money to conduct further research into the structure and regulation of the exosome. DENIS LE BIHAN is awarded the 2014 Louis-Jeantet Prize for Medicine for the development of a new imaging method that has revolutionized the diagnosis and treatment of strokes.
    [Show full text]
  • New Heads of Units for EMBL Heidelberg Council
    40 EMBL August 2007 &Newslettercetera of the European Molecular Biology Laboratory Council Meeting: Australia to join as associate member state Delegates at this summer’s EMBL Council meeting in Hamburg agreed that Australia will become EMBL’s first associate member state. The associate membership is planned to officially start in January next year and will initially last for seven years. Other news from the meeting includes Luxembourg’s ratification to become EMBL’s 20th full member state, the appointment of Anne Ephrussi as the new Unit Coordinator for Developmental Biology, Detlev Arendt’s promotion to Senior Scientist and much more. pages 2 and 3 New heads of units for EMBL Heidelberg Following the departure at the end of last year of Structural and Computational Biology Unit coordi- nator Luis Serrano to the Center for Genomic Regulation in Barcelona, former Deputy Head of EMBL Grenoble Christoph Müller (right) arrived at EMBL Heidelberg at the start of August to fill his shoes as Joint Coordinator alongside Peer Bork. In addition, Anne Ephrussi has been appointed as the new Unit Coordinator for Developmental Biology. Inside, both talk about their plans for the units. pages 2 and 3 EMBL-EBI throws open the doors to training facilities Next time you pay a visit to EMBL-EBI, take a look at their new IT training suite, part of the newly com- pleted East Wing. It’s where visitors will receive tuition in the EBI’s bioinformatics resources at its Genome Campus location for the first time. With 40 permanent workstations and the option to dou- ble the room’s capacity for an additional 40 laptop-based users, the state-of-the-art suite also features touchscreen audio-visual controls, window blinds and lights.
    [Show full text]
  • CV Elena Conti
    Curriculum Vitae Prof. Dr. Elena Conti Name: Elena Conti Foto: Axel Griesch Forschungsschwerpunkte: RNA Metabolismus, RNA Exosom, Exon-Junction-Komplex, Röntgenkristallographie, zelluläre Strukturbiologie, Kern-Zytoplasma-Transport, mRNA Abbau Elena Conti ist eine italienische Molekularbiologin am Max-Planck-Institut für Biochemie in Martinsried, die grundlegende neue Erkenntnisse zum RNA-Transport innerhalb der Zelle und zum RNA-Stoffwechsel entschlüsselte. Elena Conti begann ihre wissenschaftliche Laufbahn zunächst als Röntgenstrukturanalytikerin. Am Europäischen Laboratorium für Molekularbiologie (EMBL) in Heidelberg untersuchte sie dann vor allem die strukturellen Aspekte des RNA-Transports innerhalb der Zelle. Akademischer und beruflicher Werdegang seit 2007 Honorarprofessorin, Chemie und Pharmakologie, Ludwig-Maximilians-Universität München seit 2006 Direktorin und Wissenschaftliches Mitglied am Max-Planck-Institut für Biochemie, Abteilung Strukturelle Zellbiologie, Martinsried 1999 - 2007 Gruppenleiterin European Molecular Biology Laboratory (EMBL), Heidelberg, Structural and Computational Biology Unit 1999 - 2005 gemeinsame Berufung mit der Gene Expression Unit, EMBL 1997 - 1999 Postdoc-Aufenthalt bei Prof. Dr. John Kuriyan, The Rockefeller University, New York, USA 1996 Promotion bei Prof. Dr. Peter Brick, Imperial College of Science, Technology and Medicine, London, UK, „Crystal structure of firefly luciferase” 1992 - 1996 Doktorandin in Biophysik am Imperial College, London, UK Funktionen in wissenschaftlichen Gesellschaften
    [Show full text]
  • Program Information
    RNA 2021 The 26th Annual Meeting of the RNA Society On-line May 25–June 4, 2021 RNA 2021 On-Line The 26th Annual Meeting of the RNA Society CORRECT THE MESSAGE CHANGE A LIFETM Locanabio’s CORRECTXTM platform is pioneering a new class of gene therapies by correcting the th th May 25 – June 4 , 2021 dysfunctional RNA that causes a broad range of neurodegenerative, neuromuscular and retinal diseases Gene Yeo – University of California San Diego, USA Katrin Karbstein – Scripps Research Institute, Florida, USA V. Narry Kim – Seoul National University, South Korea Anna Marie Pyle – Yale University, USA Xavier Roca – Nanyang Technological University, Singapore Jörg Vogel – University of Würzburg, Germany RNA 2021 • On-line GENERAL INFORMATION Citation of abstracts presented during RNA 2021 On-line (in bibliographies or other) is strictly prohibited. Material should be treated as personal communication and is to be cited only with the expressed written ® consent of the author(s). The Sequel IIe System NO UNAUTHORIZED PHOTOGRAPHY OF ANY MATTER PRESENTED DURING THE ON-LINE MEETING: To encourage sharing of unpublished data at the RNA Society Annual Meeting, taking of photographs, screenshots, videos, and/or downloading or saving Reveal the functional e ects any material is strictly prohibited. of alternative splicing with USE OF SOCIAL MEDIA: The official hash tag of the 26th Annual Meeting of the RNA Society is full-length transcript sequencing #RNA2021. The organizers encourage attendees to tweet about the amazing science they experience during the meeting. However, please respect these few simple rules when using the #RNA2021 hash tag, or when talking about the meeting on Twitter and other social media platforms: 1.
