Wind Energy & Wind Park Siting and Zoning Best Practices And

Total Page:16

File Type:pdf, Size:1020Kb

Wind Energy & Wind Park Siting and Zoning Best Practices And 2012 Wind Energy & Wind Park Siting and Zoning Best Practices and Guidance for States NARUC Grants & Research January 2012 NARUC The National Association A report for the Minnesota Public Utilities of Regulatory Commission Funded by the U.S. Department of Utility Energy Commissioners The report you are reading was created under the State Electricity Regulators Capacity Assistance and Training (SERCAT) program, a project of the National Association of Regulatory Utility Commissioners (NARUC) Grants & Research Department. This material is based upon work supported by the Department of Energy under Award Number DE-OE0000123. The report was authored by Tom Stanton. Throughout the preparation process, the members of NARUC provided the author(s) with editorial comments and suggestions. However, the views and opinions expressed herein are strictly those of the author(s) and may not necessarily agree with positions of NARUC or those of the U.S. Department of Energy. Special thanks to the Commissioners and staff at the Minnesota Public Utilities Commission for guiding this work, and to the Office of Electricity Delivery and Energy Reliability and the National Energy Technology Lab for their continued technical assistance to NARUC. Please direct questions regarding this report to Miles Keogh, NARUC’s Director of Grants & Research, [email protected]; (202) 898-2200. Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Put It There! – Wind Energy & Wind-Park Siting and Zoning Best Practices and Guidance for States Tom Stanton Principal for Electricity January 2012 12-03 © 2012 National Regulatory Research Institute This page intentionally blank. Acknowledgments This material is based upon work supported by the Department of Energy, National Energy Technology Laboratory under Award Number(s) DE-OE0000123. This paper results from a National Association of Regulatory Utility Commissioners (NARUC) grant for State Electricity Regulators Capacity Assistance and Training (SERCAT). Funding for the NARUC SERCAT program is provided under a cooperative agreement between NARUC and the U.S. Department of Energy (DOE) and National Energy Technology Laboratory (NETL). NRRI is grateful to NARUC, the DOE, and NETL for supporting SERCAT and this project. The author wishes to thank these colleagues from the National Regulatory Research Institute. Without their assistance, this project would not have been possible. Deborah Luyo, Research Assistant, assiduously obtained, edited, and verified current information for the survey of wind siting and zoning practices presented in Appendix A and helped check the accuracy of the summary of the state surveys reported in Part II. Leah Goodwin supported this project with her expert editing and desktop-publishing skills. In addition to those colleagues from NRRI, I wish to thank: Tricia DeBleeckere, staff at the Minnesota Public Utilities Commission, for her continuing consultation. Ben Hoen from Lawrence Berkeley National Laboratory, for his careful reading and helpful suggestions. James McElfish of the Environmental Law Institute, whose 2011 report, State Enabling Legislation for Commercial-Scale Wind Power Siting and the Local Government Role, was an important resource for understanding practices in the states, and for helping us to correct several errors in our initial survey work. Charles McKeown of Michigan State University, Martin (“Mike”) Pasqualetti of Arizona State University, and Roopali Phadke of Macalester College, who generously shared reference materials and provided encouragement for this work. Victoria Pebbles and the staff and my colleagues who participate in the Great Lakes Wind Collaborative, whose excellent work in summarizing practices in the Great Lakes states (and the neighboring Canadian provinces of Ontario and Quebec) and important Best Practices guidebook helped inform this project. My colleagues who participate in Michigan’s State Wind Outreach Team (SWOT), for their ongoing efforts to provide the best available information and educate the Michigan public, including me, about wind energy technology, policy, and implementation. Paul Gipe, keeper of the website www.wind-works.org, for his long-standing diligence in indexing news items and sharing references about wind energy. Any inaccuracies, mistakes, or omissions are my responsibility. Comments, corrections, editorial guidance, and new information to update this report and the survey results are welcome. Comments can be submitted to: Tom Stanton, Principal for Electricity National Regulatory Research Institute [email protected] (517) 775-7764 i Online Access This paper can be accessed online via the National Regulatory Research Institute website at http://www.nrri.org/pubs/electricity/NRRI_Wind_Siting_Jan12-03.pdf. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ii Table of Contents Acknowledgments .................................................................................................... i Online Access ........................................................................................................... ii Disclaimer ................................................................................................................ ii Table of Contents ................................................................................................... iii Table of Figures and Tables .................................................................................... v Executive Summary .......................................................................................... ES-1 Introduction .............................................................................................................. 1 I. Current Status ................................................................................................ 3 A. Summary information from the survey of state practices ................................................... 5 1. Responsibility for siting and zoning and certificates of necessity: state, local, or both ............................................................................................... 13 2. A primary rule about local authority: Home Rule versus Dillon’s Rule.............. 14 3. Mandatory evaluation criteria, voluntary guidelines, model ordinances, setback and sound standards, and local ordinances ............... 15 4. Supporting policies: clean energy portfolio standards and goals, promoting in-state wind energy facilities, and renewable energy zones ............. 16 B. The nature of wind-park opposition and list of major concerns ....................................... 17 II. Best Practices for Wind Siting and Zoning Procedures .......................... 22 A. Develop procedures that result in clarity, predictability, and transparency ...................... 23 B. Establish one-stop, pre-submission consultation for applicants ....................................... 23 C. Identify and map constrained and preferred wind energy development zones ................. 23 D. Include preferred development zones in transmission plans............................................. 24 iii E. Prepare and make readily available guidelines for participants ........................................ 25 F. Prepare and make available for local siting and zoning officials guidelines, checklists, technical resources, and model ordinances ................................... 25 G. Ensure that the sequence for obtaining permits and approvals meets requirements to allow development of suitable projects ........................................ 26 III. Guidelines for Implementing Wind-Park Siting and Zoning Criteria and Setback Distances ................................................................................. 27 A. Avoiding or mitigating public health and safety, nuisance and annoyance issues .......... 28 1. Noise, sound, and infrasound ..............................................................................
Recommended publications
  • The Economic Benefits of Kansas Wind Energy
    THE ECONOMIC BENEFITS OF KANSAS WIND ENERGY NOVEMBER 19, 2012 Prepared By: Alan Claus Anderson Britton Gibson Polsinelli Shughart, Vice Chair, Polsinelli Shughart, Shareholder, Energy Practice Group Energy Practice Group Scott W. White, Ph.D. Luke Hagedorn Founder, Polsinelli Shughart, Associate, Kansas Energy Information Network Energy Practice Group ABOUT THE AUTHORS Alan Claus Anderson Alan Claus Anderson is a shareholder attorney and the Vice Chair of Polsinelli Shughart's Energy Practice Group. He has extensive experience representing and serving as lead counsel and outside general counsel to public and private domestic and international companies in the energy industry. He was selected for membership in the Association of International Petroleum Negotiators and has led numerous successful oil and gas acquisitions and joint development projects domestically and internationally. Mr. Anderson also represents developers, lenders, investors and suppliers in renewable energy projects throughout the country that represent more than 3,500 MW in wind and solar projects under development and more than $2 billion in wind and solar projects in operation. Mr. Anderson is actively involved in numerous economic development initiatives in the region including serving as the Chair of the Kansas City Area Development Council's Advanced Energy and Manufacturing Advisory Council. He received his undergraduate degree from Washington State University and his law degree from the University of Oklahoma. Mr. Anderson can be reached at (913) 234-7464 or by email at [email protected]. Britton Gibson Britton Gibson is a shareholder attorney in Polsinelli Shughart’s Energy Practice Group and has been responsible for more than $6 billion in energy-related transactions.
