STS-115 Atlantis Manuel De La Mission

Total Page:16

File Type:pdf, Size:1020Kb

STS-115 Atlantis Manuel De La Mission STS-115 Atlantis Manuel de la mission LE MANUEL DE LA MISSION STS-115 Par Philippe VOLVERT SOMMAIRE I. Présentation de l’équipage II. Présentation de la mission III. Présentation de la navette spatiale Atlantis IV. Compte à rebours V. Procédures Abort VI. Procédures de retour Annexes A1: Fenêtre de lancement A2: Programme quotidien A3: Opportunités pour l’atterrissage A4: Sources A noter que toutes les heures présentes dans ce dossier sont en heure GMT. I. PRESENTATION DE L’EQUIPAGE Brent Ward Jr. JETT (commandant de bord) Né le 05 octobre 1958 à Pontiac dans l’état du Michigan. Il est marié mais n’a pas d’enfants. Diplômé Bachelier en science d’ingénierie aérospatiale à l’académie navale, maître ès science en ingénierie aéronautique de l’école US Naval Postgraduate School. Il rejoint le groupe des astronautes en mars 1992. A ce jour, il a effectué 3 missions: STS-72 sur Atlantis en tant que pilote (8 jours 22:01), STS-81 sur Atlantis comme pilote (10 jours 04:56), STS-97 sur Endeavour comme commandant de bord (10 jours 19:56). (Photo Nasa) Christopher John FERGUSON (pilote) Il est né le 01 septembre 1961 à Philadelphia en Pennsylvanie. Il est marié et père de 3 enfants. Diplômé Bachelier en ingénierie mécanique à l’Université de Drexel et maître ès science en ingénierie aéronautique de l’école US Naval Postgraduate School. Il a été sélectionné comme pilote dans le groupe des astronautes en juin 1998. STS-115 sera se première mission dans l’espace. (Photo Nasa) Joseph Richard TANNER (spécialiste de mission) Né le 21 janvier 1950 à Dannville dans l'état de l’Illinois. Diplômé Bachelier en science d’ingénierie mécanique à l’Université de l’Illinois. Avant de postuler comme astronaute, il travaillait à la Nasa comme ingénieur aérospatial et pilote. Il a été sélectionné comme astronaute en mars 1992. Depuis, il est allé à 3 reprises dans l’espace au cours des missions STS-66 (Atlantis) en novembre 1994, STS-82 (Atlantis) pour l’entretien du télescope Hubble en février 1997 et STS-97 sur Endeavour au cours de laquelle avait également participé Jett Brent. Il totale pour ses 3 missions 31 jours et 18:09 dans l’espace. (Photo Nasa) Daniel Christopher BURBANK (spécialiste de mission) Il est né le 27 juillet 1961 à Manchester dans le Connecticut. Il est marié et père de 2 enfants. Diplômé Bachelier en science d’ingénierie électrique à l’US Coast Guard Academy et possède une maîtrise en science aéronautique. Sélectionné pour faire partie du groupe 16 en mai 1996. Il a fait son baptême spatial à l’occasion de la mission STS-106 sur Atlantis en septembre 2000 qui a duré 11 jours 19 heures et 12 minutes. (Photo Nasa) Heidemarie Martha STEFANYSHYN-PIPER (spécialiste de mission). Heidemarie est née le 07 février 1963 dans la ville de St-Paul dans le Minnesota. Elle est mariée et mère d’un enfant. Diplômé Bachelière en science d’ingénierie mécanique au MIT. Elle fait partie du groupe 16 des astronautes comme Daniel Burbank. STS-115 sera sa première expérience dans l’espace. (Photo Nasa) Steven Glenwood MACLEAN (spécialiste de mission) Steven est de nationalité canadienne. Il est né à Ottawa dans l’état de l’Ontario le 14 décembre 1954. Il est marié et père de 3 enfants. Il est diplômé Bachelier en physique à l’Université de Tonroto. Sa sélection comme astronaute de l’agence spatiale canadienne remonte à décembre 1983. Il a effectué sa première mission sur Columbia en octobre 1992 (STS-52) qui a duré 9 jours 20:56 comme spécialiste de charge utile. Il avait été sélectionné pour une seconde mission Canex-2 prévue pour 