    [Show full text]
  • A Role for the M9 Transport Signal of Hnrnp A1 in Mrna Nuclear Export Elisa Izaurralde,* Artur Jarmolowski,* Christina Beisel,* Iain W
    A Role for the M9 Transport Signal of hnRNP A1 in mRNA Nuclear Export Elisa Izaurralde,* Artur Jarmolowski,* Christina Beisel,* Iain W. Mattaj,* Gideon Dreyfuss,‡ and Utz Fischer‡ *European Molecular Biology Laboratory, D-69117 Heidelberg, Germany; and ‡Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Pennsylvania 19104-6148 Abstract. Among the nuclear proteins associated with snRNPs or proteins carrying a classical basic NLS. Pre- mRNAs before their export to the cytoplasm are the vious work demonstrated the existence of nuclear ex- abundant heterogeneous nuclear (hn) RNPs. Several of port factors specific for particular classes of RNA. In- these contain the M9 signal that, in the case of hnRNP jection of hnRNP A1 but not of a mutant protein A1, has been shown to be sufficient to signal both nu- lacking the M9 domain inhibited export of mRNA but clear export and nuclear import in cultured somatic not of other classes of RNA. This suggests that hnRNP cells. Kinetic competition experiments are used here to A1 or other proteins containing an M9 domain play a demonstrate that M9-directed nuclear import in Xeno- role in mRNA export from the nucleus. However, the pus oocytes is a saturable process. Saturating levels of requirement for M9 function in mRNA export is not M9 have, however, no effect on the import of either U identical to that in hnRNP A1 protein transport. he transport of macromolecules between the nu- function named variously pp15, p10, or NTF2 (Moore and cleus and cytoplasm is a bi-directional process.
    [Show full text]
  • Research at a Glance 2012
    European Molecular Biology Laboratory Research at a Glance 2012 European Molecular Biology Laboratory Research at a Glance 2012 www.embl.org Research at a Glance 2012 Contents Introduction 6 About EMBL 8 Career opportunities 10 EMBL Heidelberg, Germany Directors’ Research 12 Cell Biology and Biophysics Unit 18 Developmental Biology Unit 32 Genome Biology Unit 42 Structural and Computational Biology Unit 52 Core Facilities 66 EMBL-EBI, Hinxton, United Kingdom European Bioinformatics Institute 76 Bioinformatics Services 90 EMBL Grenoble, France Structural Biology 98 EMBL Hamburg, Germany Structural Biology 110 EMBL Monterotondo, Italy Mouse Biology 120 Index 130 | Research at a Glance 2012 | 5 “EMBL combines a critical mass of expertise and resources with organisational exibility, enabling us to keep pace with today’s biology.” – Iain Mattaj 6 | Research at a Glance 2012 | e vision of the nations which founded the European Molecular Biology Laboratory was to create a centre of excellence where Europe’s best brains would come together to conduct basic research in molecular biology and related elds. During the intervening decades, EMBL has grown and developed substantially, and its member states now number twenty-one, including the rst associate member state, Australia. Over the years, EMBL has become the agship of European molecular biology and has been continuously ranked as one of the top research institutes worldwide. EMBL is Europe’s only intergovernmental laboratory in the life sciences and as such its missions extend beyond performing cutting-edge research in molecular biology. It also oers services to Euro- pean scientists, most notably in the areas of bioinformatics and structural biology, provides advanced training to researchers at all levels, develops new technologies and instrumentation, and actively engages in technology transfer for the benet of scientists and society.
    [Show full text]
  • The Myth of Junk DNA
    The Myth of Junk DNA JoATN h A N W ells s eattle Discovery Institute Press 2011 Description According to a number of leading proponents of Darwin’s theory, “junk DNA”—the non-protein coding portion of DNA—provides decisive evidence for Darwinian evolution and against intelligent design, since an intelligent designer would presumably not have filled our genome with so much garbage. But in this provocative book, biologist Jonathan Wells exposes the claim that most of the genome is little more than junk as an anti-scientific myth that ignores the evidence, impedes research, and is based more on theological speculation than good science. Copyright Notice Copyright © 2011 by Jonathan Wells. All Rights Reserved. Publisher’s Note This book is part of a series published by the Center for Science & Culture at Discovery Institute in Seattle. Previous books include The Deniable Darwin by David Berlinski, In the Beginning and Other Essays on Intelligent Design by Granville Sewell, God and Evolution: Protestants, Catholics, and Jews Explore Darwin’s Challenge to Faith, edited by Jay Richards, and Darwin’s Conservatives: The Misguided Questby John G. West. Library Cataloging Data The Myth of Junk DNA by Jonathan Wells (1942– ) Illustrations by Ray Braun 174 pages, 6 x 9 x 0.4 inches & 0.6 lb, 229 x 152 x 10 mm. & 0.26 kg Library of Congress Control Number: 2011925471 BISAC: SCI029000 SCIENCE / Life Sciences / Genetics & Genomics BISAC: SCI027000 SCIENCE / Life Sciences / Evolution ISBN-13: 978-1-9365990-0-4 (paperback) Publisher Information Discovery Institute Press, 208 Columbia Street, Seattle, WA 98104 Internet: http://www.discoveryinstitutepress.com/ Published in the United States of America on acid-free paper.
    [Show full text]