Systematics and Evolution of Iolania (Hemiptera: Fulgoromorpha: Cixiidae) from Hawai’I

Total Page:16

File Type:pdf, Size:1020Kb

Systematics and Evolution of Iolania (Hemiptera: Fulgoromorpha: Cixiidae) from Hawai’I Systematic Entomology (2006), 31, 302–320 DOI: 10.1111/j.1365-3113.2005.00312.x Systematics and evolution of Iolania (Hemiptera: Fulgoromorpha: Cixiidae) from Hawai’i HANNELORE HOCH Museum fu¨r Naturkunde, Humboldt-Universita¨t zu Berlin, Germany Abstract. Within the planthopper taxon Cixiidae, which is distributed world- wide, only two lineages have colonized the Hawaiian Islands: Iolania Kirkaldy, 1902, and Oliarus Sta˚l, 1862, and subsequently given rise to endemic species. Neither radiation has been studied in depth hitherto. Here the degree of specia- tion within Iolania is assessed and a taxonomic revision including a key to the species based on the male genitalic characters is provided. Six endemic species are recognized: I. perkinsi Kirkaldy, I. koolauensis Giffard, I. oahuensis Giffard, I. lanaiensis Giffard, I. mauiensis Giffard and I. kraussohana sp.n. A lectotype is designated for the type-species I. perkinsi Kirkaldy, and I. perkinsi notata Kirkaldy is interpreted as an invalid name. Morphological arguments for the monophyly of Iolania and phylogenetic relationships among the species are dis- cussed. A plausible scenario for the sequence of speciation events and history of colonization within the Hawaiian Islands is attempted. Combined information from taxon- and area-cladograms suggests progressive inter-island dispersal from older to younger islands in the Hawaiian chain as the major pattern of coloniza- tion and speciation. Introduction (Asche, 1997), and now comprises more than eighty species and subspecies on all of the main islands and in a wide With more than 200 endemic species, the Fulgoromorpha, variety of habitats (Giffard, 1925), including cave-dwelling or planthoppers, are among the dominant elements in the species in lava tubes (Howarth, 1972; Fennah, 1973; Hoch native Hawaiian arthropod fauna. These phytophagous & Howarth, 1993, 1999), Iolania is much less speciose: five insects occur in nearly all Hawaiian ecosystems, and mostly species have been described from all major islands except are mono- or oligophagous on native Hawaiian plants Moloka’i. Nearly no information exists on their biology, (Asche, 1997). The endemic fauna involves two of the ecology or evolution. My own field studies and examin- world’s eighteen planthopper families, Delphacidae and ation of new and previously unstudied material from Cixiidae. Most Hawaiian species were discovered and various collections provides the basis for an attempt to described in the first three decades of the twentieth century assess the degree of speciation within this group, revise (Asche, 1997) but some groups of Delphacidae have been the taxonomy accordingly, analyse phylogenetic relation- revised recently (Asche, 1998, 2000) and Hawaiian Cixiidae ships, and hypothesize the sequence of speciation events have not been re-examined in the light of modern systema- and colonization history within the Hawaiian Islands. tics since Zimmerman (1948). All species of Hawaiian Cixiidae are endemic, and belong to two major lineages: Oliarus and Iolania. Whereas Oliarus has apparently under- Historical background gone intensive radiation following a single colonization The genus Iolania was proposed by Kirkaldy (1902) for a taxon from Hawai’i (Hawai’i Island, O’ahu, Lana’i), which he considered ‘allied to Cixius Latreille, but differing prin- Correspondence: Hannelore Hoch, Humboldt-Universita¨tzu cipally by the structure of the vertex’ (Kirkaldy, 1902: 118). Berlin, Museum fu¨r Naturkunde, Invalidenstr. 