Hawaiian Islands Wilderness Study Area

Total Page:16

File Type:pdf, Size:1020Kb

Hawaiian Islands Wilderness Study Area HAWAIIAN ISLANDS WILDERNESS STUDY AREA HAWAIIAN ISLANDS NATIONAL WILDLIFE REFUGE CITY AND COUNTY OF HONOLULU, HAWAII WILDERNESS STUDY REPORT Preliminary - Subject to change U. S. DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF SPORT FISHERIES AND WILDLIFE PREFACE This report summarizes a study of the Hawaiian Islands National Wild- life Refuge made pursuant to the Wilderness Act of September 3, 1964 (Public Law 88-577). The Hawaiian Islands Reservation was established in 1909 by Executive Order of the President as a "preserve and breeding grounds for native bii'ds" as a weans of preventing further slaughtering of birds for millinery purposes. The Reservation was renamed the Hawaiian Islands National Wildlife Refuge in 1940. The Hawaiian Islands National Wildlife Refuge consists of a series of eight or ninei/ islands, reefs and atolls of the Leeward Islands extending more than 1,000 miles northwesterly from the principal Hawaiian Islands. The area is understood to be within the City and County of Honolulu and the State of Hawaii. The refuge is administered by the Bureau of Sport Fisheries and Wildlife of the United States Department of the Interior as a unit of the National Wildlife Refuge System. French Frigate Shoal and Pearl and Hermes Reef are atolls with sub- stantially continuous outer reefs enclosing quiet water lagoons. The Refuge has been administered as including the reef and lagoon areas. The other units of the Refuge are either rock extrusions above the ocean surface, such as Nihoa, Necker and Gardner Islands, or sand 'LJ Kure or Ocean Island was a part of the original designation for the Hawaiian Islands Reservation that has not been terminated except by implication from a subsequent Navy reservation for use and termination of that use. This subject is further discussed in the land status section of the report. Kure Island is not discussed extensively in the report but is quite similar to Pearl and Hermes Reef geologically and ecologically. islands surrounded by broken coral platforms such as Laysan and Lisianski Islands. The island masses themselves are a small, but vital part of the eco- system of the Leewards—an ecosystem whose scientific importance transcends national boundaries. The shallow water reefs and lagoons are an inseparable link in this chain of life.' The reefs sustain the aquatic resources that are the basic sustenance of much of the islands' wildlife. The continued survival of the bird, mammal and reptile life of the area is chiefly dependent on future management of both the land and waters of the refuge. The mammals, reptiles and fishery "resources have been and will continue to be managed primarily by the State of Hawaii. It is essential that management of these resources continue to be consistent with the primary mission of the refuge. It must also be recognized, however, that refuge management should not preclude the State's reasonable utilization of resources it regulates. Since the lands and waters of the refuge are inseparable parts of the whole ecosystem, the wilderness study included the refuge in its entirety. The study indicated that designation of the land masses above mean high tide, as wilderness, would in no way compromise the primary objectives of the Refuge. Indeed, it would probably aid in achieving these objec- tives by assuring the islands' future preservation in a natural state. Unfortunately, inclusion of the land masses as wilderness would only Jr^ • . ,f extend protection to a portion of this ecosystem. Broader protection c \ * a jI - -1"^ through Congressional actions supplemented by a cooperative agreement )6 i with such legislation by the State of Hawaii as may be agreeable to the State, is desirable. Because of development and disturbances, Tern Island and the surrounding area within 500 yards plus the adjacent ship channel at French Frigate Shoals are not suitable as wilderness. All other land masses of the refuge above mean high tide are considered suitable for further con- sideration as wilderness. CONTENTS PREFACE ... .............. ............. INTRODUCTION ............ ............... / OBJECTIVES . ....... ..".'.„ LOCATION ... HISTORY .................. „ 7 LAND STATUS ............................ // PHYSICAL CHARACTERISTICS RESOURCES A. Wildlife 1. Mammals a. Hawaiian Monk Seal b. Other Mammals 2. Birds a. Marine Birds V 7 b. Shorebirds •£"£) c. Waterfowl rv> d. Small Land Birds z~ J ^J / 3. Fish A. Reptiles a. Green Sea Turtle B. Water C. Vegetation ...................... -5~ D. Recreation E. Minerals F. Other Resources MANAGEMENT DEVELOPMENT SOCIO-ECONOMIC CONSIDERATIONS SUMMARY AND RECOMMENDATIONS . , A. Summary B. Recommendations 5 / - , f fi PHOTOGRAPHS A, of l^cU-^J APPENDIX A. Legal documents - Refuge Status 1. Executive Order 1019 - Refuge establishment 2. Public Law 86-3 - Hawaii statehood 3. Public. Law 83-3 - Submerged Lands Act 4. Memorandum of Understanding - University of Hawaii A . and BSF&W ~ 5. Cooperative Agreement - U.S. Coast Guard and BSF&W .... V 6. Memorandum of Understanding - AEC and BSF&W B. Legal documents - Wilderness • / 1. Wilderness Act (P.L. 88-577) * 2. Secretarial Order 2920 - Roadless Area Review ..... 3. Code of Federal Regulations - Title 50 - Wilderness Preservation and Management 4. Code of Federal Regulations - Title 43 - Wilderness ^ A Preservation c- C. Other information 1. Bibliography of Mineral Resources . 2. Comments of Bureau of Outdoor Recreation FIGURES 1. Location of Hawaiian Islands National Wildlife Refuge C? 2. Tern Island Transportation Corridor 3. The Hawaii Chain - subdivisions A. Profile of Hawaiian Archipelago 5. Stages in geologic history of volcanic islands 6. The Refuge Units a. Nihoa Island b. Meeker Island c. Gardner Pinnacles d. French Frigate Shoal e. Pearl and Hermes R.eef f . Laysan Island ..... g. Lisianski Island Tables 1. Lands within the Hawaiian Islands National Wildlife Refuge . 2. Refuge lands considered suitable and nonsuitable as wilderness INTRODUCTION The Hawaiian Islands Reservation was established in 1909 by President Theodore Roosevelt through Executive Order 1019. The. name was changed to the Hawaiian Islands National Wildlife Refuge in 1940. In the many years between their discovery and their inclusion in the Reservation, the islands had br>en subjected to exploitation by commercial interests and careless human activities. This thoughtless destruction resulted in extensive changes in many of the island communities and the ultimate loss forever of threa endemic birds. Two others were brought to the verge of extinction. Today, the islands are famous as a nesting area for vast numbers of sea birds that annually assemble there from the far reaches of the North and Central Pacific. Most of the world's populations of the Laysan and black-footed albatross nest on the Refuge. It is the last major nesting area for the green sea turtle in the Nation, and is home to about 95% of the world's population of the rare Hawaiian monk seal. The entire world populations of Laysan teal as well as three other species of endemic land birds occur on its islands. The waters of the lagoons and of the ocean adjacent to the Leewards support a fascinating array of fish life which occur in relative abundance. However, the extent of these fishery resources, and the manner and degree to which they might be harvested without adverse effects on fish populations and other wildlife that are dependent upon them has not been ascertained. Refuge waters, as outlined in the Executive Order, comprise only a small part of the potential shallow-water fishery area in the Hawaiian Archipelago, and their value as natural areas for scientific studies of plant and animal communities in a comparatively undisturbed environment are to be considered in relation to any potential value for the production of fishery resource commodities. They could serve as control areas for monitoring changes in marine flora and fauna occurring elsewhere in the Archipelago. Protection and restoration of natural environmental qualities, as a basis for preserving wildlife abundance and diversity on the Refuge are desirable. Too much human activity would endanger the fragile ecosystem. Public use of the islands should continue to be limited to scientific research on a closely supervised basis. Scientific literature is replete with accounts of disasters to other island ecosystems, which are far more susceptible to change than those of continental land masses. Public informational and educational "programs are planned with interpretive facilities centered in a future administrative complex planned in the Honolulu area. The management objectivss for the Hawaiian Islands Refuge may be summarized in the following order of priority: 1. Assure the survival of native species that are threatened with extinction. 2. Maintain native fauna and flora in a natural state at or above minimum population recovery levels. 3. Maximize natural physical and biological qualities to the extent compatible with fish and wildlife population management require- ments. 4. Expand understanding and appreciation of wildlife, island ecology, and man's role in his environment, in a manner consistent with fish and wildlife management requirements. 5. Communicate information essential to an optimal level of public understanding of the benefits obtained from the Hawaiian Islands National Wildlife Refuge. 6. Establish and preserve selected areas within the Refuge in a natural state for the purposes of environmental reference, observation and scientific study. 7. Seek
