Eurasian J. Bio. Chem. Sci.)

Total Page:16

File Type:pdf, Size:1020Kb

Eurasian J. Bio. Chem. Sci.) EJBCS Eurasian Journal of Biological and Chemical Sciences (Eurasian J. Bio. Chem. Sci.) Cilt:2 Volume: 1 Year: 2019 e-ISSN 2651-5237 Cilt: 2 Volume: 1 Year: 2019 Published Biannually Corresponding Address Gaziantep University, Faculty of Arts and Sciences, Department of Biology, Gaziantep, Turkey E-mail: [email protected] / [email protected] Web: http://dergipark.org.tr/ejbcs Editor in Chief Assoc. Prof. Dr. Muhittin DOĞAN Editor (Associate) Dr. Muhammet DOĞAN Editorial Board Prof. Dr. Ali Tuncay ÖZYILMAZ Hatay Mustafa Kemal University, Turkey Prof. Dr. Anna PĘKSA Wrocław University, Poland Prof. Dr. Elif LOLOĞLU Gazi University, Turkey Prof. Dr. Hikmet GEÇKİL İnönü University, Turkey Prof. Dr. Issa SHARİFPOUR Iranian Fisheries Research Organization, Iran Prof. Dr. İsmet YILMAZ İnönü University, Turkey Prof. Dr. Osman GÜLNAZ Cukurova University, Turkey Prof. Dr. Osman Selçuk ALDEMİR Adnan Menderes University, Turkey Prof. Dr. Vladimer TSITSISHVILI Ivane Javakhishvili Tbilisi State University, Georgia Prof. Dr. Zeliha SELAMOĞLU Niğde Ömer Halisdemir University, Turkey Assoc. Prof. Dr. Elif ÖZTETİK Eskisehir Technical University, Turkey Assoc. Prof. Dr. Erol ATAY Hatay Mustafa Kemal University, Turkey Assoc. Prof. Dr. Şenay UĞUR Niğde Ömer Halisdemir University, Turkey Assoc. Prof. Dr. Utku AVCI Recep Tayyip Erdoğan University, Turkey Dr. Ardalan PASDARAN Shiraz University, Iran. Dr. Eva URGEOVÁ The University of St. Cyril and Methodius of Trnava, Slovakia Dr. Mustafa PEHLİVAN Gaziantep University, Turkey Dr. Viera HORVATHOVA Slovak Medical University, Slovakia Language Editor Dr. Demet DOĞAN Gaziantep University, Turkey Technical Editor Dr. Mustafa SEVİNDİK Owner / Publisher Dr. Muhammet DOĞAN This journal is peer-reviewed and published twice (June, December) a year. All responsibility of the articles belongs to the authors. e-ISSN 2651-5237 Eurasian J. Bio. Chem. Sci. 2(1): 1-6, 2019 Eurasian Journal of Biological and Chemical Sciences Journal homepage: www.dergipark.gov.tr/ejbcs Fabrication and Characterization of Polyvinyl Alcohol/Gelatin/ Silver Nanoparticle Nanocomposite Materials Ayşen Aktürk1,* , Büşra Cenik1 , Zeliha Aydoğdu1 , Melek Erol Taygun1 , Funda Karbancıoğlu Güler2 , Sadriye Küçükbayrak1 1Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Chemical Engineering, Istanbul, Turkey 2 Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Istanbul, Turkey *Corresponding author : [email protected] Received : 30/09/2018 Orcid No: 0000-0003-2880-2999 Accepted : 04/01/2019 Abstract: In this study, nanofibers containing silver nanoparticles were fabricated by electrospinnining. The blends of polyvinyl alcohol as a synthetic polymer and gelatin as a biopolymer were used to fabricate wound dressing material having antibacterial activity. Scanning electron microscope (SEM) analysis indicated that porous and interconnected nanofibrous structures were obtained for all blend compositions. X-Ray diffraction (XRD) results showed the existence of silver nanoparticles in the structures. The chemical changes related to crosslinking and the change of the structure in simulated body fluid were evaluated using Fourier transform infrared spectroscopy (FTIR). Antibacterial tests were performed to prove the antibacterial activity. The inductively coupled plasma optical emission spectrometry(ICP) results showed that controlled silver ion release was achieved. It was concluded that obtained nanofiber mats could be suitable candidates for wound dressing applications Keywords: Silver Nanoparticles, Polyvinyl alcohol, Gelatin, Electrospinning, Wound Dressing © EJBCS. All rights reserved. 