43, D-10115 Kirkaldy recognized a single species, I. perkinsi, which he Berlin, Germany. E-mail: [email protected] designated as the type species. In 1909, he distinguished as a # 2006 The Author 302 Journal compilation # 2006 The Royal Entomological Society Iolania planthoppers from Hawai’i 303 variety of Iolania perkinsi the form notata (Kirkaldy, 1909: The aedeagus was coated with gold–palladium and studied 75), which was regarded later as a subspecies by on a LEO 1450VP scanning electron microscope (running Zimmerman (1948). Giffard (1925) continued Kirkaldy’s 32 V02.03 software) at 10 kV. studies and found ‘that body characters and venation of The phylogenetic analysis was carried out in a Hennigian the tegmina present no variations of specific importance’ way by ‘hand and mind’. Based on outgroup comparison, (Giffard, 1925: 100); however, upon studying the male the plesiomorphic/apomorphic states of thirty morphologi- genitalia, Giffard discovered ‘that the aedeagus is practic- cal characters were estimated (see Appendix). Information ally the only means of discriminating the species in this on the morphological configuration of outgroup representa- genus’ (Giffard, 1925: 99–100). He recognized five distinct tives was obtained directly from specimens of the corre- species: one each from Hawai’i (I. perkinsi), Lana’i sponding species, and extracted from the literature. (I. lanaiensis Giffard, 1925) and Maui (I. mauiensis Giffard, 1925), and two from O’ahu (I. oahuensis Giffard, 1925, and I. koolauensis Giffard, 1925). Kirkaldy and Results Giffard considered Iolania a close relative to the world- wide distributed genus Cixius. Giffard (1925: 99) hypothe- Taxonomy sized that extant Iolania species ‘evidently [were] derived from one ancestor . which is now extinct’. No Iolania The material examined contained six morphologically dis- specimens from Moloka’i or Kaua’i were available to him. tinguishable units. Based on the assumption that consistent Later, unidentified Iolania specimens were reported also morphological discontinuities between populations may from Moloka’i (Swezey & Bryan, 1929), and I. perkinsi point to interrupted gene flow and reproductive isolation from Kaua’i (Krauss, 1945). Two Cixiini species were (Remane, 1968), I interpret these morphological units as described from Australia and assigned to Iolania, based biological species, i.e. reproductively isolated entities. on the absence of lateral hind tibial spines (Muir, 1931). Discriminating characters between these taxa were found – In the only comprehensive treatment of Hawaiian as already pointed out by Giffard (1925) – in the structures planthoppers to date, Zimmerman (1948) questioned the of the male genitalia whereas the species are not easily taxonomic status of the Hawaiian Iolania species, indicated recognizable by external characters, which are too conser- the existence of unidentified material from Kaua’i and vative (e.g. carination of the head) among and/or too Moloka’i, and doubted any phylogenetic relationship variable within populations (e.g. coloration of the tegmina). between Iolania species from Hawai’i and Australia. Five of the six taxa recognized here are consistent with the Zimmerman (1948: 132) ‘failed to find external characters species described by Giffard. The taxon on Kaua’i was from which to assemble a key’ and suggested that further unknown previously and is described as a new species. studies be made. In his review of current knowledge on The degree of differentiation, or even speciation, may in Hawaiian planthoppers, Asche (1997) agreed with fact be much higher: differentiation on the genetic or behav- Zimmerman’s suspicions that neither Australian Iolania ioural level may conceal cryptic species, e.g. I. oahuensis is species is closely related to Hawaiian Iolania. reported here from four islands (O’ahu, Moloka’i, Lana’i, Maui) and I. lanaiensis from two islands (Lana’i and Moloka’i). Whether or not gene flow is maintained Materials and methods among these allopatric populations can be decided only on the basis of population genetics. All specimens mentioned are deposited in Bishop Museum, Honolulu, U.S.A. (BPBM) unless stated otherwise (abbre- viations generally follow Evenhuis & Samuelson, 2004): Iolania Kirkaldy, 1902: 118 AH, private collection of M. Asche and H. Hoch, Berlin, Germany; BMNH, The Natural History Museum, London, Type species. Iolania perkinsi Kirkaldy, 1902: 119. U.K.; CUIC, Cornell University Insect Collection, Ithaca, U.S.A.; HDOA, Hawai’i State Department of Agriculture, Diagnosis. Total length (tip of head to distal margin Honolulu, U.S.A.; USNM, National Museum of Natural of tegmina): males 4.8–6.3 mm, females 6.2–7.1 mm. History, Smithsonian Institution, Washington, DC, U.S.A. Moderately large cixiids of robust appearance (Fig. 1); Specimens from the Giffard collection (at BPBM) and type tegmina more or less shallowly tectiform, exceeding tip of material of all described