State of New York Public Service Commission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
P501 Numerical Simulation of Wind Power Potential in Upstate New York
P501 NUMERICAL SIMULATION OF WIND POWER POTENTIAL IN UPSTATE NEW YORK Robert Ballentine *, Scott Steiger and Daniel Phoenix State University of New York at Oswego 1. INTRODUCTION 2. METHODOLOGY Consistent with the national goal of moving away 2.1 Grid Arrangement from our dependence on carbon-based fuels, there is considerable interest in New York State in developing We are running the ARW-core of WRF on a wind power especially in areas with highest potential. doubly-nested grid (Fig. 1) to ensure that both large- The purpose of this research is to simulate low-level scale meteorological forcing and local geographical winds over upstate New York by running the Weather effects are well-represented. The grid spacings of the Research and Forecasting (WRF, Skamarock, et al large, intermediate and fine grids are 12 km, 4 km and 2005) model every day on a high-resolution (1.333 1.333 km respectively. We use 33 sigma levels where km) domain. Using the standard wind speed-versus- the lowest levels correspond to 10m, 40m and 80m power generation curve for a GE 1.5 MW wind above ground under typical meteorological conditions. turbine, we can estimate the monthly and seasonal We employ the Noah LSM and Yonsei PBL schemes. average wind power potential at all of our grid points (covering much of upstate New York and adjacent Lake Ontario). To determine the accuracy of WRF wind predictions, we are comparing winds simulated by WRF at 10 m AGL with hourly observations at three regularly reporting sites near Lake Ontario. 1.1 Brief Description of Wind Power Sites As of November 2009, New York State had more than 1200 MW of wind generating capacity from sites such as Horizon Wind Energy's Maple Ridge Wind Farm in Lewis County and farms operated by Noble Environmental Power in Clinton, Franklin and Wyoming Counties. -
US Department of Energy Wind and Hydropower Technologies: Top 10 Program Accomplishments
U.S. Department of Energy Wind and Hydropower Technologies Top 10 Program Accomplishments U.S. Department of Energy Wind and Hydropower Technologies Top 10 Program Accomplishments Important activities or technologies developed by or with the support of the Wind Energy Program that have led to the vibrant wind energy market of today. Advancing Wind Turbines Clipper Windpower Wind Powered Electricity 2.5-MW Liberty wind Although the wind has been harnessed to deliver power for centuries, it was only as turbine, Medicine Bow, Wyoming, 2006. recently as the 1970s, through the efforts of the U.S. Department of Energy’s (DOE’s) new Wind Energy Program, that wind power evolved into a viable source for clean commercial power. During that decade, the Wind Energy Program designed, built, and tested the 100-kilowatt (kW) “Mod” series (100 kW was the benchmark for large wind at the time) of wind turbines. These early machines proved the feasibility of large turbine technology and paved the way for the multimegawatt wind turbines in use today. DOE’s MOD-5B 3.2-MW wind turbine, Kahuku, Oahu, Hawaiian GE Energy 1.5-MW wind turbine, Islands, 1987. Hagerman, Idaho, 2005. The Quintessential American Turbine Wind Energy Program researchers have worked with GE Energy and its predeces- sors, Zond and Enron Wind, since the early 1990s to test components such as blades, generators, and control systems on vari- ous generations of machines. This work led to the development of GE’s 1.5-megawatt (MW) wind turbine. By the end of 2007, more than 6,500 of these turbines, gener- ally considered the quintessential American wind turbine, had been installed worldwide. -
Wind Powering America FY07 Activities Summary
Wind Powering America FY07 Activities Summary Dear Wind Powering America Colleague, We are pleased to present the Wind Powering America FY07 Activities Summary, which reflects the accomplishments of our state Wind Working Groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. At the beginning of 2007, there were more than 11,500 megawatts (MW) of wind power installed across the United States, with an additional 4,000 MW projected in both 2007 and 2008. The American Wind Energy Association (AWEA) estimates that the U.S. installed capacity will exceed 16,000 MW by the end of 2007. When our partnership was launched in 2000, there were 2,500 MW of installed wind capacity in the United States. At that time, only four states had more than 100 MW of installed wind capacity. Seventeen states now have more than 100 MW installed. We anticipate five to six additional states will join the 100-MW club early in 2008, and by the end of the decade, more than 30 states will have passed the 100-MW milestone. WPA celebrates the 100-MW milestones because the first 100 megawatts are always the most difficult and lead to significant experience, recognition of the wind energy’s benefits, and expansion of the vision of a more economically and environmentally secure and sustainable future. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. -