1996 avant d’être annulée. STS-115 sera sa seconde mission dans l’espace. (Photo Nasa) II. PRESENTATION DE LA MISSION Numéro de vol: 116 Numéro de mission de la navette: STS-115 Numéro de mission pour l’ISS: 12A (19ème visite de la navette à l’ISS) Navette: OV-104 Atlantis Utilisation: 27 Secours: OV-103 Discovery (STS-301) à partir du 11/11/2006 Configuration pour STS-115: SSME: 2044, 2047, 2048 ET: ET-118 Software: OI-30 OMS gauche: LP04/27/F1 OMS droite: RP01/34/F1 RCS avant: FRC4/27/F1 OBSS: 201 RMS: 301 Arrivée au bâtiment OPF: 12/03/2006 Arrivée au bâtiment VAB: 20/07/2006 Arrivée sur pad: 02/08/2006 Pad: LC-39B Temps de la mission: 10 jours 20:16 Coordonnées de l’orbite: 300 km; 51,6° Objectifs de la mission: Avec STS-115, la navette renoue avec les missions d’assemblage de la station spatiale avec l’ajout d’un élément important puisqu’il s’agit du segment P3/P4 de la poutre principale qui comporte 2 jeux de panneaux solaires ainsi qu’un radiateur. Configuration de la soute d’Atlantis. 1 : Sas d’arrimage 2 : Bras d’inspection 3 : Segment P3/P4 4 : Bras de la navette (Photo CSA) Au quatrième jour de la mission, l’astronaute MacLean s’installera dans le poste de commande qui est dans le module Destiny. Avec le bras Canadarm 2, fixé sur Destiny, MacLean sortira le segment de la poutre P3/P4 de la soute d’Atlantis et le verrouillera sur le segment P1 de la poutre principale de la station. Dans les jours suivants, 3 sorties seront programmées pour brancher les connexions et déployer les panneaux. Au cours de l’EVA 1, les astronautes Tanner et Stefanyshyn-Piper brancheront les connecteurs qui permettront aux contrôleurs au sol d'alimenter les poutrelles en énergie quelques jours plus tard. Ils relâcheront les dispositifs d'immobilisation servant à protéger les panneaux solaires lors du lancement, ils prépareront l'articulation rotative SARJ et ils en retireront les verrous pour procéder à la première rotation des panneaux solaires. Grâce à cette articulation particulière, les panneaux pourront enfin pivoter et suivre le Soleil, ce qui permettra de maximiser la capacité de production d'énergie de la station. Le jour suivant, c’est au tour de l’équipe MacLean et Burbank d’effectuer une sortie. Ils retireront des revêtements thermiques, à installer des pièces de renfort et de support et à débloquer les nombreux verrous et pièces qui immobilisaient l'articulation rotative SARJ pour le lancement. Au 6ème jour, les panneaux solaires seront déployés et fourniront immédiatement l’énergie nécessaire au fonctionnement de la station spatiale. La dernière EVA est pour Tanner et Stefanyshyn-Piper. Ils prépareront la station orbitale en vue de la prochaine mission d'assemblage, la mission STS-116, actuellement prévue pour décembre 2006. Ils installeront une nouvelle antenne de transpondeur et ils dégageront une section des rails de la nouvelle poutrelle de sorte que la base mobile canadienne puisse l'utiliser. La base mobile, semblable à une plateforme ferroviaire, sert à transporter le Canadarm2 et d'autre équipement sur toute la longueur de la poutrelle principale de la station. La poutre en préparation au Kennedy Space Center en vue de son installation en vue de son transport sur le pas de tir où l’attend Atlantis. (Photo Nasa) Puissance : 128 kW Masse : 15,9 tonnes Panneaux solaires : 2 x 2 panneaux (cylindre à l’extrémité droite sur l’illustration) Taille d’une paire de panneaux solaires : 34 x 12 m Cellule solaire par panneau : 32 400 (en silicium) Radiateurs : composé de 7 panneaux de 1,8 x 3,6 m (carré blanc sur l’illustration) Configuration de l’ISS une fois l’assemblage du segment P3/P4 (en foncé) terminé. Les nouveaux