Iolania species were re-examined. abdomen with c. one-third of total length. Tegmina and All specimens were preserved dry. Genitalia were macer- wings translucent to hyaline. Tegmina (Figs 2, 3) with ated in 10% KOH (24 h) at room temperature, washed in colour pattern within populations variable, ranging from water, transferred to glycerine for storage, and to glycerine- hyaline with little recognizable patterns to distinct dark jelly for drawings. Drawings were made using a Leitz brown spots or stripes, especially at tegmen base and in stereomicroscope with camera lucida. For scanning elec- distal third. Granules on veins usually brownish. Body tron microscopy, male genitalia were macerated, dehy- coloration inconspicuous, intraspecific variation ranging drated in increasing ethanol concentrations (70–85%) and from yellowish brown to darker brown. Coloration of mounted on aluminium specimen stubs with adhesive pads. body and tegmina usually slightly darker in females. # 2006 The Author Journal compilation # 2006 The Royal Entomological Society, Systematic
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Hemiptera: Heteroptera: Reduviidae)
    Zootaxa 4425 (2): 372–384 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4425.2.11 http://zoobank.org/urn:lsid:zoobank.org:pub:188C650E-9303-4A21-A65E-3B88444CE885 A remarkable new species of cavernicolous Collartidini from Madagascar (Hemiptera: Heteroptera: Reduviidae) DOMINIK CHŁOND1, ERIC GUILBERT2, ARNAUD FAILLE2,3, PETR BAŇAŘ4 & LEONIDAS-ROMANOS DAVRANOGLOU5 1University of Silesia, Faculty of Biology and Environmental Protection, Department of Zoology, ul. Bankowa 9, 40-007 Katowice, Poland. E-mail: [email protected] 2Muséum National d'Histoire Naturelle, Département de Systématique et Evolution, UMR 7205 CNRS, CP50 - 45 rue Buffon, 75005 Paris, France. E-mail: [email protected] 3Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain. E-mail: [email protected] 4Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University, Zemědělská 1, Brno, CZ-613 00, Czech Republic. E-mail: [email protected] 5Oxford Flight Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom. E-mail: [email protected] Abstract Mangabea troglodytes sp. nov. (Hemiptera: Heteroptera: Reduviidae: Emesinae) is described based on four specimens collected in a cave of the Namoroka Karstic System, Madagascar, and deposited in the Collection of the Muséum National d’Histoire Naturelle, Paris. The dorsal habitus as well as diagnostic characters of male and female genitalia are extensively illustrated and imaged. A key to species of the genus Mangabea Villiers, 1970 is provided and the degree of cave special- ization of the new species is discussed.
    [Show full text]
  • Heteroptera: Coreidae: Coreinae: Leptoscelini)
    Brailovsky: A Revision of the Genus Amblyomia 475 A REVISION OF THE GENUS AMBLYOMIA STÅL (HETEROPTERA: COREIDAE: COREINAE: LEPTOSCELINI) HARRY BRAILOVSKY Instituto de Biología, UNAM, Departamento de Zoología, Apdo Postal 70153 México 04510 D.F. México ABSTRACT The genus Amblyomia Stål is revised and two new species, A. foreroi and A. prome- ceops from Colombia, are described. New host plant and distributional records of A. bifasciata Stål are given; habitus illustrations and drawings of male and female gen- italia are included as well as a key to the known species. The group feeds on bromeli- ads. Key Words: Insecta, Heteroptera, Coreidae, Leptoscelini, Amblyomia, Bromeliaceae RESUMEN El género Amblyomia Stål es revisado y dos nuevas especies, A. foreroi y A. prome- ceops, recolectadas en Colombia, son descritas. Plantas hospederas y nuevas local- idades para A. bifasciata Stål son incluidas; se ofrece una clave para la separación de las especies conocidas, las cuales son ilustradas incluyendo los genitales de ambos sexos. Las preferencias tróficas del grupo están orientadas hacia bromelias. Palabras clave: Insecta, Heteroptera, Coreidae, Leptoscelini, Amblyomia, Bromeli- aceae The neotropical genus Amblyomia Stål was previously known from a single Mexi- can species, A. bifasciata Stål 1870. In the present paper the genus is redefined to in- clude two new species collected in Colombia. This genus apparently is restricted to feeding on members of the Bromeliaceae, and specimens were collected on the heart of Ananas comosus and Aechmea bracteata.
