Space Shuttle - Wikipedia Page 1 of 11

Total Page:16

File Type:pdf, Size:1020Kb

Space Shuttle - Wikipedia Page 1 of 11 Space Shuttle - Wikipedia Page 1 of 11 Space Shuttle Da Wikipedia, l'enciclopedia libera. Lo Space Transportation System,[1] in sigla STS, comunemente noto come Space Shuttle,[2] anche abbreviato in Shuttle, è un modello di navetta Space Shuttle spaziale della NASA, l'ente governativo degli Stati Uniti responsabile dei programmi spaziali. Lo Space Shuttle è l'unico modello di veicolo spaziale degli Stati Uniti adibito al trasporto umano attualmente in attività. La sua particolarità è la parziale riutilizzabilità, è stato infatti progettato per effettuare in sicurezza circa un centinaio di voli spaziali sostituendo solo alcune parti ausiliarie. Lo sviluppo e le missioni spaziali dello Space Shuttle sono gestite dal Programma Space Shuttle. Indice 1 Storia 2 Impieghi 3 Descrizione 3.1 Dati tecnici 4 Esemplari costruiti 4.1 Statistiche di volo 5 Profilo di missione 5.1 Lancio 5.2 Rientro e atterraggio 6 Procedure per il lancio 7 Procedure per l'atterraggio Lo Space Shuttle Discovery decolla nella 8 Cancellazione della missione missione STS-120. 8.1 Siti di atterraggio Informazioni 9 Lo Shuttle in retrospettiva Navetta con equipaggio Funzione 10 Il futuro dello Shuttle parzialmente riutilizzabile 11 Note United Space Alliance: 12 Voci correlate Thiokol/Boeing (SRB) 13 Altri progetti Lockheed Martin (Martin Produttore 14 Collegamenti esterni Marietta) - (ET) Rockwell International (Orbiter) Storia Nazione di Stati Uniti d'America origine Per approfondire, vedi la voce Programma Space Shuttle. Dimensioni Altezza 56.1 m Diametro 8.7 m Lo Shuttle viene varato il 5 gennaio 1972 quando il Presidente Richard Massa 2 029 203 kg Nixon annuncia lo sviluppo di una navetta spaziale riutilizzabile e a basso Stadi 2 costo. Capacità Carico utile 24 400 kg Il progetto è ridimensionato per problemi di bilancio e ciò nonostante viene verso LEO sviluppato rapidamente e nel corso di alcuni anni sono pronti i prototipi. Carico utile verso 3 810 kg Tra questi il primo orbiter completo, inizialmente chiamato Constitution, poi GTO diventato Enterprise in seguito a pressanti richieste dei fan del telefilm Star Cronologia dei Lanci Trek, che scrissero in massa alla Casa Bianca. L'Enterprise è pronto il 17 Stato Attivo settembre 1976 e viene usato per una serie di test di atterraggio che hanno LC-39, Kennedy Space Center successo e dimostrano la bontà del progetto. Basi di Lancio SLC-6, Vandenberg AFB (non utilizzata) La prima navetta Shuttle messa in opera e costruita a Palmdale, California, è Lanci Totali 132 il Columbia, consegnato al Kennedy Space Center il 25 marzo 1979 e Successi 131 lanciato per la prima volta il 12 aprile 1981 con un equipaggio di due 1 (incidente fatale durante il Fallimenti uomini. Il Challenger viene consegnato nel luglio del 1982, il Discovery nel lancio) novembre del 1983, e l'Atlantis nell'aprile del 1985. Il Challenger è vittima 1 (incidente fatale durante il Altro di un drammatico incidente in fase di lancio nel gennaio 1986, che provoca rientro) Volo la morte dei sette astronauti a bordo. Viene sostituito dall'Endeavour 12 aprile 1981 costruito con parti di ricambio delle altre navette, è pronto e consegnato nel Inaugurale maggio del 1991. Il Columbia si disintegra durante il rientro nell'atmosfera Boosters (Stadio 0) - Solid Rocket Boosters o 2 il 1 febbraio 2003. Nell'incidente perde la vita l'intero equipaggio, composto N booster Propulsori 1 a combustibile solido da sette astronauti. Lo Space Shuttle oramai è in pensione e verrà sostituito Spinta 12.5 MN, a livello del mare http://it.wikipedia.org/wiki/Space_Shuttle 02/03/2011 Space Shuttle - Wikipedia Page 2 of 11 da un nuovo missile con Capsula ovvero il progetto Constellation della Nasa Composto dall' Ares 1, L' Ares 4 e dall' Ares 5 con cui si prevede di arrivare dapprima in orbita terrestre, poi sulla luna e infine si pensa di poter arrivare specifico Tempo di sul pianeta rosso. 