panneaux sont ceux du bas. (Photo Nasa) Une paire de panneaux solaires déjà en place sur l’ISS. C’est ce même système qui équipe le segment P3/P4. (Photo Nasa) III. PRESENTATION DE LA NAVETTE SPATIALE ATLANTIS Atlantis est la quatrième des navettes à effectuer un vol dans l’espace. Elle fait partie d’une flotte de 6 engins que la NASA a construit. Elle comprend 5 navettes spatiales et 1 navette destinée aux essais au sol. Chacune des navettes possède un code d’identification. Columbia est l’OV-102 (Orbiter Vehicle-102). La flotte comprend également l’OV-103 Atlantis, l’OV-104 Atlantis et l’OV-105 Endeavour. Cette dernière a remplacé la navette Challenger, détruite en vol le 28 janvier 1986. Les 2 autres véhicules sont l’OV-101 Enterprise et l’OV-099 Challenger. Dans un premier temps, l’OV-101 devait compléter la flotte spatiale, tandis que l’OV-099 était destinée aux divers essais dont des tests d’atterrissage. Pour des raisons budgétaires, la NASA a décidé de modifier, non pas l’OV-101, mais l’OV-099, en cours de construction, pour les vols spatiaux. Le nom de baptême de la navette Atlantis est un hommage au bateau d’océanographie du Woods Hole Oceanographic Institute au Massachusetts des années 30 à 60. ETAPES DE SA CONSTRUCTION 29-01-1979: signature du contrat pour la construction de l’OV-104 Atlantis. 03-03-1980 : début de la construction du module équipage 1981: début de la fabrication du fuselage 13-06-1983: arrivée des ailes de chez Gruman 02-12-1983: début de l’assemblage final 10-04-1984 : finition de la navette 06-04-1985: sortie d’usine de Palmdale 09-04-1985 : arrivée d’Atlantis au Kennedy Space Center 31-07-1985 : préparation pour son vol inaugural STS-51J 29-08-1985 : transfert d’Atlantis sur le pas de tir 39A 12-09-1985 : test des moteurs principaux durant 22 secondes 03-10-1985 : lancement d’Atlantis pour son vol inaugural 18-10-1992 : Atlantis retourne chez son constructeur à Palmdale pour son premier gros entretien et pour l’installation d’un module d’arrimage en vue des missions en direction de la station orbitale russe Mir.
Recommended publications
  • Space Shuttle Era Fact Sheet
    National Aeronautics and Space Administration Space Shuttle Era Facts NASA’s shuttle fleet achieved numerous firsts and opened Enterprise was the first space shuttle, although it never up space to more people than ever before during the Space flew in space. It was used to test critical phases of landing and Shuttle Program’s 30 years of missions. other aspects of shuttle preparations. Enterprise was mounted The space shuttle, officially called the Space Transportation on top of a modified 747 airliner for the Approach and Landing System (STS), began its flight career with Columbia roaring off Tests in 1977. It was released over the vast dry lakebed at Launch Pad 39A at NASA’s Kennedy Space Center in Florida Edwards Air Force Base in California to prove it could glide and on April 12, 1981. land safely. That first mission verified the combined performance of Columbia, OV-102, was named after a sloop captained the orbiter vehicle (OV), its twin solid rocket boosters (SRBs), by Robert Gray, who on May 11, 1792, maneuvered his ship giant external fuel tank (ET) and three space shuttle main through dangerous inland waters to explore British Columbia engines (SSMEs). It also put to the test the teams and what are now the states of Washington and facts that manufactured, processed, launched and Oregon. Columbia was the first shuttle to fly into managed the unique vehicle system, which consists orbit on STS-1. Its first four missions were test of about 2 1/2 million moving parts. flights to show that the shuttle design was sound.