1. Introduction upgraded mechanical properties, degradation stability and improved affinity to the cellular components (Shalumon et Tissue engineering has evolved as a combination of al., 2011). In any case, cytotoxic solvents such as 2,2,2- engineering and life sciences principles to enhance tissue trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol, functions decades prior. The main direction of tissue trifluoroacetic acid, formic acid and dimethylformamide are engineering is to develop a suitable scaffold to mimic the generally utilized for their electrospinning (Yang et al., extra cellular matrix (Shalumon et al., 2011). Tissue 2011). engineering provides a variety of techniques for scaffold production of which electrospinning is specifically Among the synthetic polymers mentioned above, PVA is noteworthy (Merkle et al., 2015). As of presently so one of a few situations which electrospun in aqueous numerous natural and synthetic polymers as well as their solutions successfully to achieve nanofibrous mats with mixtures have been attempted in this case. A wide robust mechanical properties. As a semi-crystalline, assortment of polymers are utilized in creating scaffolds biocompatible, non-toxic, hydrophilic polymer which has using poly (vinyl alcohol), poly(ethyl oxide), poly(lactic well chemical and thermal stability with incredible acid), poly(glycolic acid), poly(lactic-co-glycolic acid), electrospinnability, it is one of the appropriate polymers that poly(caprolactone), or natural ones such as collagen, are readily mixed with natural polymers and crosslinked to gelatin, silk, chitin, chitosan, alginate, hyaluronic acid form hydrogels (Fathollahipour et al., 2015; Yang et al., which are natural extracellular matrix (ECM) analogs, due 2011). However, due to inadequate cell recognition sites, to their non-toxicity, improved biocompatibility, cell the bioactivity of PVA is significantly limited (Yang et al., attachment and proliferation ability. In addition, polymers 2011). Having natural plenitude, excellent biocompatibility containing nanoparticles, and even metals and ceramics are and inalienable biodegradability in physiological situations, used to increase cell migration and proliferation (Linh et al., gelatin (GE) has been broadly utilized and contemplated 2010; Shalumon et al., 2011; Yang et al., 2011). Since the with respect to numerous biomedical applications, such as utilize of natural polymers have certain drawbacks like low surgical treatments, bone, skin and cartilage tissue stability, poisonous degradation products which can be engineering, wound or burn dressings (Rujitanaroj et al., destructive to the cells, the natural polymers are regularly 2008; Yang et al., 2011). By combining the advantages of mixed with synthetic polymers. Moreover this have PVA and GE, PVA /GE hybrid scaffolds are expected to A. Aktürk et al. Eurasian J. Bio. Chem. Sci. 2(1): 1-6, 2019 have robust mechanical properties and biocompatibility, 2.4 Antibacterial activity while promising cell adhesion and biodegradability The antibacterial activity of the silver-containing nanofiber properties are achieved. Moreover, pure gelatin nanofibrous mats against Escherichia coli ATCC 25922, scaffolds are too delicate to ever be dealt with in practice. Staphylococcus aureus ATCC 29213 were investigated by For this reason, hybridization of PVA with gelatin will disk diffusion method. Neat PVA/GE nanofiber mats were significantly increase the flexibility of gelatinous scaffolds utilized as controls. Nanofiber mats were cut into disc with (Yang et al., 2011). The scaffold material in our study is a diameter of 30 mm and the crosslinking process was applied mixture of a PVA and a GE nanofiber obtained by one-step on them. Crosslinked nanofiber mats were sterilized under electrospinning as a wound dressing material. UV light for 2 hours (each for 1 hour). The bacteria were Various investigations have been carried out with silver grown in TSB by