124 s Accensione Propellente solido Impieghi Primo Stadio - Serbatoio esterno (nessuno) Propulsori Lo Space Shuttle è impiegato per il trasporto di grandi carichi verso diverse (3 propulsori sull'Orbiter) orbite, per il trasferimento dell'equipaggio della Stazione Spaziale Spinta 5.25 MN Impulso Internazionale e per effettuare missioni di manutenzione come quelle sul 455 s specifico telescopio spaziale Hubble. Una sua potenzialità prevista originariamente e Tempo di 480 s non ancora sfruttata è quella di riportare a terra satelliti artificiali. Accensione Propellente O2/H2 liquidi Nel dettaglio: Secondo Stadio - Orbiter Propulsori 2 OME trasferire equipaggio da e sulla Stazione Spaziale Internazionale (ISS) 53.4 kN spinta totale Spinta missioni umane di manutenzione, specialmente sull'Hubble combinata nel vuoto esperimenti umani in orbita terrestre bassa (Low Earth Orbit, LEO) Impulso 316 s trasporto in LEO di: specifico grossi satelliti - includendo anche l'HST Tempo di 1250 s componenti per la costruzione della ISS Accensione rifornimenti Propellente MMH/N2O4 trasporto di satelliti con il Payload Assist Module, per spedire il satellite in: un'orbita terrestre alta; tra cui: il Chandra X-ray Observatory molti satelliti TDRS due DSCS-III (Sistema di Comunicazione Satelliti di Difesa) un satellite del Programma Di Supporto alla Difesa un'orbita interplanetaria; tra cui: la Sonda Magellano la Sonda Galileo la Sonda Ulisse Descrizione Lo Space Shuttle è composto da quattro parti principali: l'Orbiter Vehicle (in sigla OV): un orbiter con spazio per l'equipaggio, vano di trasporto per il carico, tre motori principali che utilizzano il combustibile presente nei serbatoi esterni, e un sistema di manovra orbitale con due motori più piccoli (OMS); due Solid Rocket Booster (in sigla SRB): razzi riutilizzabili a propellente solido, il perclorato d'ammonio (NH4ClO4) e l'alluminio, che si staccano due minuti dopo il lancio a una altezza di 66 km e vengono recuperati nell'oceano grazie al fatto che la velocità di caduta viene notevolmente ridotta da alcuni paracadute; il Serbatoio Esterno (in sigla ET): un grande serbatoio esterno di combustibile contenente ossigeno liquido (in cima) e idrogeno anch'esso liquido (nella parte bassa) che servono ad alimentare i tre motori principali dell'OV. Si stacca dopo circa 8 minuti e mezzo a una altitudine di 109 km, esplode in atmosfera e ricade in mare senza che venga poi recuperato. I progetti iniziali prevedevano serbatoi supplementari sull'orbiter e altre attrezzature che però non furono mai costruite. Lo Shuttle ha una grande stiva per il carico utile che si estende per buona parte della sua lunghezza. I portelloni della stiva sono provvisti di radiatori montati sulla superficie interna, e vengono tenuti aperti mentre lo Shuttle è in orbita per favorire il controllo termico, che viene mantenuto anche regolando l'orientamento dell'intero Shuttle rispetto alla Terra e al Sole. All'interno della stiva per il carico utile si trova il Sistema di Manipolazione Remota, detto anche Canadarm, un braccio robotizzato impiegato per recuperare e mettere in orbita il carico utile. Sino all'incidente del Columbia, il Canadarm veniva incluso soltanto nelle missioni in cui il suo impiego era richiesto dalla natura della missione stessa. Poiché il braccio è una parte cruciale della procedura di Ispezione della Protezione Termica che è attualmente richiesta per i voli dello Shuttle, in futuro probabilmente verrà incluso in tutti i voli. Lo