    [Show full text]
  • A Flexible Glass Produced in Space Shows Promise As a Catalyst For
    HYPERSONICS 36 Q&A 8 ARTIFICIAL INTELLIGENCE 26 Predicting bad vibes U.S. Sen. Jerry Moran on FAA, NASA Leaping from automation to autonomy SPARKING THE SPACE ECONOMY A fl exible glass produced in space shows promise as a catalyst for building an economy in space. PAGE 16 JANUARY 2020 | A publication of the American Institute of Aeronautics and Astronautics | aerospaceamerica.aiaa.org www.dspace.com SCALEXIO® – Fitting your needs SCALEXIO, the dSPACE real-time simulation technology for developing and testing embedded systems, is easily scalable to perfectly match the demands of your project – whatever your aims might be: Developing new control algorithms Testing single control units Control test rigs for actuators Integration tests of large, networked systems SCALEXIO always fits your needs – what are you aiming for? FEATURES | January 2020 MORE AT aerospaceamerica.aiaa.org An artist’s rendering of a potential moon base that would be constructed through 3D printing, which is considered an important technique for building an economy in space. European Space Agency 12 26 40 16 Dream Chaser’s Planes vs. cars Defending Earth new champion from asteroids Manufacturing While autonomous Janet Kavandi, a aircraft appear to A partnership between in space former astronaut be building on the governments and the and former director advances of nascent commercial A fi ber optic material called ZBLAN of NASA’s Glenn self-driving cars, space industry could be the product that jump-starts Research Center, operating in more would guarantee the dimensions carries the space economy. takes charge of Sierra reliability and rapid Nevada Corp.’s Space special challenges.
    [Show full text]
  • + STS-115 Press
    STS-121 Press Kit CONTENTS Section Page STS-115 MISSION OVERVIEW: SPACE STATION ASSEMBLY RESUMES................................ 1 STS-115 TIMELINE OVERVIEW ............................................................................................... 10 MISSION PRIORITIES............................................................................................................. 12 LAUNCH AND LANDING ........................................................................................................... 14 LAUNCH............................................................................................................................................... 14 ABORT-TO-ORBIT (ATO)...................................................................................................................... 14 TRANSATLANTIC ABORT LANDING (TAL)............................................................................................. 14 RETURN-TO-LAUNCH-SITE (RTLS)....................................................................................................... 14 ABORT ONCE AROUND (AOA)............................................................................................................... 14 LANDING ............................................................................................................................................. 14 MISSION PROFILE................................................................................................................... 15 STS-115 ATLANTIS CREW .....................................................................................................
    [Show full text]
  • STS-135: the Final Mission Dedicated to the Courageous Men and Women Who Have Devoted Their Lives to the Space Shuttle Program and the Pursuit of Space Exploration
    National Aeronautics and Space Administration STS-135: The Final Mission Dedicated to the courageous men and women who have devoted their lives to the Space Shuttle Program and the pursuit of space exploration PRESS KIT/JULY 2011 www.nasa.gov 2 011 2009 2008 2007 2003 2002 2001 1999 1998 1996 1994 1992 1991 1990 1989 STS-1: The First Mission 1985 1981 CONTENTS Section Page SPACE SHUTTLE HISTORY ...................................................................................................... 1 INTRODUCTION ................................................................................................................................... 1 SPACE SHUTTLE CONCEPT AND DEVELOPMENT ................................................................................... 2 THE SPACE SHUTTLE ERA BEGINS ....................................................................................................... 7 NASA REBOUNDS INTO SPACE ............................................................................................................ 14 FROM MIR TO THE INTERNATIONAL SPACE STATION .......................................................................... 20 STATION ASSEMBLY COMPLETED AFTER COLUMBIA ........................................................................... 25 MISSION CONTROL ROSES EXPRESS THANKS, SUPPORT .................................................................... 30 SPACE SHUTTLE PROGRAM’S KEY STATISTICS (THRU STS-134) ........................................................ 32 THE ORBITER FLEET ............................................................................................................................
    [Show full text]
  • Processing the Shuttle for Flight
    Processing When taking a road trip, it is important to plan ahead by making sure your vehicle is prepared for the journey. A typical road trip on Earth can be the Shuttle for routine and simple. The roadways are already properly paved, service Flight stations are available if vehicle repairs are needed, and food, lodging, and stores for other supplies can also be found. The same, however, could not be said for a Space Shuttle trip into space. The difficulties associated with Steven Sullivan space travel are complex compared with those we face when traveling here. Preparing the Shuttle for Flight Food, lodging, supplies, and repair equipment must be provided for within Ground Processing the space vehicle. Jennifer Hall Peter Nickolenko Vehicle preparation required a large amount of effort to restore the shuttle Jorge Rivera to nearly new condition each time it flew. Since it was a reusable vehicle Edith Stull Steven Sullivan with high technical performance requirements, processing involved a Space Operations Weather tremendous amount of “hands-on” labor; no simple tune-up here. Not only Francis Merceret was the shuttle’s exterior checked and repaired for its next flight, all Robert Scully components and systems within the vehicle were individually inspected and Terri Herst verified to be functioning correctly. This much detail work was necessary Steven Sullivan because a successful flight was dependent on proper vehicle assembly. Robert Youngquist During a launch attempt, decisions were made within milliseconds by equipment and systems that had to perform accurately the first time—there was no room for hesitation or error.