    [Show full text]
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • The Planthopper Genus Trypetimorpha: Systematics and Phylogenetic Relationships (Hemiptera: Fulgoromorpha: Tropiduchidae)
    JOURNAL OF NATURAL HISTORY, 1993, 27, 609-629 The planthopper genus Trypetimorpha: systematics and phylogenetic relationships (Hemiptera: Fulgoromorpha: Tropiduchidae) J. HUANG and T. BOURGOINt* Pomological Institute of Shijiazhuang, Agricultural and Forestry Academy of Sciences of Hebei, 5-7 Street, 050061, Shijiazhuang, China t Mus#um National d'Histoire Naturelle, Laboratoire d'Entomologie, 45 rue Buffon, F-75005, Paris, France (Accepted 28 January 1993) The genus Trypetimorpha is revised with the eight currently recognized species described or re-described. Four new species are described and seven new synonymies are proposed. Within Trypetimorphini sensu Fennah (1982), evidences for the monophyly of each genus are selected, but Caffrommatissus is transferred to the Cixiopsini. Monophyly of Trypetimorphini, restricted to Trypetimorpha and Ommatissus, is discussed. A key is given for the following Trypetimorpha species: (1) T. fenestrata Costa ( = T. pilosa Horvfith, syn. n.); (2) T. biermani Dammerman (= T. biermani Muir, syn. n.; = T. china (Wu), syn. n.; = T. formosana Ishihara, syn. n.); (3) T. japonica Ishihara ( = T. koreana Kwon and Lee, syn. n.); (4) T. canopus Linnavuori; (5) T. occidentalis, sp. n. (= T. fenestrata Costa, sensu Horvfith); (6) T. aschei, sp. n., from New Guinea; (7) T. wilsoni, sp. n., from Australia; (8) T. sizhengi, sp. n., from China and Viet Nam. Study of the type specimens of T. fenestrata Costa shows that they are different from T. fenestrata sensu Horvfith as usually accepted, which one is redescribed here as T. occidentalis. KEYWORDS: Hemiptera, Fulgoromorpha, Tropiduchidae, Trypetimorpha, Ommatissus, Cafrommatissus, systematics, phylogeny. Downloaded by [University of Delaware] at 10:13 13 January 2016 Introduction This revision arose as the result of a study of the Chinese Fulgoromorpha of economic importance (Chou et al., 1985) and the opportunity for J.H.
    [Show full text]
  • Towards a Phylogeny of the Cixiidae (Fulgoromorpha) and Its Major Subgroups: Preliminary Results
    LECTURES Friday, 11. 6. 01 Towards a phylogeny of the Cixiidae (Fulgoromorpha) and its major subgroups: preliminary results Werner E, Holzinger', Ingrid Kammerlander', Thierry Bourgoin^, Kathy L. Chan^ and Bruce C. Campbell^ 'Oekoteam, Inst. f. Faunistik und Tieroekologie, Bergmanngasse 22, A-8010 Graz, Austria ^MNHN-Laboratoire d'Entomologie & ESA 8043 du CNRS, 45, Rue Buffon, F-75005 Paris, France 'USDA-ARS, WRRC, 800 Buchanan St., Albany, 94710-1100, CA, USA Cixiidae is one of the larger families within Fulgoromorpha. Cixiids are distributed worldwide, with an especially high diversity in the tropics. Some taxa are of economic importance, as they are vectors of serious plant diseases. Together with Delphacidae, Derbidae, Achihdae, Achilixiidae and - argued by some authors - Tettigometridae, Cixiidae are usually placed in a very basal position within Fulgoromorpha. The delimitation of the family is based mainly on symplesiomorphies, only a few characters are considered to be synapomorphies (see e. g. Bourgoin et al. 1997, Emeljanov 1990, 1997). Using both molecular and morphological methods, we want to provide new data for a comprehensive phylogenetic analysis of the Cixiidae and its major subgroups. Initial results based on 18S ribosomal DNA sequences indicate, that the Cixiidae (sensu lato) might be a paraphyletic taxon, whereas the subfamilies Bothriocerinae and Cixiinae are obviously monophyletic. The two major tribes within Cixiinae, Pentastirini and Cixiini, are also distinct monophyla with many autapomorphic nucleotide sites. This molecular-based inference is supported by certain morphological characters, especially those found in female genitalia. For example, the presence of a heUx-like, strongly wound Ductus receptaculi (see Remane & Asche 1979) appears to be a strong synapomorphy of the Cixiini.