incubation for 24 hours at 37 ° C. Then, salts and silver compounds showing them as promising bacterial concentrations of E. coli and S. aureus were set at materials for wound management. With regard to the 106 CFU / mL and at that point 100 μL of this bacterial antimicrobial action, Ag salts and Ag compounds have been suspension was spread to the TSA. Sterilized nanofiber utilized as wound treatments in various physical shapes, mats were put on the inoculated TSA. After incubation at such as beads, gels, films and fibers (Chun et al., 2010). For 37 °C for 24 hours, the antibacterial properties of the this reason, Ag NPs / polymer composites, which function nanofiber mats were assessed by the formation of inhibition as a bactericide, have been applied to complicated cases of zones around the nanofiber mats diameter on each infected burns, purulent wounds and wound healing matrix inoculated plate. All analyzes were performed in triplicate (Nguyen et al., 2010). In this study, microwave-assisted for each nanofiber mat. synthesis was performed to obtain soluble starch coated 2.4 Characterization of nanocomposite fiber mats silver nanoparticles as colloidal solution and at that point this solution was blended with PVA/GE polymer solution to The surface morphology and microstructure of the fabricate a novel wound dressing material displaying nanocomposite fiber mats before and after immersion in antibacterial activity. SBF were observed by using scanning electron microscope (SEM). Before the observation, the surfaces of scaffolds 2. Materials and Method were sputter coated (SC7620 sputter coater, Quorum 2.1 Materials Technologies Ltd, United Kingdom) with platinum for 120 s. For each experiment, the average fiber diameter and its Polyvinyl alcohol (PVA, 95.5-96.5 % hydrolyzed, 85000- standard deviation were analyzed by the
Recommended publications
  • Analysis of the Evolutionary Relationship and Geographical Patterns of Genetically Varied Populations of Diamondback Moth, Plutella Xylostella (L.)
    Analysis of the evolutionary relationship and geographical patterns of genetically varied populations of diamondback moth, Plutella xylostella (L.) by Shijun You MSc., The University of British Columbia, 2010 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Botany) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2017 © Shijun You, 2017 Abstract The diamondback moth (DBM), Plutella xylostella, is well known for its extensive adaptation and distribution, high level of genetic variation and polymorphism, and strong resistance to a broad range of synthetic insecticides. Although understanding of the P. xylostella biology and ecology has been considerably improved, knowledge on the genetic basis of these traits remains surprisingly limited. Based on data generated by different sets of molecular markers, we uncovered the history of evolutionary origin and regional dispersal, identified the patterns of genetic diversity and variation, characterized the demographic history, and revealed natural and human-aided factors that are potentially responsible for contemporary distribution of P. xylostella. These findings rewrite our understanding of this exceptional system, revealing that South America might be a potential origin of P. xylostella, and recently colonized across most parts of the world resulting possibly from intensified human activities. With the data from selected continents, we demonstrated signatures of localized selection associated with environmental adaptation and insecticide resistance of P. xylostella. This work brings us to a better understanding of the regional movement and genetic bases on rapid adaptation and development of agrochemical resistance, and provides a solid foundation for better monitoring and management of this worldwide herbivore and forecast of regional pest status of P.