Recommended publications
  • Summary of 2016 Reef Fish Surveys Around Kahoolawe Island 1
    doi:10.7289/V5/DR-PIFSC-17-011 Summary of 2016 Reef Fish Surveys around Kahoolawe Island 1 Results and information presented here summarize data gathered by the Coral Reef Ecosystem Program (CREP) of NOAA’s Pacific Islands Fisheries Science Center and partners during 2 days of reef fish and habitat surveys around Kahoolawe Island in July/August 2016. Surveys were conducted as part of the NOAA National Coral Reef Monitoring Program. Surveys were conducted using a standard sampling design and method implemented by NOAA’s Pacific Reef Assessment and Monitoring Program (Pacific RAMP) since 2009. In brief, pairs of divers record numbers, sizes, and species of fishes inside adjacent 15m-diameter ‘point- count’ cylinders and estimate benthic cover by functional groups (e.g. ‘coral’, ‘sand’). Because it is unpopulated and protected, Kahoolawe is an important reference location in in the main Hawaiian Islands and may also be a significant source of larvae and fish recruits for other parts of Maui-nui and perhaps beyond. Therefore, CREP hopes to routinely survey Kahoolawe reefs during future monitoring efforts. However, as 2016 was the first year for Kahoolawe surveys, we have a relatively small sample size there - 24 sites - in comparison to other Main Hawaiian Islands (MHI: between 107 and 257 survey sites per island). Main conclusions and observations: • Reef fish biomass was high at most sites we visited in Kahoolawe, with mean island-wide biomass higher than at any other of the MHI, although only marginally higher than at Niihau. Biomass tended to be slightly higher at sites along the southern section of the island.
    [Show full text]
  • Demartini NWHI Overview for CRSAW (Feb 1
    NOWRAMP Overview Ed DeMartini NOAA Fisheries, PIFSC • Objectives • Design & Status of Surveys • Major Patterns Northwestern Hawaiian Islands 99 9 9 99 9 9 9 9 NWHI Survey Objectives • Qualitative reconnaissance of ichthyofauna; describe relative abundance, assemblage structure • Initial quantitative assessment of both economic and ecologically interacting resources (corals, algae, macrobenthos as well as fishes); to provide baseline characterization of biota • Subsequent monitoring of target taxa at select representative stations; to enable detection of major changes over decadal time frame Summary of Design Elements • Develop sampling and analysis designs; standardize data collection protocols – size- and species/taxon- specific tallies per unit area • graded bins: by cm (< 5 cm), by 5 cm (6-50 cm), …by 25 cm (> 100 cm TL) – station(=dive): 3, 25-m long x 4- or 8- m wide belt transects, plus 4, 10- m radius (5-min) SPCs, apportioned among 3 divers • belts: total 600 m2 area for “large” (> 20 cm Total Length, TL) fishes • belts: total 300 m2 area for “small” (< 20 cm TL) fishes • SPCs: total @ 1257 m2 area (fish > 25 cm TL only) – followed by @ 3,000 m2 Roving Diver Survey • Analysis Design – abundance (N, biomass) for baseline assessment – density for monitoring temporal change – stratified by major habitat within reef (eg, fore-, back-reef, lagoonal patch at atolls) Sampling & Analysis Design Summary (cont’d) – at least 50% hard substrate – number of stations proportional to reef-area (and variance of stratum) – all sampleable reef quadrants (emphasis on leeward for monitoring) – distribute among-observer bias (< 15%) across stations and tasks – control for seasonality (eg, in recruitment) by design • differs among NWHI and other reef-systems NOWRAMP Cruise-Effort • 5-cruise baseline assessment • 25-mo period from Sep 00 to Oct 02 – Sep-Oct 00: NOAA’s Townsend Cromwell (TC00-10) & R/V Rapture – Sep 01: Cromwell (TC01-11); FFS, Maro Reef – Sep-Oct 02: Cromwell (TC02-07) & Rapture • Single monitoring cruise thus far – Jul-Aug 03: Oscar E.