U.S. Wind Turbine Manufacturing: Federal Support for an Emerging Industry
U.S. Wind Turbine Manufacturing: Federal Support for an Emerging Industry Updated January 16, 2013 Congressional Research Service https://crsreports.congress.gov R42023 U.S. Wind Turbine Manufacturing: Federal Support for an Emerging Industry Summary Increasing U.S. energy supply diversity has been the goal of many Presidents and Congresses. This commitment has been prompted by concerns about national security, the environment, and the U.S. balance of payments. Investments in new energy sources also have been seen as a way to expand domestic manufacturing. For all of these reasons, the federal government has a variety of policies to promote wind power. Expanding the use of wind energy requires installation of wind turbines. These are complex machines composed of some 8,000 components, created from basic industrial materials such as steel, aluminum, concrete, and fiberglass. Major components in a wind turbine include the rotor blades, a nacelle and controls (the heart and brain of a wind turbine), a tower, and other parts such as large bearings, transformers, gearboxes, and generators. Turbine manufacturing involves an extensive supply chain. Until recently, Europe has been the hub for turbine production, supported by national renewable energy deployment policies in countries such as Denmark, Germany, and Spain. However, support for renewable energy including wind power has begun to wane across Europe as governments there reduce or remove some subsidies. Competitive wind turbine manufacturing sectors are also located in India and Japan and are emerging in China and South Korea. U.S. and foreign manufacturers have expanded their capacity in the United States to assemble and produce wind turbines and components. -
Kawailoa Wind Power Draft HCP Amendment
Kawailoa Wind Power Draft Habitat Conservation Plan Amendment Applicant Kawailoa Wind, LLC 1166 Avenue of the Americas, 9th Floor New York, NY 10036 HCP Amendment Prepared by: Tetra Tech, Inc. 737 Bishop Street, Suite 2340 Honolulu, HI 96813 Revised September 2018 This page intentionally left blank Kawailoa Wind Draft Habitat Conservation Plan Amendment Table of Contents Introduction and Project Overview ................................................................................... 1 1.1 Summary ................................................................................................................ 1 1.1.1 Hawaiian Hoary Bat .............................................................................................. 1 1.1.2 Hawaiian Petrel .................................................................................................... 4 1.2 Applicant Background ................................................................................................ 4 1.3 Regulatory Context ................................................................................................... 4 1.4 Project Description ................................................................................................... 4 1.4.1 Project History ..................................................................................................... 5 1.4.2 Project Design and Components ............................................................................. 5 1.4.3 Purpose and Need for Kawailoa Wind Project ........................................................... -
Wind Power Today, 2010, Wind and Water Power Program
WIND AND WATER POWER PROGRAM Wind Power Today 2010 •• BUILDING•A•CLEAN• ENERGY •ECONOMY •• ADVANCING•WIND• TURBINE •TECHNOLOGY •• SUPPORTING•SYSTEMS•• INTERCONNECTION •• GROWING•A•LARGER• MARKET 2 WIND AND WATER POWER PROGRAM BUILDING•A•CLEAN•ENERGY•ECONOMY The mission of the U.S. Department of Energy Wind Program is to focus the passion, ingenuity, and diversity of the nation to enable rapid expansion of clean, affordable, reliable, domestic wind power to promote national security, economic vitality, and environmental quality. Built in 2009, the 63-megawatt Dry Lake Wind Power Project is Arizona’s first utility-scale wind power project. Building•a•Green•Economy• In 2009, more wind generation capacity was installed in the United States than in any previous year despite difficult economic conditions. The rapid expansion of the wind industry underscores the potential for wind energy to supply 20% of the nation’s electricity by the year 2030 as envisioned in the 2008 Department of Energy (DOE) report 20% Wind Energy by 2030: Increasing Wind Energy’s Contribution to U.S. Electricity Supply. Funding provided by DOE, the American Recovery and Reinvestment Act CONTENTS of 2009 (Recovery Act), and state and local initiatives have all contributed to the wind industry’s growth and are moving the BUILDING•A•CLEAN•ENERGY•ECONOMY• ........................2 nation toward achieving its energy goals. ADVANCING•LARGE•WIND•TURBINE•TECHNOLOGY• .....7 Wind energy is poised to make a major contribution to the President’s goal of doubling our nation’s electricity generation SMALL •AND•MID-SIZED•TURBINE•DEVELOPMENT• ...... 15 capacity from clean, renewable sources by 2012. The DOE Office of Energy Efficiency and Renewable Energy invests in clean SUPPORTING•GRID•INTERCONNECTION• .................... -