    [Show full text]
  • Manuel De La Mission
    thu|lsGklGshGtpzzpvu SOMMAIRE I. Présentations 1. Présentation de l’équipage .................................................................... 3 2. Présentation de la navette spatiale Endeavour ............................................ 7 II. Lancement 1. Fenêtre de lancement ........................................................................ 11 2. Compte à rebours .............................................................................. 12 3. Procédures Abort .............................................................................. 17 III. Mission 1. Présentation de la mission ................................................................... 19 2. Programme au quotidien ..................................................................... 23 3. Sorties extravéhiculaires ..................................................................... 25 IV. Atterrissage 1. Opportunités pour l’atterrissage ............................................................ 26 2. Procédures pour l’atterrissage .............................................................. 27 V. Sources 1. Sources .......................................................................................... 30 STS-127 – MANUEL DE LA MISSION I. PRESENTATIONS 1. PRESENTATION DE L’EQUIPAGE Mark L. POLANSKY (commandant) Date de naissance : 02/06/1956 Lieu de naissance : Paterson (New-Jersey) Statut familial : Marié et 1 enfant Etudes : Bachelier ingénieur en aéronautique et astronautique et possède une maîtrise en aéronautique et astronautique (Purdue University)
    [Show full text]
  • Table of Contents
    THE CAPE Military Space Operations 1971-1992 by Mark C. Cleary 45th Space Wing History Office Table of Contents Preface Chapter I -USAF Space Organizations and Programs Table of Contents Section 1 - Air Force Systems Command and Subordinate Space Agencies at Cape Canaveral Section 2 - The Creation of Air Force Space Command and Transfer of Air Force Space Resources Section 3 - Defense Department Involvement in the Space Shuttle Section 4 - Air Force Space Launch Vehicles: SCOUT, THOR, ATLAS and TITAN Section 5 - Early Space Shuttle Flights Section 6 - Origins of the TITAN IV Program Section 7 - Development of the ATLAS II and DELTA II Launch Vehicles and the TITAN IV/CENTAUR Upper Stage Section 8 - Space Shuttle Support of Military Payloads Section 9 - U.S. and Soviet Military Space Competition in the 1970s and 1980s Chapter II - TITAN and Shuttle Military Space Operations Section 1 - 6555th Aerospace Test Group Responsibilities Section 2 - Launch Squadron Supervision of Military Space Operations in the 1990s Section 3 - TITAN IV Launch Contractors and Eastern Range Support Contractors Section 4 - Quality Assurance and Payload Processing Agencies Section 5 - TITAN IIIC Military Space Missions after 1970 Section 6 - TITAN 34D Military Space Operations and Facilities at the Cape Section 7 - TITAN IV Program Activation and Completion of the TITAN 34D Program Section 8 - TITAN IV Operations after First Launch Section 9 - Space Shuttle Military Missions Chapter III - Medium and Light Military Space Operations Section 1 - Medium Launch Vehicle and Payload Operations Section 2 - Evolution of the NAVSTAR Global Positioning System and Development of the DELTA II Section 3 - DELTA II Processing and Flight Features Section 4 - NAVSTAR II Global Positioning System Missions Section 5 - Strategic Defense Initiative Missions and the NATO IVA Mission Section 6 - ATLAS/CENTAUR Missions at the Cape Section 7 - Modification of Cape Facilities for ATLAS II/CENTAUR Operations Section 8 - ATLAS II/CENTAUR Missions Section 9 - STARBIRD and RED TIGRESS Operations Section 10 - U.S.