    [Show full text]
  • Geology of Hawaii Reefs
    11 Geology of Hawaii Reefs Charles H. Fletcher, Chris Bochicchio, Chris L. Conger, Mary S. Engels, Eden J. Feirstein, Neil Frazer, Craig R. Glenn, Richard W. Grigg, Eric E. Grossman, Jodi N. Harney, Ebitari Isoun, Colin V. Murray-Wallace, John J. Rooney, Ken H. Rubin, Clark E. Sherman, and Sean Vitousek 11.1 Geologic Framework The eight main islands in the state: Hawaii, Maui, Kahoolawe , Lanai , Molokai , Oahu , Kauai , of the Hawaii Islands and Niihau , make up 99% of the land area of the Hawaii Archipelago. The remainder comprises 11.1.1 Introduction 124 small volcanic and carbonate islets offshore The Hawaii hot spot lies in the mantle under, or of the main islands, and to the northwest. Each just to the south of, the Big Island of Hawaii. Two main island is the top of one or more massive active subaerial volcanoes and one active submarine shield volcanoes (named after their long low pro- volcano reveal its productivity. Centrally located on file like a warriors shield) extending thousands of the Pacific Plate, the hot spot is the source of the meters to the seafloor below. Mauna Kea , on the Hawaii Island Archipelago and its northern arm, the island of Hawaii, stands 4,200 m above sea level Emperor Seamount Chain (Fig. 11.1). and 9,450 m from seafloor to summit, taller than This system of high volcanic islands and asso- any other mountain on Earth from base to peak. ciated reefs, banks, atolls, sandy shoals, and Mauna Loa , the “long” mountain, is the most seamounts spans over 30° of latitude across the massive single topographic feature on the planet.
    [Show full text]
  • The Hawaiian Island Environment
    The Hawaiian Island Environment Item Type text; Article Authors Shlisky, Ayn Citation Shlisky, A. (2000). The Hawaiian Island environment. Rangelands, 22(5), 17-20. DOI 10.2458/azu_rangelands_v22i5_shlisky Publisher Society for Range Management Journal Rangelands Rights Copyright © Society for Range Management. Download date 30/09/2021 01:33:31 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/639245 October 2000 17 The Hawaiian Island Environment Ayn Shlisky aradise: the universal vision we Each island is the result of accumula- most of their moisture. The driest areas have of Hawai‘i. Hawai‘i’s habi- tions of successive volcanic eruptions at are the upper slopes of high mountains, Ptats are diverse, unique, and love- the Hawaiian hot spot. The older volca- where a trade wind inversion tends to ly—a land of flowing red-hot lava, and noes have been transported from the suppress vertical lifting of air, or in lee- at the same time, delicate pastel orchids. Hawaiian hot spot to the northwest by ward positions at the coast or inland. Yet the Hawai‘i of today is much plate movement. Through time, they Winter cold fronts moving in from the changed from that discovered by the erode and subside to become a mere northwest may infrequently travel far Polynesians, or more than 1,000 years pinnacle of rock, then an atoll of accu- enough south to drop snow on the upper later, by Captain Cook. Over time, mulated coral, and finally a submerged slopes of Haleakala (Maui), Mauna Loa Hawai‘i has been discovered and re-dis- guyot (flat, reef-capped volcano) and Mauna Kea (Hawai‘i).