    [Show full text]
  • Variation Among 532 Genomes Unveils the Origin and Evolutionary
    ARTICLE https://doi.org/10.1038/s41467-020-16178-9 OPEN Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore ✉ Minsheng You 1,2,20 , Fushi Ke1,2,20, Shijun You 1,2,3,20, Zhangyan Wu4,20, Qingfeng Liu 4,20, ✉ ✉ Weiyi He 1,2,20, Simon W. Baxter1,2,5, Zhiguang Yuchi 1,6, Liette Vasseur 1,2,7 , Geoff M. Gurr 1,2,8 , Christopher M. Ward 9, Hugo Cerda1,2,10, Guang Yang1,2, Lu Peng1,2, Yuanchun Jin4, Miao Xie1,2, Lijun Cai1,2, Carl J. Douglas1,2,3,21, Murray B. Isman 11, Mark S. Goettel1,2,12, Qisheng Song 1,2,13, Qinghai Fan1,2,14, ✉ Gefu Wang-Pruski1,2,15, David C. Lees16, Zhen Yue 4 , Jianlin Bai1,2, Tiansheng Liu1,2, Lianyun Lin1,5, 1234567890():,; Yunkai Zheng1,2, Zhaohua Zeng1,17, Sheng Lin1,2, Yue Wang1,2, Qian Zhao1,2, Xiaofeng Xia1,2, Wenbin Chen1,2, Lilin Chen1,2, Mingmin Zou1,2, Jinying Liao1,2, Qiang Gao4, Xiaodong Fang4, Ye Yin4, Huanming Yang4,17,19, Jian Wang4,18,19, Liwei Han1,2, Yingjun Lin1,2, Yanping Lu1,2 & Mousheng Zhuang1,2 The diamondback moth, Plutella xylostella is a cosmopolitan pest that has evolved resistance to all classes of insecticide, and costs the world economy an estimated US $4-5 billion annually. We analyse patterns of variation among 532 P. xylostella genomes, representing a worldwide sample of 114 populations. We find evidence that suggests South America is the geographical area of origin of this species, challenging earlier hypotheses of an Old-World origin.
    [Show full text]
  • List of the Specimens of the British Animals in the Collection of The
    LIST SPECIMENS BRITISH ANIMALS THE COLLECTION BRITISH MUSEUM '^r- 7 : • ^^ PART XVL — LEPIDOPTERA (completed), 9i>M PRINTED BY ORDER OF THE TRUSTEES. LONDON, 1854. -4 ,<6 < LONDON : PRINTED BY EDWARD NEWMAN, 9, DEVONSHIRE ST., BISHOPSGATE. INTRODUCTION. The principal object of the present Catalogue has been to give a complete Hst of all the smaller Lepidopterous Insects that have been recorded as found in Great Britain, indicating at the same time those species that are contained in the Collection. This Catalogue has been prepared by H. T. STAiNTON^ sq., so well known for his works on British Micro-Lepidoptera, for the extent of his cabinet, and the hberahtj with which he allows it to be consulted. Mr. Stainton has endeavom-ed to arrange these insects ac- cording to theh natural affinities, so far as is practicable with a local collection ; and has taken great pains to ascertain every name which has been applied to the respective species and their varieties, the author of the same, and the date of pubhcation ; the references to such names as are unaccompanied by descrip- tions being included in parentheses : all are arranged chronolo- gically, excepting those to the illustrations and to the figures which invariably follow their authorities. The species in the British Museum Collection are indicated by the letters B. M., annexed. JOHN EDWARD GRAY. British Museum, May 2Qrd, 1854. CATALOGUE BRITISH MICRO-LEPIDOPTERA § III. Order LEPIDOPTERA. (§ MICKO-LEPIDOPTERA). Sub-Div. TINEINA. Tineina, Sta. I. B. Lep. Tin. p. 7, 1854. Tineacea, Zell. Isis, 1839, p. 180. YponomeutidaB et Tineidae, p., Step. H. iv.