Space Shuttle ha subito numerosi miglioramenti nel corso degli anni. L'orbiter ha cambiato il suo sistema di protezione termico diverse volte per ridurre il peso e il carico di lavoro. Le piastrelle di ceramica devono essere controllate dopo ogni volo per trovare eventuali piastrelle rotte; inoltre assorbono umidità e quindi devono essere protette dalla pioggia. Questo inconveniente è stato dapprima risolto spruzzando sulle tegole il prodotto Scotchgard; in seguito è stata sviluppata una soluzione ad hoc. In un secondo tempo molte tegole della sezione dello Shuttle che diventa meno calda sono state sostituite da grandi pannelli di un materiale isolante avente la consistenza del feltro; ciò ha comportato il vantaggio di non dover ispezionare in modo particolarmente accurato zone molto grandi del rivestimento (in particolare la zona del carico). http://it.wikipedia.org/wiki/Space_Shuttle 02/03/2011 Space Shuttle - Wikipedia Page 3 of 11 Internamente lo Shuttle è rimasto in gran parte simile al progetto originale, con l'eccezione dei sistemi di avionica che vengono migliorati continuamente. I sistemi originali erano dei computer IBM modello 360 basati su processori Intel 8086, con sottosistemi di controllo video basati su microcontrollori RCA 1802, collegati a monitor analogici posti nella cabina di pilotaggio, similmente agli attuali aerei di linea modello DC-10. Oggi la cabina di pilotaggio è basata su cinque computer APA-101S ridondanti basati su processori 80386, ed è dotata di sistemi a tutto display. I cinque calcolatori di bordo usano complessivamente circa 2 MB di memoria RAM a nuclei magnetici che, diversamente dalla normale RAM integrata a transistor, è completamente immune alle radiazioni. I computer impiegano il linguaggio di programmazione HAL/S. Come nella tradizione del Progetto Apollo-Sojuz, anche delle calcolatrici programmabili vengono portate a bordo (originariamente si usava il modello Hewlett-Packard 41C). Oltre alla cabina di pilotaggio a tutto display, svariati miglioramenti sono stati adottati per ragioni di sicurezza a seguito della esplosione del Challenger, fra cui una via di fuga per l'equipaggio
Recommended publications
  • Space Shuttle Era Fact Sheet
    National Aeronautics and Space Administration Space Shuttle Era Facts NASA’s shuttle fleet achieved numerous firsts and opened Enterprise was the first space shuttle, although it never up space to more people than ever before during the Space flew in space. It was used to test critical phases of landing and Shuttle Program’s 30 years of missions. other aspects of shuttle preparations. Enterprise was mounted The space shuttle, officially called the Space Transportation on top of a modified 747 airliner for the Approach and Landing System (STS), began its flight career with Columbia roaring off Tests in 1977. It was released over the vast dry lakebed at Launch Pad 39A at NASA’s Kennedy Space Center in Florida Edwards Air Force Base in California to prove it could glide and on April 12, 1981. land safely. That first mission verified the combined performance of Columbia, OV-102, was named after a sloop captained the orbiter vehicle (OV), its twin solid rocket boosters (SRBs), by Robert Gray, who on May 11, 1792, maneuvered his ship giant external fuel tank (ET) and three space shuttle main through dangerous inland waters to explore British Columbia engines (SSMEs). It also put to the test the teams and what are now the states of Washington and facts that manufactured, processed, launched and Oregon. Columbia was the first shuttle to fly into managed the unique vehicle system, which consists orbit on STS-1. Its first four missions were test of about 2 1/2 million moving parts. flights to show that the shuttle design was sound.