    [Show full text]
  • Shuttle Landing and Flight Information Version 2.14
    Shuttle Landing and Flight Information Version 2.14 In Orbiter, landing the Space Shuttle takes significant practice in that it operates as a glider therefore there is very little room for error. When practicing landing select “Atlantis Landing Preparation” to practice the actual approach to the Kennedy Space Center for the competiton. If the Mission Commander would like to just practice their landing approach select the “Atlantis Final Approach” file which brings you directly to the final approach to runway 33 at Cape Canaveral. I. Landing Controls Reaction Control System (RCS) - this is found in the upper left corner of the HUD display in the “Engine Information” area. The RCS must be turned off to transfer controls to terrestrial flight and enable the yoke and rudder to operate properly. This is normally done at 35,000 meters. Joystick (yoke)–the joystick will operate as the control yoke of the aircraft, it governs the aircraft's roll and pitch by moving the ailerons left and right, and moves the elevators backwards or forward. Rudder pedals- the rudder pedals control yaw and move the rudders left or right. If your joystick does not come with a rudder control you can use the [1] and [3] key on the number pad for left and right rudder control. Trim Control - trim tabs are small surfaces connected to the trailing edge of a larger control surface on an aircraft. The trim control is used to manage aerodynamic forces and stabilize the aircraft in a particular desired attitude without the need for the operator to constantly apply a control force.
    [Show full text]
  • WHITE SANDS SPACE HARBOR AREA 1, CONTROL TOWER HAER No
    WHITE SANDS SPACE HARBOR AREA 1, CONTROL TOWER HAER No. NM-28-D (Space Shuttle Landing Facility Area 1, Control Tower) White Sands Missile Range Approximately 3,500 feet southwest of intersection of Runways 17/35 and 23/05 White Sands vicinity Doña Ana County New Mexico PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA Historic American Engineering Record National Park Service U.S. Department of the Interior Intermountain Regional Office 12795 Alameda Parkway Denver, CO 80225-0287 HISTORIC AMERICAN ENGINEERING RECORD WHITE SANDS SPACE HARBOR AREA 1 (Space Shuttle Landing Facility Area 1, Control Tower) HAER No. NM-28-D Location: White Sands Missile Range Approximately 3,500ʹ southeast from intersection of Runways 17/35 and 23/05 White Sands vicinity Doña Ana County New Mexico U.S.G.S. 7.5 Minute Las Cruces, New Mexico, Quadrangle, Universal Transverse Mercator Coordinates: E 32.93827 N 106.41034 Zone 13S, NAD 1983 Construction: 1979 Architect: Dennis G. Perrin, NASA WSTF engineer Builder: Not known Present Owner: Commander, U.S. Army White Sands Missile Range, New Mexico 88002-5018 Present Use: Vacant Significance: The Air Traffic Control Tower, commonly known as the “Control Tower,” was an essential component of the White Sands Space Harbor (WSSH) from 1976-2011. The Control Tower has a direct association with the U.S. Space Shuttle Program (SSP) as the site of the landing of Space Transportation System (STS)-3 Columbia in March 1982; this is the only STS landing to take place outside Edwards Air Force Base in California and Kennedy Space Center in Florida. The Control Tower is considered to have national significance and is eligible for listing in the National Register of Historic Places (NRHP) under Criterion A for its association with the NASA SSP with a period of significance of 1976-2011.
    [Show full text]
  • Naval Space NAVEDTRA 14168A
    NONRESIDENT TRAINING COURSE Naval Space NAVEDTRA 14168A Notice: NETPDTC is no longer responsible for the content accuracy of the NRTCs. For content issues, contact the servicing Center of Excellence: Center for Surface Combat System (CSCS); (540) 284-1061 or DSN: 249-1061. DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. PREFACE About this course: This is a self-study course. By studying this course, you can improve your professional/military knowledge, as well as prepare for the Navywide advancement-in-rate examination. It contains subject matter about day- to- day occupational knowledge and skill requirements and includes text, tables, and illustrations to help you understand the information. An additional important feature of this course is its reference to useful information in other publications. The well-prepared Sailor will take the time to look up the additional information. History of the course: Jan 2002: Original edition released. Jun 2003: Administrative update released. Technical content was not reviewed or revised. POINTS OF CONTACT ADDRESS This course was developed by the Naval Space COMMANDER Command. Questions regarding the content NAVAL SPACE COMMAND should be directed to: CODE VN7121 E-mail: [email protected] 5280 4TH STREET Phone: DAHLGREN, VA 22448-5300 Comm: (540) 653-5151 DSN: 249-5151 FAX: (540) 249-2949 NAVSUP Logistics Tracking Number 0504-LP-101-0610 TABLE OF CONTENTS CHAPTER PAGE 1. The Navy in Space ................................................................................................