    [Show full text]
  • Monitoring Report Spring/Summer 2015 Contents
    Wimbledon and Putney Commons Monitoring Report Spring/Summer 2015 Contents CONTEXT 1 A. SYSTEMATIC RECORDING 3 METHODS 3 OUTCOMES 6 REFLECTIONS AND RECOMMENDATIONS 18 B. BIOBLITZ 19 REFLECTIONS AND LESSONS LEARNT 21 C. REFERENCES 22 LIST OF FIGURES Figure 1 Location of The Plain on Wimbledon and Putney Commons 2 Figure 2 Experimental Reptile Refuge near the Junction of Centre Path and Somerset Ride 5 Figure 3 Contrasting Cut and Uncut Areas in the Conservation Zone of The Plain, Spring 2015 6/7 Figure 4 Notable Plant Species Recorded on The Plain, Summer 2015 8 Figure 5 Meadow Brown and white Admiral Butterflies 14 Figure 6 Hairy Dragonfly and Willow Emerald Damselfly 14 Figure 7 The BioBlitz Route 15 Figure 8 Vestal and European Corn-borer moths 16 LIST OF TABLES Table 1 Mowing Dates for the Conservation Area of The Plain 3 Table 2 Dates for General Observational Records of The Plain, 2015 10 Table 3 Birds of The Plain, Spring - Summer 2015 11 Table 4 Summary of Insect Recording in 2015 12/13 Table 5 Rare Beetles Living in the Vicinity of The Plain 15 LIST OF APPENDICES A1 The Wildlife and Conservation Forum and Volunteer Recorders 23 A2 Sward Height Data Spring 2015 24 A3 Floral Records for The Plain : Wimbledon and Putney Commons 2015 26 A4 The Plain Spring and Summer 2015 – John Weir’s General Reports 30 A5 a Birds on The Plain March to September 2015; 41 B Birds on The Plain - summary of frequencies 42 A6 ai Butterflies on The Plain (DW) 43 aii Butterfly long-term transect including The Plain (SR) 44 aiii New woodland butterfly transect
    [Show full text]
  • Animal Sciences 52.Indb
    Annals of Warsaw University of Life Sciences – SGGW Animal Science No 52 Warsaw 2013 Contents BRZOZOWSKI M., STRZEMECKI P. GŁOGOWSKI R., DZIERŻANOWSKA- Estimation the effectiveness of probiot- -GÓRYŃ D., RAK K. The effect of di- ics as a factor infl uencing the results of etary fat source on feed digestibility in fattening rabbits 7 chinchillas (Chinchilla lanigera) 23 DAMAZIAK K., RIEDEL J., MICHAL- GRODZIK M. Changes in glioblastoma CZUK M., KUREK A. Comparison of multiforme ultrastructure after diamond the laying and egg weight of laying hens nanoparticles treatment. Experimental in two types of cages 13 model in ovo 29 JARMUŁ-PIETRASZCZYK J., GÓR- ŁOJEK J., ŁOJEK A., SOBORSKA J. SKA K., KAMIONEK M., ZAWIT- Effect of classic massage therapy on the KOWSKI J. The occurrence of ento- heart rate of horses working in hippo- mopathogenic fungi in the Chojnowski therapy. Case study 105 Landscape Park in Poland 37 ŁUKASIEWICZ M., MROCZEK- KAMASZEWSKI M., OSTASZEW- -SOSNOWSKA N., WNUK A., KAMA- SKA T. The effect of feeding on ami- SZEWSKI M., ADAMEK D., TARASE- nopeptidase and non-specifi c esterase WICZ L., ŽUFFA P., NIEMIEC J. Histo- activity in the digestive system of pike- logical profi le of breast and leg muscles -perch (Sander lucioperca L.) 49 of Silkies chickens and of slow-growing KNIŻEWSKA W., REKIEL A. Changes Hubbard JA 957 broilers 113 in the size of population of the European MADRAS-MAJEWSKA B., OCHNIO L., wild boar Sus scrofa L. in the selected OCHNIO M., ŚCIEGOSZ J. Comparison voivodeships in Poland during the years of components and number of Nosema sp.