    [Show full text]
  • A Flexible Glass Produced in Space Shows Promise As a Catalyst For
    HYPERSONICS 36 Q&A 8 ARTIFICIAL INTELLIGENCE 26 Predicting bad vibes U.S. Sen. Jerry Moran on FAA, NASA Leaping from automation to autonomy SPARKING THE SPACE ECONOMY A fl exible glass produced in space shows promise as a catalyst for building an economy in space. PAGE 16 JANUARY 2020 | A publication of the American Institute of Aeronautics and Astronautics | aerospaceamerica.aiaa.org www.dspace.com SCALEXIO® – Fitting your needs SCALEXIO, the dSPACE real-time simulation technology for developing and testing embedded systems, is easily scalable to perfectly match the demands of your project – whatever your aims might be: Developing new control algorithms Testing single control units Control test rigs for actuators Integration tests of large, networked systems SCALEXIO always fits your needs – what are you aiming for? FEATURES | January 2020 MORE AT aerospaceamerica.aiaa.org An artist’s rendering of a potential moon base that would be constructed through 3D printing, which is considered an important technique for building an economy in space. European Space Agency 12 26 40 16 Dream Chaser’s Planes vs. cars Defending Earth new champion from asteroids Manufacturing While autonomous Janet Kavandi, a aircraft appear to A partnership between in space former astronaut be building on the governments and the and former director advances of nascent commercial A fi ber optic material called ZBLAN of NASA’s Glenn self-driving cars, space industry could be the product that jump-starts Research Center, operating in more would guarantee the dimensions carries the space economy. takes charge of Sierra reliability and rapid Nevada Corp.’s Space special challenges.
    [Show full text]
  • + STS-115 Press
    STS-121 Press Kit CONTENTS Section Page STS-115 MISSION OVERVIEW: SPACE STATION ASSEMBLY RESUMES................................ 1 STS-115 TIMELINE OVERVIEW ............................................................................................... 10 MISSION PRIORITIES............................................................................................................. 12 LAUNCH AND LANDING ........................................................................................................... 14 LAUNCH............................................................................................................................................... 14 ABORT-TO-ORBIT (ATO)...................................................................................................................... 14 TRANSATLANTIC ABORT LANDING (TAL)............................................................................................. 14 RETURN-TO-LAUNCH-SITE (RTLS)....................................................................................................... 14 ABORT ONCE AROUND (AOA)............................................................................................................... 14 LANDING ............................................................................................................................................. 14 MISSION PROFILE................................................................................................................... 15 STS-115 ATLANTIS CREW .....................................................................................................
    [Show full text]
  • STS-135: the Final Mission Dedicated to the Courageous Men and Women Who Have Devoted Their Lives to the Space Shuttle Program and the Pursuit of Space Exploration
    National Aeronautics and Space Administration STS-135: The Final Mission Dedicated to the courageous men and women who have devoted their lives to the Space Shuttle Program and the pursuit of space exploration PRESS KIT/JULY 2011 www.nasa.gov 2 011 2009 2008 2007 2003 2002 2001 1999 1998 1996 1994 1992 1991 1990 1989 STS-1: The First Mission 1985 1981 CONTENTS Section Page SPACE SHUTTLE HISTORY ...................................................................................................... 1 INTRODUCTION ................................................................................................................................... 1 SPACE SHUTTLE CONCEPT AND DEVELOPMENT ................................................................................... 2 THE SPACE SHUTTLE ERA BEGINS ....................................................................................................... 7 NASA REBOUNDS INTO SPACE ............................................................................................................ 14 FROM MIR TO THE INTERNATIONAL SPACE STATION .......................................................................... 20 STATION ASSEMBLY COMPLETED AFTER COLUMBIA ........................................................................... 25 MISSION CONTROL ROSES EXPRESS THANKS, SUPPORT .................................................................... 30 SPACE SHUTTLE PROGRAM’S KEY STATISTICS (THRU STS-134) ........................................................ 32 THE ORBITER FLEET ............................................................................................................................
    [Show full text]
  • Processing the Shuttle for Flight
    Processing When taking a road trip, it is important to plan ahead by making sure your vehicle is prepared for the journey. A typical road trip on Earth can be the Shuttle for routine and simple. The roadways are already properly paved, service Flight stations are available if vehicle repairs are needed, and food, lodging, and stores for other supplies can also be found. The same, however, could not be said for a Space Shuttle trip into space. The difficulties associated with Steven Sullivan space travel are complex compared with those we face when traveling here. Preparing the Shuttle for Flight Food, lodging, supplies, and repair equipment must be provided for within Ground Processing the space vehicle. Jennifer Hall Peter Nickolenko Vehicle preparation required a large amount of effort to restore the shuttle Jorge Rivera to nearly new condition each time it flew. Since it was a reusable vehicle Edith Stull Steven Sullivan with high technical performance requirements, processing involved a Space Operations Weather tremendous amount of “hands-on” labor; no simple tune-up here. Not only Francis Merceret was the shuttle’s exterior checked and repaired for its next flight, all Robert Scully components and systems within the vehicle were individually inspected and Terri Herst verified to be functioning correctly. This much detail work was necessary Steven Sullivan because a successful flight was dependent on proper vehicle assembly. Robert Youngquist During a launch attempt, decisions were made within milliseconds by equipment and systems that had to perform accurately the first time—there was no room for hesitation or error.