    [Show full text]
  • Photographing the Islands of Hawaii
    Molokai Sea Cliffs - Molokai, Hawaii Photographing the Islands of Hawaii by E.J. Peiker Introduction to the Hawaiian Islands The Hawaiian Islands are an archipelago of eight primary islands and many atolls that extend for 1600 miles in the central Pacific Ocean. The larger and inhabited islands are what we commonly refer to as Hawaii, the 50 th State of the United States of America. The main islands, from east to west, are comprised of the Island of Hawaii (also known as the Big Island), Maui, Kahoolawe, Molokai, Lanai, Oahu, Kauai, and Niihau. Beyond Niihau to the west lie the atolls beginning with Kaula and extending to Kure Atoll in the west. Kure Atoll is the last place on Earth to change days and the last place on Earth to ring in the new year. The islands of Oahu, Maui, Kauai and Hawaii (Big Island) are the most visited and developed with infrastructure equivalent to much of the civilized world. Molokai and Lanai have very limited accommodation options and infrastructure and have far fewer people. All six of these islands offer an abundance of photographic possibilities. Kahoolawe and Niihau are essentially off-limits. Kahoolawe was a Navy bombing range until recent years and has lots of unexploded ordinance. It is possible to go there as part of a restoration mission but one cannot go there as a photo destination. Niihau is reserved for the very few people of 100% Hawaiian origin and cannot be visited for photography if at all. Neither have any infrastructure. Kahoolawe is photographable from a distance from the southern shores of Maui and Niihau can be seen from the southwestern part of Kauai.
    [Show full text]
  • Important Bird Areas in Hawaii Elepaio Article
    Globally Important Bird Areas in the Hawaiian Islands: Final Report Dr. Eric A. VanderWerf Pacific Rim Conservation 3038 Oahu Avenue Honolulu, HI 96822 9 June 2008 Prepared for the National Audubon Society, Important Bird Areas Program, Audubon Science, 545 Almshouse Road, Ivyland, PA 18974 3 of the 17 globally Important Bird Areas in Hawai`i, from top to bottom: Lehua Islet Hanawī Natural Area Reserve, Maui Hanalei National Wildlife Refuge, Kauai All photos © Eric VanderWerf Hawaii IBAs VanderWerf - 2 INTRODUCTION TO THE IMPORTANT BIRD AREAS PROGRAM The Important Bird Areas (IBA) Program is a global effort developed by BirdLife International, a global coalition of partner organizations in more than 100 countries, to assist with identification and conservation of areas that are vital to birds and other biodiversity. The IBA Program was initiated by BirdLife International in Europe in the 1980's. Since then, over 8,000 sites in 178 countries have been identified as Important Bird Areas, with many national and regional IBA inventories published in 19 languages. Hundreds of these sites and millions of acres have received better protection as a result of the IBA Program. As the United States Partner of BirdLife International, the National Audubon Society administers the IBA Program in the U.S., which was launched in 1995 (see http://www.audubon.org/bird/iba/index.html). Forty-eight states have initiated IBA programs, and more than 2,100 state-level IBAs encompassing over 220 million acres have been identified across the country. Information about these sites will be reviewed by the U.S. IBA Committee to confirm whether they qualify for classification as sites of continental or global significance.
    [Show full text]
  • Nihoa Manawai Holoikauaua Pearl & Hermes Atoll Kapou Papa'āpoho Lisianski Island Kamole Kauō Laysan Island Kamokuokamohoali'i Ko'anako'a Maro Reef
    175°E 180° 175°W 170°W 165°W 160°W 155°W 150°W 35°N 35°N North America Japan Map Area Photo by Dan Clark/USFWS Hawaiian Islands Photo by Na‘alehu Anthony P a c i f i c Seabird Refuge A Living Hawaiian Culture O c e a n The monument is home to over 14 million seabirds 30°N Hiryū USS Yorktown Equator representing 23 species. This includes the world's Traditional Hawaiian accounts describe largest colonies of Laysan and black-footed Papahānaumokuākea as a sacred area from which Rapa Sōryū albatross. Pictured above is the world's oldest life first emerged and to which spirits return after Nui Australia known bird in the wild – a Laysan albatross named 30°N death. Akagi Wisdom! Banded in 1956 when she was at least five Kaga years old, Wisdom may have hatched more than 36 New Zealand chicks in her lifetime. Hōlanikū Manawai Unnamed Holoikauaua Mokupāpapa Seamount Kure Atoll Pearl & Hermes Atoll 582,578 square miles, only six square miles of land Helsley Seamount Ladd Seamount Kamole Kauō ‘Ōnūnui, ‘Ōnūiki Photo by Mark Sullivan/NOAA Laysan Island Photo by NOAA/OER Endemic Sanctuary Pūhāhonu New Discoveries The monument is home to many species found Kuaihelani Gardner Pinnacles The majority of the seafloor in the Northwestern nowhere else on Earth and is a critically important Pihemanu Salmon Hawaiian Islands lies at depths below 10,000 feet nesting ground for green sea turtles and breeding Bank (3,000 meters). Using advanced technologies like ground for Hawaiian monk seals.