    [Show full text]
  • Genera Paraswammerdamia Friese and Eidophasia Stephens Recorded in Israel (Lepidoptera: Yponomeutoidae, Plutellidae) 85-88 Mitt
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mitteilungen des Internationalen Entomologischen Vereins Jahr/Year: 2005 Band/Volume: 30_2005 Autor(en)/Author(s): Gershenson Zlata, Pavlicek Tomáš, Nevo Eviatar Artikel/Article: Genera Paraswammerdamia Friese and Eidophasia Stephens recorded in Israel (Lepidoptera: Yponomeutoidae, Plutellidae) 85-88 Mitt. internat. entomol. Ver. Frankfurt a.M. ISSN 1019-2808 Band 30 . Heft 3/4 Seiten 85 - 88 11. November 2005 Genera Paraswammerdamia Friese and Eidophasia Stephens recorded in Israel (Lepidoptera: Yponomeutoidae, Plutellidae) Zlata GERSHENSON, Tomáš PAVLÍČEK & Eviatar NEVO Abstract: Two species of moths belonging to the families Yponomeutidae and Plutellidae were newly recorded in Israel: Paraswammerdamia conspersella (Tengström) and Eidophasia messingiella (Fischer v. Röeslerstamm). The first species was believed to be present in central and northern Europe only, whereas the second one is known also from Europe, the Caucasus, the Trans-Caucasus, and Asia Minor. Zusammenfassung: Zwei Schmetterlingsarten, die den Familien Ypono- meutidae und Plutellidae angehören, wurden erstmals in Israel festge- stellt: Paraswammerdamia conspersella (Tengström) und Eidophasia messingiella (Fischer v. Röeslerstamm). Von der ersten Art wurde ange- nommen, dass sie nur in Zentral- und Nord-Europa vorkomme, während die zweite auch von Europa, dem Kaukasus, dem Transkaukasus und Kleinasien bekannt ist. Key words: Lepidoptera, Yponomeutidae, Plutellidae, Paraswammer- damia , Eidophasia, Israel Introduction Yponomeutoid moths represent a worldwide distributed phyto- phagous group which occurs in very different landscapes such as forests, steppes, mountains, lowlands, deserts, and agricultural coenoses and which is trophically connected to 23 plant families (GERSHENSON & ULENBERG 1998). In spite of the ecological significance of this group, the fauna of the superfamily Yponomeutoidea of Israel has been insuf- ficiently known until recent time.
    [Show full text]
  • Desktop Biodiversity Report
    Desktop Biodiversity Report Lindfield Rural and Urban Parishes ESD/14/65 Prepared for Terry Oliver 10th February 2014 This report is not to be passed on to third parties without prior permission of the Sussex Biodiversity Record Centre. Please be aware that printing maps from this report requires an appropriate OS licence. Sussex Biodiversity Record Centre report regarding land at Lindfield Rural and Urban Parishes 10/02/2014 Prepared for Terry Oliver ESD/14/65 The following information is enclosed within this report: Maps Sussex Protected Species Register Sussex Bat Inventory Sussex Bird Inventory UK BAP Species Inventory Sussex Rare Species Inventory Sussex Invasive Alien Species Full Species List Environmental Survey Directory SNCI L61 - Waspbourne Wood; M08 - Costells, Henfield & Nashgill Woods; M10 - Scaynes Hill Common; M18 - Walstead Cemetery; M25 - Scrase Valley Local Nature Reserve; M49 - Wickham Woods. SSSI Chailey Common. Other Designations/Ownership Area of Outstanding Natural Beauty; Environmental Stewardship Agreement; Local Nature Reserve; Notable Road Verge; Woodland Trust Site. Habitats Ancient tree; Ancient woodland; Coastal and floodplain grazing marsh; Ghyll woodland; Traditional orchard. Important information regarding this report It must not be assumed that this report contains the definitive species information for the site concerned. The species data held by the Sussex Biodiversity Record Centre (SxBRC) is collated from the biological recording community in Sussex. However, there are many areas of Sussex where the records held are limited, either spatially or taxonomically. A desktop biodiversity report from the SxBRC will give the user a clear indication of what biological recording has taken place within the area of their enquiry.
    [Show full text]
  • Microlepidoptera.Hu Redigit: Fazekas Imre
    Microlepidoptera.hu Redigit: Fazekas Imre 5 2012 Microlepidoptera.hu A magyar Microlepidoptera kutatások hírei Hungarian Microlepidoptera News A journal focussed on Hungarian Microlepidopterology Kiadó—Publisher: Regiograf Intézet – Regiograf Institute Szerkesztő – Editor: Fazekas Imre, e‐mail: [email protected] Társszerkesztők – Co‐editors: Pastorális Gábor, e‐mail: [email protected]; Szeőke Kálmán, e‐mail: [email protected] HU ISSN 2062–6738 Microlepidoptera.hu 5: 1–146. http://www.microlepidoptera.hu 2012.12.20. Tartalom – Contents Elterjedés, biológia, Magyarország – Distribution, biology, Hungary Buschmann F.: Kiegészítő adatok Magyarország Zygaenidae faunájához – Additional data Zygaenidae fauna of Hungary (Lepidoptera: Zygaenidae) ............................... 3–7 Buschmann F.: Két új Tineidae faj Magyarországról – Two new Tineidae from Hungary (Lepidoptera: Tineidae) ......................................................... 9–12 Buschmann F.: Új adatok az Asalebria geminella (Eversmann, 1844) magyarországi előfordulásához – New data Asalebria geminella (Eversmann, 1844) the occurrence of Hungary (Lepidoptera: Pyralidae, Phycitinae) .................................................................................................. 13–18 Fazekas I.: Adatok Magyarország Pterophoridae faunájának ismeretéhez (12.) Capperia, Gillmeria és Stenoptila fajok új adatai – Data to knowledge of Hungary Pterophoridae Fauna, No. 12. New occurrence of Capperia, Gillmeria and Stenoptilia species (Lepidoptera: Pterophoridae) ……………………….