    [Show full text]
  • Manuel De La Mission
    thu|lsGklGshGtpzzpvu SOMMAIRE I. Présentations 1. Présentation de l’équipage .................................................................... 3 2. Présentation de la navette spatiale Endeavour ............................................ 7 II. Lancement 1. Fenêtre de lancement ........................................................................ 11 2. Compte à rebours .............................................................................. 12 3. Procédures Abort .............................................................................. 17 III. Mission 1. Présentation de la mission ................................................................... 19 2. Programme au quotidien ..................................................................... 23 3. Sorties extravéhiculaires ..................................................................... 25 IV. Atterrissage 1. Opportunités pour l’atterrissage ............................................................ 26 2. Procédures pour l’atterrissage .............................................................. 27 V. Sources 1. Sources .......................................................................................... 30 STS-127 – MANUEL DE LA MISSION I. PRESENTATIONS 1. PRESENTATION DE L’EQUIPAGE Mark L. POLANSKY (commandant) Date de naissance : 02/06/1956 Lieu de naissance : Paterson (New-Jersey) Statut familial : Marié et 1 enfant Etudes : Bachelier ingénieur en aéronautique et astronautique et possède une maîtrise en aéronautique et astronautique (Purdue University)
    [Show full text]
  • Table of Contents
    THE CAPE Military Space Operations 1971-1992 by Mark C. Cleary 45th Space Wing History Office Table of Contents Preface Chapter I -USAF Space Organizations and Programs Table of Contents Section 1 - Air Force Systems Command and Subordinate Space Agencies at Cape Canaveral Section 2 - The Creation of Air Force Space Command and Transfer of Air Force Space Resources Section 3 - Defense Department Involvement in the Space Shuttle Section 4 - Air Force Space Launch Vehicles: SCOUT, THOR, ATLAS and TITAN Section 5 - Early Space Shuttle Flights Section 6 - Origins of the TITAN IV Program Section 7 - Development of the ATLAS II and DELTA II Launch Vehicles and the TITAN IV/CENTAUR Upper Stage Section 8 - Space Shuttle Support of Military Payloads Section 9 - U.S. and Soviet Military Space Competition in the 1970s and 1980s Chapter II - TITAN and Shuttle Military Space Operations Section 1 - 6555th Aerospace Test Group Responsibilities Section 2 - Launch Squadron Supervision of Military Space Operations in the 1990s Section 3 - TITAN IV Launch Contractors and Eastern Range Support Contractors Section 4 - Quality Assurance and Payload Processing Agencies Section 5 - TITAN IIIC Military Space Missions after 1970 Section 6 - TITAN 34D Military Space Operations and Facilities at the Cape Section 7 - TITAN IV Program Activation and Completion of the TITAN 34D Program Section 8 - TITAN IV Operations after First Launch Section 9 - Space Shuttle Military Missions Chapter III - Medium and Light Military Space Operations Section 1 - Medium Launch Vehicle and Payload Operations Section 2 - Evolution of the NAVSTAR Global Positioning System and Development of the DELTA II Section 3 - DELTA II Processing and Flight Features Section 4 - NAVSTAR II Global Positioning System Missions Section 5 - Strategic Defense Initiative Missions and the NATO IVA Mission Section 6 - ATLAS/CENTAUR Missions at the Cape Section 7 - Modification of Cape Facilities for ATLAS II/CENTAUR Operations Section 8 - ATLAS II/CENTAUR Missions Section 9 - STARBIRD and RED TIGRESS Operations Section 10 - U.S.