    [Show full text]
  • Molokai Hawaii Forgotten
    Molokai -Forgotten By ETHEL A. STARBIRD NATIONAL GEOGRAPHic sENIOR STAFF Photographs by RICHARD Casting away care, Sister Richard Marie takes a day off near Molokai's leprosy hospital, where she has worked Hawaii since 1960. Independent, resourceful, generous, she shares the best qualities A. COOKE III of Hawaii's most unspoiled major island. 189 Like thirsty giants, the volcanic peaks of Molokai's eastern end steal rainfall from its flat, dry western end. Polynesians from the Marquesas Islands came to Hawaii about 1,200 years ago. They eventually settled on this island in numbers National Geographic, August 1981 far greater than today'll 6,000 population. The semicircular walls of coral and basalt seen in the shallow waters in the foreground enclose fishponds once used to capture and fatten mullet and other saltwater species for island royalty. Molokai-Forgotten Hawaii 191 Beyond the farthest road a primeval world unfolds in the lush valleys of the northeastern coast. The chill waters of Kahiwa Falls (left) drop 1,750 feet to the sea in Hawaii's longest cascade. Deep in the island's forest reserve, spray from another waterfall (above) mingles with the scent of eucalyptus and wild ginger. Amaumau ferns (right, center) stand as tall as six feet. For centuries, Molokai was revered as a place where religious rituals were performed by powerful kahuna, or priests. One of the most famous, Lanikaula, is said to be buried in a grove of kukui trees near the island's eastern tip (below right). To make lamp oil, Hawaiians traditionally took nuts from the kukui, now a symbol of Molokai.
    [Show full text]
  • State of Hawaii Community Health Needs Assessment
    State of Hawaii Community Health Needs Assessment February 28, 2013 Table of Contents Executive Summary .............................................................................................................................. 4 Introduction .................................................................................................................................................. 4 Approach ....................................................................................................................................................... 4 Data Sources and Methods ........................................................................................................................... 4 Areas of Need ................................................................................................................................................ 5 Selected Priority Areas ................................................................................................................................. 6 Note to the Reader ....................................................................................................................................... 6 1 Introduction ..................................................................................................................................... 1 1.1 Summary of CHNA Report Objectives and context ............................................................................. 1 1.1.1 Healthcare Association of Hawaii ................................................................................................