Coalition Initial Brief
To be Argued by: GARY A. ABRAHAM (Time Requested: 15 Minutes) New York Supreme Court Appellate Division—Fourth Department COALITION OF CONCERNED CITIZENS and Docket No.: DENNIS GAFFIN, as its President, OP 20-01406 Petitioners, – against – NEW YORK STATE BOARD ON ELECTRIC GENERATION SITING AND THE ENVRIONMENT, ALLE-CATT WIND ENERGY LLC, Respondents. BRIEF FOR PETITIONERS LAW OFFICE OF GARY A. ABRAHAM Gary A. Abraham, Esq. Attorney for Petitioners 4939 Conlan Road Great Valley, New York 14741 (716) 790-6141 [email protected] TABLE OF CONTENTS Page TABLE OF AUTHORITIES ............................................................................ ii PRELIMINARY STATEMENT OF MATERIAL FACTS ............................. 1 QUESTIONS PRESENTED ............................................................................. 3 SCOPE OF REVIEW........................................................................................ 4 PSL ARTICLE 10 ............................................................................................. 4 POINT I THE SITING BOARD ERRED IN FINDING THAT ALLE-CATT COMPLIES WITH THE TOWN OF FREEDOM’S LOCAL LAW GOVERNING WIND ENERGY FACILITIES ..................................................... 5 POINT II THE SITING BOARD DECLINED TO BALANCE THE PROJECT’S THEORETICAL BENEFITS AGAINST DEMONSTRABLE ADVERSE LOCAL IMPACTS .......................................................................... 9 1. No local or regional land us plan supports the Alle- Catt project ................................................................... -
Wind Energy in NY State
2010 New York State Wind Energy Study Final Report Source: Milian, Chris; www.photosfromonhigh.com Submitted by: Christina Hoerig Kimballe Campbell Daniel Grew Nicole Gumbs Happiness Munedzimwe Sandeep George Jun Wan Timothy Komsa Karl Smolenski Tyler Coatney Cornell University II Table of Contents Table of Contents .................................................................................................................II List of Figures .................................................................................................................... VI List of Tables ..................................................................................................................... VII 1 Executive Summary ................................................................................................. VIII 2 Introduction ................................................................................................................10 3 New York State Present Energy Supply/Demand ....................................................14 3.1 New York Energy Background ............................................................................14 3.2 Current NYS Wind Power ...................................................................................16 3.3 Near Term Growth of New York State Wind Power .............................................17 3.4 Progress of Other Renewables in New York State ..............................................19 3.5 Power Demand in Tompkins County ...................................................................19 -
POWER TRENDS 2016 the Changing Energy Landscape
POWER TRENDS 2016 THE CHANGING ENERGY LANDSCAPE New York Independent System Operator Power Trends 2016 is printed on Mohawk Options 100% PC, which is made with 100% post-consumer recycled fiber, and manufactured entirely with Green-e certified wind-generated electricity. The New York Independent System Operator (NYISO) is a not- for-profit corporation responsible for operating the state’s bulk electricity grid, administering New York’s competitive wholesale electricity markets, conducting comprehensive long-term planning for the state’s electric power system, and advancing the technological infrastructure of the electric system serving the Empire State. Data used in Power Trends 2016, unless otherwise noted, are from the 2016 Load and Capacity Data Report (also known as the “Gold Book”). Published annually by the NYISO, the “Gold Book” presents New York Control Area system, transmission and generation data and NYISO load forecasts for the 2016 – 2026 period. It includes forecasts of peak demand, energy requirements, energy efficiency, and emergency demand response; existing and proposed resource capacity; and existing and proposed transmission facilities. The “Gold Book” and other NYISO publications are available on the NYISO website, www.nyiso.com. POWER TRENDS: BY THE NUMBERS Renewable Resources Power Resources 2016 2016 Total Circuit Miles of Demand Response Total Generating Summer 2016 Summer 2016 Capacity Transmission 11,124 miles Projected Special Case Total Renewable 38,576 Megawatts Resources Resource Capability 1,248 Megawatts -