    [Show full text]
  • Shuttle Landing and Flight Information Version 2.14
    Shuttle Landing and Flight Information Version 2.14 In Orbiter, landing the Space Shuttle takes significant practice in that it operates as a glider therefore there is very little room for error. When practicing landing select “Atlantis Landing Preparation” to practice the actual approach to the Kennedy Space Center for the competiton. If the Mission Commander would like to just practice their landing approach select the “Atlantis Final Approach” file which brings you directly to the final approach to runway 33 at Cape Canaveral. I. Landing Controls Reaction Control System (RCS) - this is found in the upper left corner of the HUD display in the “Engine Information” area. The RCS must be turned off to transfer controls to terrestrial flight and enable the yoke and rudder to operate properly. This is normally done at 35,000 meters. Joystick (yoke)–the joystick will operate as the control yoke of the aircraft, it governs the aircraft's roll and pitch by moving the ailerons left and right, and moves the elevators backwards or forward. Rudder pedals- the rudder pedals control yaw and move the rudders left or right. If your joystick does not come with a rudder control you can use the [1] and [3] key on the number pad for left and right rudder control. Trim Control - trim tabs are small surfaces connected to the trailing edge of a larger control surface on an aircraft. The trim control is used to manage aerodynamic forces and stabilize the aircraft in a particular desired attitude without the need for the operator to constantly apply a control force.
    [Show full text]
  • WHITE SANDS SPACE HARBOR AREA 1, CONTROL TOWER HAER No
    WHITE SANDS SPACE HARBOR AREA 1, CONTROL TOWER HAER No. NM-28-D (Space Shuttle Landing Facility Area 1, Control Tower) White Sands Missile Range Approximately 3,500 feet southwest of intersection of Runways 17/35 and 23/05 White Sands vicinity Doña Ana County New Mexico PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA Historic American Engineering Record National Park Service U.S. Department of the Interior Intermountain Regional Office 12795 Alameda Parkway Denver, CO 80225-0287 HISTORIC AMERICAN ENGINEERING RECORD WHITE SANDS SPACE HARBOR AREA 1 (Space Shuttle Landing Facility Area 1, Control Tower) HAER No. NM-28-D Location: White Sands Missile Range Approximately 3,500ʹ southeast from intersection of Runways 17/35 and 23/05 White Sands vicinity Doña Ana County New Mexico U.S.G.S. 7.5 Minute Las Cruces, New Mexico, Quadrangle, Universal Transverse Mercator Coordinates: E 32.93827 N 106.41034 Zone 13S, NAD 1983 Construction: 1979 Architect: Dennis G. Perrin, NASA WSTF engineer Builder: Not known Present Owner: Commander, U.S. Army White Sands Missile Range, New Mexico 88002-5018 Present Use: Vacant Significance: The Air Traffic Control Tower, commonly known as the “Control Tower,” was an essential component of the White Sands Space Harbor (WSSH) from 1976-2011. The Control Tower has a direct association with the U.S. Space Shuttle Program (SSP) as the site of the landing of Space Transportation System (STS)-3 Columbia in March 1982; this is the only STS landing to take place outside Edwards Air Force Base in California and Kennedy Space Center in Florida. The Control Tower is considered to have national significance and is eligible for listing in the National Register of Historic Places (NRHP) under Criterion A for its association with the NASA SSP with a period of significance of 1976-2011.
    [Show full text]
  • Naval Space NAVEDTRA 14168A
    NONRESIDENT TRAINING COURSE Naval Space NAVEDTRA 14168A Notice: NETPDTC is no longer responsible for the content accuracy of the NRTCs. For content issues, contact the servicing Center of Excellence: Center for Surface Combat System (CSCS); (540) 284-1061 or DSN: 249-1061. DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. PREFACE About this course: This is a self-study course. By studying this course, you can improve your professional/military knowledge, as well as prepare for the Navywide advancement-in-rate examination. It contains subject matter about day- to- day occupational knowledge and skill requirements and includes text, tables, and illustrations to help you understand the information. An additional important feature of this course is its reference to useful information in other publications. The well-prepared Sailor will take the time to look up the additional information. History of the course: Jan 2002: Original edition released. Jun 2003: Administrative update released. Technical content was not reviewed or revised. POINTS OF CONTACT ADDRESS This course was developed by the Naval Space COMMANDER Command. Questions regarding the content NAVAL SPACE COMMAND should be directed to: CODE VN7121 E-mail: [email protected] 5280 4TH STREET Phone: DAHLGREN, VA 22448-5300 Comm: (540) 653-5151 DSN: 249-5151 FAX: (540) 249-2949 NAVSUP Logistics Tracking Number 0504-LP-101-0610 TABLE OF CONTENTS CHAPTER PAGE 1. The Navy in Space ................................................................................................