    [Show full text]
  • National Botanic Garden of Wales Ecology Report, 2016
    Regency Landscape Restoration Project ECOLOGICAL SURVEYS and ASSESSMENT VOLUME 1: REPORT Revision of 18th April 2016 Rob Colley Jacqueline Hartley Bruce Langridge Alan Orange Barry Stewart Kathleen Pryce Richard Pryce Pryce Consultant Ecologists Trevethin, School Road, Pwll, LLANELLI, Carmarthenshire, SA15 4AL, UK. Voicemail: 01554 775847 Mobile: 07900 241371 Email: [email protected] National Botanic Garden of Wales REVISION of 18th April 2016 Regency Landscape Restoration Project: Ecological Assessment REVISION RECORD DATE Phase 1 field survey completed 11/10/15 RDP Phase 1 TNs completed & checked 30/10/15 RDP First Working Draft issued to client 9/11/15 RDP Second Working Draft issued to client (interim bat section added) 19/11/15 RDP Third Working Draft issued to client (draft texts for dormouse, badger 19/1/16 RDP and updated bat sections added) Revised and augmented badger section added. 11/2/16 JLH & RDP Revised section only, issued to client. Fungi section added from Bruce Langridge 31/3/16 RDP Otter & bat updates added 11/4/16 RDP Bryophyte, winter birds & invertebrate updates added 15/4/16 RDP All figures finalized 15/4/16 SR Text of report proof read 16-17/4/16 KAP & RDP Add revised bird section & invertebrate appendices 17/4/16 RDP Final Report, appendices and figures issued to client 18/4/16 RDP ________________________________________________________________________________________________ Pryce Consultant Ecologists Trevethin, School Road, Pwll, Llanelli, Carmarthenshire, SA15 4AL. Voicemail: 01554 775847 Mobile: 07900 241371 Email: [email protected] PAGE 2 National Botanic Garden of Wales REVISION of 18th April 2016 Regency Landscape Restoration Project: Ecological Assessment SUMMARY OF SIGNIFICANT ECOLOGICAL ISSUES 1.
    [Show full text]
  • Yorkshire Union
    December 2019 Volume 144 Number 1102 Yorkshire Union Yorkshire Union The Naturalist Vol. 144 No. 1102 December 2019 Contents Page YNU visit to Fountains Abbey, 6th May 2016 - a reconstruction of a 161 YNU event on 6 May 1905 Jill Warwick The Lady’s-Slipper Orchid in 1930: a family secret revealed 165 Paul Redshaw The mite records (Acari: Astigmata, Prostigmata) of Barry Nattress: 171 an appreciation and update Anne S. Baker Biological records of Otters from taxidermy specimens and hunting 181 trophies Colin A. Howes The state of the Watsonian Yorkshire database for the 187 aculeate Hymenoptera, Part 3 – the twentieth and twenty-first centuries from the 1970s until 2018 Michael Archer Correction: Spurn Odonata records 195 D. Branch The Mole on Thorne Moors, Yorkshire 196 Ian McDonald Notable range shifts of some Orthoptera in Yorkshire 198 Phillip Whelpdale Yorkshire Ichneumons: Part 10 201 W.A. Ely YNU Excursion Reports 2019 Stockton Hermitage (VC62) 216 Edlington Pit Wood (VC63) 219 High Batts (VC64) 223 Semerwater (VC65) 27th July 230 North Duffield Carrs, Lower Derwent Valley (VC61) 234 YNU Calendar 2020 240 An asterisk* indicates a peer-reviewed paper Front cover: Lady’s Slipper Orchid Cypripedium calceolus photographed in 1962 by John Armitage FRPS. (Source: Natural England Archives, with permission) Back cover: Re-enactors Charlie Fletcher, Jill Warwick, Joy Fletcher, Simon Warwick, Sharon Flint and Peter Flint on their visit to Fountains Abbey (see p161). YNU visit to Fountains Abbey, 6th May 2016 - a reconstruction of a YNU event on 6 May 1905 Jill Warwick Email: [email protected] A re-enactment of a visit by members of the YNU to Fountains Abbey, following the valley of the River Skell through Ripon and into Studley Park, was the idea of the then President, Simon Warwick, a local Ripon resident.