Wind Powering America Fy08 Activities Summary
WIND POWERING AMERICA FY08 ACTIVITIES SUMMARY Energy Efficiency & Renewable Energy Dear Wind Powering America Colleague, We are pleased to present the Wind Powering America FY08 Activities Summary, which reflects the accomplishments of our state Wind Working Groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. At the beginning of 2008, there were more than 16,500 megawatts (MW) of wind power installed across the United States, with an additional 7,000 MW projected by year end, bringing the U.S. installed capacity to more than 23,000 MW by the end of 2008. When our partnership was launched in 2000, there were 2,500 MW of installed wind capacity in the United States. At that time, only four states had more than 100 MW of installed wind capacity. Twenty-two states now have more than 100 MW installed, compared to 17 at the end of 2007. We anticipate that four or five additional states will join the 100-MW club in 2009, and by the end of the decade, more than 30 states will have passed the 100-MW milestone. WPA celebrates the 100-MW milestones because the first 100 megawatts are always the most difficult and lead to significant experience, recognition of the wind energy’s benefits, and expansion of the vision of a more economically and environmentally secure and sustainable future. Of course, the 20% Wind Energy by 2030 report (developed by AWEA, the U.S. Department of Energy, the National Renewable Energy Laboratory, and other stakeholders) indicates that 44 states may be in the 100-MW club by 2030, and 33 states will have more than 1,000 MW installed (at the end of 2008, there were six states in that category). -
Nine Mile Point Units 1 & 2 Application for Renewed Operating Licenses
Applicant’s Environmental Report - Operating License Renewal Stage Nine Mile Point Nuclear Station Docket Nos. 50-220 and 50-410 License Nos. DPR-63 and NPF-69 May 2004 NINE MILE POINT NUCLEAR STATION LICENSE RENEWAL APPLICATION ENVIRONMENTAL INFORMATION TABLE OF CONTENTS 1.0 PURPOSE OF AND NEED FOR ACTION ........................................................ 1-1 1.1 Introduction and Background............................................................................. 1-1 1.2 Statement of Purpose and Need ....................................................................... 1-2 1.3 Environmental Scope and Methodology ............................................................ 1-3 1.4 Nine Mile Point Units 1 & 2 Licensee and Ownership........................................ 1-6 1.5 References ........................................................................................................ 1-7 2.0 SITE AND ENVIRONMENTAL INTERFACES.................................................. 2-1 2.1 Location and Features....................................................................................... 2-1 2.2 Hydrology .......................................................................................................... 2-7 2.2.1 Lake Ontario Hydrology ...................................................................... 2-7 2.2.2 Groundwater Aquifers and Use........................................................... 2-9 2.3 Biological Resources ...................................................................................... -
Bats and Wind Energy: Impacts, Mitigation, and Tradeoffs
WHITE PAPER Bats and Wind Energy: Impacts, Mitigation, and Tradeoffs Prepared by: Taber D. Allison, PhD, AWWI Director of Research Novermber 15, 2018 AWWI White Paper: Bats and Wind Energy: Impacts, Mitigation, and Tradeoffs American Wind Wildlife Institute 1110 Vermont Ave NW, Suite 950 Washington, DC 20005 www.awwi.org For Release November 15, 2018 AWWI is a partnership of leaders in the wind industry, wildlife management agencies, and science and environmental organizations who collaborate on a shared mission: to facilitate timely and responsible development of wind energy while protecting wildlife and wildlife habitat. Find this document online at www.awwi.org/resources/bat-white-paper/ Acknowledgements This document was made possible by the generous support of AWWI’s Partners and Friends. We thank Pasha Feinberg, Amanda Hale, Jennie Miller, Brad Romano, and Dave Young for their review and comment on this white paper. Prepared By Taber D. Allison, PhD, AWWI Director of Research Suggested Citation Format American Wind Wildlife Institute (AWWI). 2018. Bats and Wind Energy: Impacts, Mitigation, and Tradeoffs. Washington, DC. Available at www.awwi.org. © 2018 American Wind Wildlife Institute. Bats and Wind Energy: Impacts, Mitigation, and Tradeoffs Contents Purpose and Scope .............................................................................................................................................. 3 Bats of the U.S. and Canada ..............................................................................................................................