    [Show full text]
  • Effectiveness of Social Stimuli in Attracting Laysan Albatross to New Potential Nesting Sites
    EFFECTIVENESS OF SOCIAL STIMULI IN ATTRACTING LAYSAN ALBATROSS TO NEW POTENTIAL NESTING SITES RICHARD H. PODOLSKY • Universityof Michigan,School of Natural Resources,Ann Arbor,Michigan 48109 USA Al•sTRACT.--Seabirdcolonies usually grow as first-time breeders join existing groups. I testedthe hypothesisthat the presenceof conspecifics,specifically the sight and sound of establishedbreeders, was the stimulus responsiblefor first-time breeders to join existing colonies.The attractivepower of conspecificswas testedby presentingto conspecificsmodels of LaysanAlbatross (Diomedea immutabilis) in severalbehavior postures, with accompanying recordings of vocalizations. I found that Laysan Albatross landed more frequently in areas where both albatrossmodels and vocalizationswere present than in areaswith only visual stimuli or no vocal stimuli. Landing albatrossand those on the ground were found nearer to the artificial social stimuli than would be expectedfrom a random distribution. Three- dimensionalmodels were more attractivethan two-dimensionalmodels, and paired models were more attractive than single models for both three-dimensionaland two-dimensional models.Three-dimensional models in a sky-pointingposture were the mostattractive overall, whereas models in head-forward posture were the most attractive two-dimensional models. Albatrossexhibited courtshipbehavior closerto the modelsthan would be expectedfrom a random distribution. The implicationsof attraction to endangeredbird managementand restorationare discussed.Received 3 April 1989,accepted
    [Show full text]
  • Ethnohistory of Puna
    Research in Action: Ethnohistory of Puna: Davianna Pōmaikaʻi McGregor Praxis: exercise or practice of an art, science or skill. Praxis distinguishes Ethnic Studies from the long-established disciplines of the social sciences. Ethnic Studies faculty are committed to placing research at the service of the community and challenging students to examine and analyze contemporary issues of concern to Hawaiʻi’s ethnic communities from diverse perspectives. The clash between the beliefs, customs, and practices of Hawaiian descendants of Pele (Hawaiian goddess of the volcano) and the developers of geothermal energy is one of the issues which drew upon the resources of Ethnic Studies faculty and students.1 The issue evolved as the federal and state governments partnered with private corporations to clear the largest remaining lowland rainforest in Hawaiʻi for geothermal wells and power plants. In response, Hawaiians filed several civil suits, organized religious ceremonies in the volcanic rainforest, produced documentary films and joined with environmentalists in public protests. A key turning point in the struggle was a ruling by the US federal court that an Environmental Impact Study (EIS) was required for the project to proceed. Where proposed development projects funded by the federal government affect native peoples, new historic preservation laws mandated the inclusion of a cultural impact study in the EIS. Thus, for the first time since the passage of the new laws, a cultural impact study was conducted for native Hawaiians in Hawaiʻi. The First Cultural Impact Study on Native Hawaiians University of Hawaiʻi faculty from the Ethnic Studies Department, the Department of Urban and Regional Planning and the School of Social Work were contracted to conduct the study.2 The team drew upon the individual skills and experiences of their faculty and developed a multi-method approach for the study.
    [Show full text]
  • MILLERBIRD Acrocephalus Familiaris Native Resident, Endemic, Endangered A.F
    MILLERBIRD Acrocephalus familiaris native resident, endemic, endangered A.f. familiaris (Laysan) Laysan subspecies extinct A.f. kingi (Nihoa) The Millerbird is an endemic resident in the Northwestern Hawaiian Islands (AOU 1998), having likely colonized the archipelago from Asia or other Pacific Island groups (Bryan 1940; Berger 1972, 1981; E 31:47). Acrocephalus warblers have widely colonized the Pacific Basin (Pratt et al. 1987, Wiles 2005, Cibois et al. 2011), and Millerbird has been found to be genetically distant from other Pacific congeners (AOU 1983, Fleischer et al. 2007), being the first to diverge from other taxa within a Polynesian clade (Cibois et al. 2011). Cassin (1858) followed by Dole (1869, 1879) reported an Acrocephalus warbler (as "Tatare otaiensis") in the marshes of Kaua'i and Hawai'i, which caused Rothschild (1900) and Bryan (1901a) to consider it a possibility on these islands, but Cassin was apparently referring to Acrocephalus caffer which is not found in Hawaii (see Tahiti Reed Warbler). No subfossil evidence exists for the occurrence of Acrocephalus in the Southeastern Hawaiian Islands (Olson and Ziegler 1995), which is curious given the genus' widespread distribution within the Pacific Basin (Bryan 1940). Two subspecies of Millerbird have been found, on Laysan and Nihoa, which are distinct and could be treated as different species (Wetmore 1924, Munro 1944, Olson and Ziegler 1995, Olson 1996b, Fleischer et al. 2007) but most regard them as subspecies (see Synonymies). See Banko (1979) for locations of 104 specimens of Millerbird, and Morin et al. (1997) for a summary of the natural history and biology of the species.
    [Show full text]