    [Show full text]
  • AWEA U.S. Wind Industry First Quarter 2012 Market Report
    AWEA U.S. Wind Industry First Quarter 2012 Market Report A Product of AWEA Data Services During the first quarter of 2012, the U.S. wind industry installed 1,695 megawatts (MW) across 17 states. This brings cumulative U.S. wind power capacity installations to 48,611 MW through the end of March 2012. There are currently over 8,900 MW under construction across 31 states plus Puerto Rico. Table of Contents Summary 3 U.S. Annual and Cumulative Wind Power Growth 4 U.S. Wind Power Capacity Installations by Quarter 5 U.S. Wind Power Capacity Installations, Top States 6 U.S. Wind Power Capacity Installations by State 7 Wind Project Locations 8 Wind Power Capacity Under Construction 9 Wind Power Capacity Installations and Under Construction, by Region 10 Power Offtake Status for New U.S. Wind Power Capacity in 2012 11 U.S. Wind Projects Completed in First Quarter of 2012 12 U.S. Wind Projects Under Construction as of First Quarter of 2012 14 Power Purchase Agreements Signed in 2012 19 Electric Utility Requests for Proposals (RFPs) in 2012 20 American Wind Energy Association | U.S. Wind Industry First Quarter Market Report 2012 | AWEA Wind Market Analysis Suite Version | 2 Summary Projects Online 1Q 2011 • The U.S. wind industry installed 1,695 MW during the first quarter of 2012 bringing the total U.S. wind power capacity installations to 48,611 MW (pg.4) • The U.S. wind industry installed 52% more MW during the first quarter of 2012 than the first quarter of 2011 (pg.5) • Five traditional wind power states (CA, OR, TX, WA and PA) installed the most new capacity during the first quarter of 2012, but New Hampshire and Arizona grew the fastest (pg.6) • There are utility-scale wind installations across 38 states and 14 states have more than 1,000 MW (pg.7) • The 788 turbines installed during the first quarter of 2012 had an average capacity of 2.15 MW (pg.12-13) • Thirty-two projects were installed across 17 states during the first quarter of 2012 (pg.12-13) • Turbines from 11 different manufacturers, ranging from 900 kW to 3.0 MW were installed (pg.
    [Show full text]
  • TOP 100 POWER PEOPLE 2016 the Movers and Shakers in Wind
    2016 Top 100 Power People 1 TOP 100 POWER PEOPLE 2016 The movers and shakers in wind Featuring interviews with Samuel Leupold from Dong Energy and Ian Mays from RES Group © A Word About Wind, 2016 2016 Top 100 Power People Contents 2 CONTENTS Compiling the Top 100: Advisory panel and ranking process 4 Interview: Dong Energy’s Samuel Leupold discusses offshore 6 Top 100 breakdown: Statistics on this year’s table 11 Profiles: Numbers 100 to 41 13 Interview: A Word About Wind meets RES Group’s Ian Mays 21 Profiles: Numbers 40 to 6 26 Top five profiles:The most influential people in global wind 30 Top 100 list: The full Top 100 Power People for 2016 32 Next year: Key dates for your diary in 2017 34 21 Facing the future: Ian Mays on RES Group’s plans after his retirement © A Word About Wind, 2016 2016 Top 100 Power People Editorial 3 EDITORIAL resident Donald Trump. It is one of The company’s success in driving down the Pthe biggest shocks in US presidential costs of offshore wind over the last year history but, in 2017, Trump is set to be the owes a great debt to Leupold’s background new incumbent in the White House. working for ABB and other big firms. Turn to page 6 now if you want to read the The prospect of operating under a climate- whole interview. change-denying serial wind farm objector will not fill the US wind sector with much And second, we went to meet Ian Mays joy.
    [Show full text]
  • Wind Powering America FY07 Activities Summary
    Wind Powering America FY07 Activities Summary Dear Wind Powering America Colleague, We are pleased to present the Wind Powering America FY07 Activities Summary, which reflects the accomplishments of our state Wind Working Groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. At the beginning of 2007, there were more than 11,500 megawatts (MW) of wind power installed across the United States, with an additional 4,000 MW projected in both 2007 and 2008. The American Wind Energy Association (AWEA) estimates that the U.S. installed capacity will exceed 16,000 MW by the end of 2007. When our partnership was launched in 2000, there were 2,500 MW of installed wind capacity in the United States. At that time, only four states had more than 100 MW of installed wind capacity. Seventeen states now have more than 100 MW installed. We anticipate five to six additional states will join the 100-MW club early in 2008, and by the end of the decade, more than 30 states will have passed the 100-MW milestone. WPA celebrates the 100-MW milestones because the first 100 megawatts are always the most difficult and lead to significant experience, recognition of the wind energy’s benefits, and expansion of the vision of a more economically and environmentally secure and sustainable future. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders.