    [Show full text]
  • Climate Change and Shifts in the Distribution of Moth Species in Finland, with a Focus on the Province of Kainuu
    14 Climate Change and Shifts in the Distribution of Moth Species in Finland, with a Focus on the Province of Kainuu Juhani H. Itämies1, Reima Leinonen2 and V. Benno Meyer-Rochow3,4 1Kaitoväylä 25 A 6; SF-90570 Oulu; 2Centre for Economic Development, Transport and the Environment for Kainuu, Kajaani, 3Faculty of Engineering and Sciences, Jacobs University Bremen, Research II, D-28759 4Bremen and Department of Biology; Oulu University; SF-90014 Oulu, 1,2,3Finland 4Germany 1. Introduction Distributions and abundances of insect species depend on a variety of factors, but whether we focus on food plants and availability, environmental niches and shelters, predators or parasites, by far the most important limiting factor is climate. Shifts in insect community structure have successfully been correlated with glacial and inter-glacial periods (Coope 1995; Ashworth 1997; Morgan 1997), but have also attracted the attention of researchers concerned with current climate trends. Parmesan (2001) and Forester et al. (2010) examined examples from North America and Europe and emphasized that predictions of responses to a warmer climate must incorporate observations on habitat loss or alteration, land management and dispersal abilities of the species in question. For the United Kingdom, Hill et al. (2001) have summarized data on changes in the distribution of specifically three butterfly species (Pararge aegeria, Aphantopus hyperantus, and Pyronia tithonus). These authors report that the three species have been shifting northward since the 1940s and they present maps of simulated butterfly distributions for the period 2070-2099, based on the changes seen since the 1940s. According to that scenario Iceland will see some colonies of these three species in less than a hundred years.
    [Show full text]
  • Identification of Micro-Moth Families
    Identification of micro-moth families Introduction This guide is intended for use by Garden Moth Scheme (GMS) recorders and other British and Irish moth enthusiasts. It is aimed at those who already have some understanding of moth taxonomy and morphology but struggle to easily home-in on which moth family a micro- moth belongs to. For further information about how to start out moth- trapping see www.gardenmoths.org.uk. There are currently over 1600 British and Irish micro-moth species, compared to around 800 species of macro-moth and 60 species of butterfly, so species identification is particularly challenging. Narrowing down identification to species requires additional information from training courses, websites and field guides. This guide shows photographs of 45 micro-moth families at rest, together with identification tips, similar species, and the number of species in that family. Taxonomists disagree on the order and arrangement of families, but this guide follows the numbering system of Bradley and Fletcher (B&F) wherever possible. The guide is intended to be used with the excellent Field Guide to the Micromoths of Great Britain and Ireland by Sterling, Parsons and Lewington, British Wildlife Publishing (2012, SPL), which covers 1000+ micro-moth species. However, for the uninitiated, facing a light trap full of micro-moths starting from scratch with SPL can be both daunting and time-consuming. Family names are different and are shown in a different order in SPL and B&F, so in order to reduce confusion, after the B&F numbers are quoted for each family the page numbers for the plates in SPL are also given.
    [Show full text]