    [Show full text]
  • Hubble Space Telescope Specifications
    This document is from the collections at the Dole Archives, University of Kansas http://dolearchives.ku.edu SPACE SHUTTLE MISSION STS-31 PRESS KIT APRIL 1990 Page 1 of 24 This document is from the collections at the Dole Archives, University of Kansas http://dolearchives.ku.edu PUBLIC AFFAIRS CONTACTS Ed Campion Office of Space Flight Kyle Herring Johnson NASA Headquarters, Washington, D.C. Space Center, Houston, Texas (Phone: 202/453-8536) (Phone: 713/483-5111) Paula Cleggett-Haleim Dave Drachlis/Jerry Berg Marshall Office of Space Science and Applications Space Flight Center, Huntsville, Ala. NASA Headquarters, Washington, D.C. (Phone: 205/544-0034) (Phone: 202/453-1548) Myron Webb Barbara Selby Stennis Space Center, Bay St. Louis, Miss. Office of Commercial Programs (Phone: 601/688-3341) NASA Headquarters, Washington, D.C. (Phone: 202/453-2927) Nancy Lovato Ames-Dryden Flight Research Facility, Edwards, Calif. Dwayne Brown (Phone: 805/258-8381) Office of Space Operations NASA Headquaters, Washington, D.C. Robert J. MacMillin Jet Propulsion (Phone: 202/453-8956) Laboratory, Pasadena, Calif. (Phone: 818/354-5011) Lisa Malone Kennedy Space Center, Fla. Jim Elliott (Phone: 407/867-2468) Goddard Space Flight Center, Greenbelt, Md. (Phone: 301/286-6256) Page 2 of 24 CONTENTS GENERAL RELEASE ............................................................ 1 SPACE TELESCOPE OPERATIONS CONTROL ............... 18 GENERAL INFORMATION .................................................... 2 SPACE TELESCOPE SCIENCE INSTITUTE ...................... 18 STS-31 QUICK LOOK ...........................................................3 EUROPEAN COORDINATING FACILITY ........................... 20 SUMMARY OF MAJOR ACTIVITIES .................................... 3 HUBBLE SPACE TELESCOPE SPECIFICATIONS ............ 20 TRAJECTORY SEQUENCE OF EVENTS ........................... .4 FUNCTIONAL DESCRIPTION OF HST OPERATIONS ...... 21 SPACE SHUTTLE ABORT MODES ...................................... 4 SCIENCE QUESTIONS HST WILL HELP ANSWER .........
    [Show full text]
  • (Space Shuttle Landing Facility Area 1, Waterhole) White Sands Miss
    WHITE SANDS SPACE HARBOR AREA 1, WATERHOLE HAER No. NM-28-T (Space Shuttle Landing Facility Area 1, Waterhole) White Sands Missile Range West corner of Runway 17/35, approximately 4,000 feet from Range Road 10 White Sands vicinity Doña Ana County New Mexico PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA Historic American Engineering Record National Park Service U.S. Department of the Interior Intermountain Regional Office 12795 Alameda Parkway Denver, CO 80225-0287 HISTORIC AMERICAN ENGINEERING RECORD WHITE SANDS SPACE HARBOR AREA 1, WATERHOLE (Space Shuttle Landing Facility Area 1, Waterhole) HAER No. NM-28-T Location: White Sands Missile Range West corner of Runway 17/35, approximately 4,000 feet from Range Road 10 White Sands vicinity Doña Ana County New Mexico U.S.G.S. 7.5 Minute Las Cruces, New Mexico, Quadrangle, Universal Transverse Mercator Coordinates (center of runways): E 32.944408 N 106.41993 Zone 13S, NAD 1983 Construction: 1988 Architect: Not known Builder: Not known Present Owner: Commander, U.S. Army White Sands Missile Range, New Mexico 88002-5018 Present Use: Vacant Significance: The Waterhole was a component of the White Sands Space Harbor (WSSH) from 1988-2011. Playing a minor support role at WSSH, this structure is a non-contributing resource within the WSSH Shuttle Landing Facility District, which is eligible for listing in the National Register of Historic Places (NRHP) under Criterion A for its association with the NASA Space Shuttle Program (SSP) with a period of significance of 1976-2011. Because the district achieved significance within the past fifty years, Criterion Consideration G also applies.
    [Show full text]