    [Show full text]
  • Wind Energy Production: Legal Issues and Related Liability Concerns for Landowners
    Wind Energy Production: Legal Issues and Related Liability Concerns for Landowners 2321 N. Loop Drive, Ste 200 Ames, Iowa 50010 www.calt.iastate.edu Updated June 20, 2011 ‐ by Roger A. McEowen* Overview Current Emphasis On Wind-Generated Electricity Farmers have long used the wind. Beginning in the 1800’s, farmers in the United States installed In large part, the current push for wind- several million windmills across the Midwest generated electricity (and other forms of and Plains to pump water and (later) generate “renewable” energy) is based in power for lights and radios. Those windmills fit environmentalism.4 Concerns over the nicely into the existing landscape and generally environment began to be raised in the U.S. did not create problems for others. Today, during the 1960s and the 1970s. These concerns however, the wind energy industry is using the have had a profound impact on the political wind in a different manner by virtue of large- debate surrounding the belief by some in “global scale aerogenerators1 that have a tremendous climate change.”5 Proponents of wind energy impact on the visual landscape and the rural claim that wind generated electricity reduces culture.2 In some communities, wind energy emissions of carbon dioxide, which they claim development has raised issues between (contrary to a scientific study by the U.S. neighbors, between private landowners and wind National Academy of Sciences) is a significant energy development companies, and between contributor to “global warming.”6 local officials and development companies.3 Note: The National Research Council of Some farmers and other rural landowners have the National Academies concluded in a 2007 entered into long-term agreements with wind study that even under the most optimistic energy companies for the placement and conditions, the U.S.
    [Show full text]
  • WHERE IS ELECTRIC GENERATION HEADED? Rodney Andrews, Phd
    WHERE IS ELECTRIC GENERATION HEADED? Rodney Andrews, PhD PE Director UK Center for Applied Energy Research The Annual Energy Outlook 2020 (January 29, 2020) 2 Key Takeaways from U.S. Energy Information Administration’s Annual Energy Outlook 2020 • The electricity generation mix continues to experience a rapid rate of change, with renewables the fastest‐growing source of electricity generation through 2050 because of continuing declines in the capital costs for solar and wind that are supported by federal tax credits and higher state‐level renewables targets. With slow load growth and increasing electricity production from renewables, U.S. coal‐fired and nuclear electricity generation declines; most of the decline occurs by the mid‐2020s. • The United States continues to produce historically high levels of crude oil and natural gas. Slow growth in domestic consumption of these fuels leads to increasing exports of crude oil, petroleum products, and liquefied natural gas. 3 Production grows faster than consumption with shift toward electrification Energy production (AEO2020 Reference case) Energy consumption by sector (AEO2020 Reference case) quadrillion British thermal units quadrillion British thermal units 2019 2019 50 50 history projections history projections dry natural gas 45 45 electric power 40 40 35 35 industrial 30 30 25 crude oil and lease 25 condensate transportation 20 other renewable energy 20 15 15 coal residential 10 natural gas plant 10 commercial liquids 5 nuclear 5 hydro 0 0 1990 2000 2010 2020 2030 2040 2050 1990 2000 2010 2020 2030 2040 2050 4 What is driving the energy markets nationally? • Future oil prices are highly uncertain and are subject to international market.