    [Show full text]
  • Hubble Space Telescope Specifications
    This document is from the collections at the Dole Archives, University of Kansas http://dolearchives.ku.edu SPACE SHUTTLE MISSION STS-31 PRESS KIT APRIL 1990 Page 1 of 24 This document is from the collections at the Dole Archives, University of Kansas http://dolearchives.ku.edu PUBLIC AFFAIRS CONTACTS Ed Campion Office of Space Flight Kyle Herring Johnson NASA Headquarters, Washington, D.C. Space Center, Houston, Texas (Phone: 202/453-8536) (Phone: 713/483-5111) Paula Cleggett-Haleim Dave Drachlis/Jerry Berg Marshall Office of Space Science and Applications Space Flight Center, Huntsville, Ala. NASA Headquarters, Washington, D.C. (Phone: 205/544-0034) (Phone: 202/453-1548) Myron Webb Barbara Selby Stennis Space Center, Bay St. Louis, Miss. Office of Commercial Programs (Phone: 601/688-3341) NASA Headquarters, Washington, D.C. (Phone: 202/453-2927) Nancy Lovato Ames-Dryden Flight Research Facility, Edwards, Calif. Dwayne Brown (Phone: 805/258-8381) Office of Space Operations NASA Headquaters, Washington, D.C. Robert J. MacMillin Jet Propulsion (Phone: 202/453-8956) Laboratory, Pasadena, Calif. (Phone: 818/354-5011) Lisa Malone Kennedy Space Center, Fla. Jim Elliott (Phone: 407/867-2468) Goddard Space Flight Center, Greenbelt, Md. (Phone: 301/286-6256) Page 2 of 24 CONTENTS GENERAL RELEASE ............................................................ 1 SPACE TELESCOPE OPERATIONS CONTROL ............... 18 GENERAL INFORMATION .................................................... 2 SPACE TELESCOPE SCIENCE INSTITUTE ...................... 18 STS-31 QUICK LOOK ...........................................................3 EUROPEAN COORDINATING FACILITY ........................... 20 SUMMARY OF MAJOR ACTIVITIES .................................... 3 HUBBLE SPACE TELESCOPE SPECIFICATIONS ............ 20 TRAJECTORY SEQUENCE OF EVENTS ........................... .4 FUNCTIONAL DESCRIPTION OF HST OPERATIONS ...... 21 SPACE SHUTTLE ABORT MODES ...................................... 4 SCIENCE QUESTIONS HST WILL HELP ANSWER .........
    [Show full text]
  • (Space Shuttle Landing Facility Area 1, Waterhole) White Sands Miss
    WHITE SANDS SPACE HARBOR AREA 1, WATERHOLE HAER No. NM-28-T (Space Shuttle Landing Facility Area 1, Waterhole) White Sands Missile Range West corner of Runway 17/35, approximately 4,000 feet from Range Road 10 White Sands vicinity Doña Ana County New Mexico PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA Historic American Engineering Record National Park Service U.S. Department of the Interior Intermountain Regional Office 12795 Alameda Parkway Denver, CO 80225-0287 HISTORIC AMERICAN ENGINEERING RECORD WHITE SANDS SPACE HARBOR AREA 1, WATERHOLE (Space Shuttle Landing Facility Area 1, Waterhole) HAER No. NM-28-T Location: White Sands Missile Range West corner of Runway 17/35, approximately 4,000 feet from Range Road 10 White Sands vicinity Doña Ana County New Mexico U.S.G.S. 7.5 Minute Las Cruces, New Mexico, Quadrangle, Universal Transverse Mercator Coordinates (center of runways): E 32.944408 N 106.41993 Zone 13S, NAD 1983 Construction: 1988 Architect: Not known Builder: Not known Present Owner: Commander, U.S. Army White Sands Missile Range, New Mexico 88002-5018 Present Use: Vacant Significance: The Waterhole was a component of the White Sands Space Harbor (WSSH) from 1988-2011. Playing a minor support role at WSSH, this structure is a non-contributing resource within the WSSH Shuttle Landing Facility District, which is eligible for listing in the National Register of Historic Places (NRHP) under Criterion A for its association with the NASA Space Shuttle Program (SSP) with a period of significance of 1976-2011. Because the district achieved significance within the past fifty years, Criterion Consideration G also applies.
    [Show full text]