    [Show full text]
  • Financing Clean Energy: a FACT SHEET Powerful Tool for Driving Investment in Vermont’S Economy
    Financing Clean Energy: A FACT SHEET Powerful Tool for Driving Investment in Vermont’s Economy By encouraging private-sector investment in renewable energy products that support the development of clean energy and energy efficiency, strategies to finance clean energy are projects. Just as important, these programs raise awareness of playing an important role in transforming clean energy markets clean energy technologies and their benefits. Already New in the United States and other countries. Institutions that run York’s and Connecticut’s green banks and Rhode Island’s state clean energy financing programs can provide Infrastructure Bank are aiding the transition from government underwriting support, facilitate conversations with key incentives for clean energy to financial products funded stakeholders, and educate the public and lenders on primarily with private-sector capital. And many more states, technological options. including Vermont, have developed related loan programs for Based on the experiences of existing clean energy financing efficiency and renewable energy.1 initiatives, the Union of Concerned Scientists (UCS) has Typically, the performance of a clean energy financing analyzed the potential impact of expanded clean energy initiative is measured as a leverage ratio of private-sector to financing capacity in Vermont. According to this analysis, the public-sector funds invested. For example, Connecticut and state could leverage an initial capitalization of $7 million into a New York have achieved an average leverage ratio across their $148 million investment in renewable energy and energy programs of more than $5 of private funds to every $1 of public efficiency projects over the next 15 years. funds over recent years (Shrago and Healey 2016; NY Green Bank 2016; Connecticut Green Bank 2016).
    [Show full text]
  • Kawailoa Wind Power Draft HCP Amendment
    Kawailoa Wind Power Draft Habitat Conservation Plan Amendment Applicant Kawailoa Wind, LLC 1166 Avenue of the Americas, 9th Floor New York, NY 10036 HCP Amendment Prepared by: Tetra Tech, Inc. 737 Bishop Street, Suite 2340 Honolulu, HI 96813 Revised September 2018 This page intentionally left blank Kawailoa Wind Draft Habitat Conservation Plan Amendment Table of Contents Introduction and Project Overview ................................................................................... 1 1.1 Summary ................................................................................................................ 1 1.1.1 Hawaiian Hoary Bat .............................................................................................. 1 1.1.2 Hawaiian Petrel .................................................................................................... 4 1.2 Applicant Background ................................................................................................ 4 1.3 Regulatory Context ................................................................................................... 4 1.4 Project Description ................................................................................................... 4 1.4.1 Project History ..................................................................................................... 5 1.4.2 Project Design and Components ............................................................................. 5 1.4.3 Purpose and Need for Kawailoa Wind Project ...........................................................
    [Show full text]
  • Clean Energy Economy
    JUNE 2009 The Pew Charitable Trusts applies the power of knowledge to solve today’s most challenging problems. Our Pew Center on the States identifies and advances effective policy approaches to critical issues facing states, and our Pew Environment Group promotes practical, meaningful solutions to some of the world’s most pressing environmental problems. PEW CENTER ON THE STATES PEW ENVIRONMENT GROUP Susan Urahn, managing director Joshua Reichert, managing director Project Team Kevin Curtis Kil Huh Brendan Hill Phyllis Cuttino Lori Grange Jeannette Lam Laura Lightbody E. Brooks Riley Michele Mariani Vaughn Shannon Heyck-Williams Jill Antonishak Melissa Maynard Jane Breakell Carla Uriona, design Sean Greene Research Consultants: Collaborative Economics, Inc. ACKNOWLEDGMENTS This report benefited tremendously from the insights and expertise of an advisory panel and two additional external reviewers. These experts provided feedback and guidance at critical stages in the project. While they have screened the report for accuracy, neither they nor their organizations necessarily endorse its findings or conclusions. Advisory Panel: Marilyn Brown, professor, School of Public Policy, Georgia Institute of Technology; Doug Cameron, managing director and chief science advisor, Piper Jaffray; Joe Cortright, vice president and principal, Impresa; Jeff Finkle, CEcD, president and CEO, International Economic Development Council; Tim Woodward, managing director, Nth Power; and Joel S. Yudken, PhD, principal, High Road Strategies, LLC. External Reviewers: Mark Z. Jacobson, professor of Civil and Environmental Engineering and director, Atmosphere/Energy Program, Stanford University; and Joe Fargione, Lead Scientist, North America Region, The Nature Conservancy. We would like to thank our Pew colleagues—Andrew McDonald, Brandon MacGillis, Kymberly Escobar, Lisa Cutler, Janet Lane, Alyson Freedman and Jessica Riordan—for their assistance with communications and dissemination.
    [Show full text]
  • From: Wilkinson, Eric
    From: Wilkinson, Eric [mailto:[email protected]] Sent: Wednesday, January 30, 2013 11:13 AM To: Margolis, Anne Cc: McNamara, Ed; [email protected]; Krolewski, Mary-Jo Subject: VEGSPC Comments from ISO New England Hello, Please accept the attached comments from ISO New England. Do not hesitate to contact me if I can provide any more information to the Commission. Regards, Eric Wilkinson External Affairs ISO New England One Sullivan Road Holyoke, MA 01040 Office 413.540.4686 Mobile 413.387.7197 Fax 413.535.4379 [email protected] Please consider the impact to the environment and your responsibility before printing this e-mail. memo To: Vermont Energy Generation Siting Policy Commission From: Eric Wilkinson Date: January 30, 2013 Subject: Comments of ISO New England ISO New England (ISO) appreciates the opportunity to provide comments to the Vermont Energy Generation Siting Policy Commission (Commission). The ISO is a private, non-profit entity that serves as the regional transmission organization for New England. The ISO operates the New England bulk power system and administers New England’s organized wholesale electricity markets. Planning the bulk power system is also key a responsibility of the ISO. Part of this planning responsibility includes studying the potential reliability impacts of proposed new generation resources on the bulk power system. This is an important function as the ISO is responsible for maintaining reliability and must meet regional and national reliability criteria. The purpose of these comments is to make the Commission aware of the ISO’s role in the interconnection of energy generation resources.
    [Show full text]
  • Benjamin Umd 0117E 13555.Pdf
    ABSTRACT Dissertation Title: THE EFFECTS OF INFOMEDIARIES, NONMARKET STRATEGIES AND CORPORATE POLITICAL ACTION ON INNOVATION ADOPTION By: Scott Benjamin Management and Organization Department Robert H. Smith School of Business University of Maryland, College Park June 20, 2012 Directed By: Rhonda K. Reger, PhD Associate Professor Management and Organization Department Strategic management research has recently become interested in the role of strategies that effect social stakeholders, such as the media, and how they affect the adoption of technological innovation. This dissertation consists of two essays that investigate how these stakeholders affect technological innovation adoption and how firms can increase the likelihood of having their products adopted by influencing these stakeholders. The first essay takes a fine-grained approach at investigating how the content of media coverage influences the adoption of wind projects in the United States wind energy industry. By focusing on certain characteristics of media coverage, I develop a theoretical framework that examines how coverage facilitates perception formation of an innovation in the market. Using content analysis, I examine certain characteristics of media coverage including media attention, positivity of tenor, issue diversity, economic & aesthetic issues and complexity of messaging, and hypothesize about the impact these characteristics have on how quickly stakeholders coalesce around a unified vision of a new technology. The second essay builds on the first essay by exploring how firms employ strategies in both social and political markets in an attempt to influence different segments of the general environment. I argue theoretically that general environmental segments, such as sociocultural and political markets, that were typically thought of as exogenous to the firm may be impacted by the firm.
    [Show full text]
  • A Feasibility Study for Transitioning Louisville, Kentucky's
    a Feasibility Study for Transitioning Louisville, Kentucky’s Transportation and Electricity Generation to Renewable Sources The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Darst, Timothy. 2016. a Feasibility Study for Transitioning Louisville, Kentucky’s Transportation and Electricity Generation to Renewable Sources. Master's thesis, Harvard Extension School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33797349 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A Feasibility Study for Transitioning Louisville, Kentucky’s Transportation and Electricity Generation to Renewable Sources Timothy J. Darst A Thesis in the Field of Sustainability and Environmental Management for the Degree of Liberal Arts in Extension Studies Harvard University May 2016 © 2016 Timothy J. Darst. Abstract Climate change is caused mainly by humans and there is a great risk of “severe, pervasive and irreversible impacts for people and ecosystems” (IPCC, 2014). It has been proposed by many that America can address climate change by simply buying electric cars and then obtaining all electricity from renewable sources (Deutch, & Moniz, 2010; Freeman & Parks, 2016). This “silver bullet” is appealing; however, without detailed study it is not known whether this is a viable solution in many communities across the United States. Louisville, Kentucky was chosen as a case study to determine if it is feasible for conversion to a 100%-renewably-sourced electricity grid and all-electric transportation model.
    [Show full text]