    [Show full text]
  • A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)L
    Pacific Science (1997), vol. 51, no. 4: 366-376 © 1997 by University of Hawai'i Press. All rights reserved A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)l MANFRED ASCHE2 ABSTRACT: With 206 endemic species, the phytophagous Fulgoroidea, or planthop­ pers, are among the most important elements of the native Hawaiian fauna. These principally monophagous or oligophagous insects occur in nearly all Hawaiian terrestrial ecosystems. Species of two of the 18 planthopper families occurring worldwide have successfully colonized and subsequently radiated in Hawai'i. Based on collections made mainly by Perkins, Kirkaldy, Muir, Giffard, and Swezey, more than 95% of these species were described in the first three decades of this century. The systematics of the Hawaiian planthoppers has changed little in the past 60 yr and is not based on any phylogenetic analyses. This paper attempts a preliminary phylogenetic evaluation ofthe native Hawaiian p1anthoppers on the basis ofcompara­ tive morphology to recognize monophyletic taxa and major evolutionary lines. The following taxa are each descendants of single colonizing species: in Cixiidae, the Hawaiian Oliarus and Iolania species; in De1phacidae, Aloha partim, Dictyophoro­ delphax, Emoloana, Leialoha + Nesothoe, Nesodryas, and at least four groups within Nesosydne. Polyphyletic taxa are the tribe "Alohini," Aloha s.l., Nesorestias, Nesosydne s.l., and Nothorestias. Non-Hawaiian species currently placed in Iolania, Oliarus, Aloha, Leialoha, and Nesosydne are not closely allied to the Hawaiian taxa. The origin of the Hawaiian planthoppers is obscure. The Hawaiian Oliorus appear to have affinities to (North) American taxa. ALTHOUGH THE HAWAIIAN ISLANDS are the most Other groups of Hawaiian insects have isolated islands on earth, they house a remark­ received far less attention, although they are ably rich flora and fauna.
    [Show full text]
  • Phragmites Australis
    Journal of Ecology 2017, 105, 1123–1162 doi: 10.1111/1365-2745.12797 BIOLOGICAL FLORA OF THE BRITISH ISLES* No. 283 List Vasc. PI. Br. Isles (1992) no. 153, 64,1 Biological Flora of the British Isles: Phragmites australis Jasmin G. Packer†,1,2,3, Laura A. Meyerson4, Hana Skalov a5, Petr Pysek 5,6,7 and Christoph Kueffer3,7 1Environment Institute, The University of Adelaide, Adelaide, SA 5005, Australia; 2School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; 3Institute of Integrative Biology, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich,€ Switzerland; 4University of Rhode Island, Natural Resources Science, Kingston, RI 02881, USA; 5Institute of Botany, Department of Invasion Ecology, The Czech Academy of Sciences, CZ-25243, Pruhonice, Czech Republic; 6Department of Ecology, Faculty of Science, Charles University, CZ-12844, Prague 2, Czech Republic; and 7Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa Summary 1. This account presents comprehensive information on the biology of Phragmites australis (Cav.) Trin. ex Steud. (P. communis Trin.; common reed) that is relevant to understanding its ecological char- acteristics and behaviour. The main topics are presented within the standard framework of the Biologi- cal Flora of the British Isles: distribution, habitat, communities, responses to biotic factors and to the abiotic environment, plant structure and physiology, phenology, floral and seed characters, herbivores and diseases, as well as history including invasive spread in other regions, and conservation. 2. Phragmites australis is a cosmopolitan species native to the British flora and widespread in lowland habitats throughout, from the Shetland archipelago to southern England.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 10 PARIS, 2012-10-01 CONTENTS _______________________________________________________________________ Pests & Diseases 2012/203 - First report of Anthonomus eugenii in the Netherlands 2012/204 - First report of Aromia bungii in Italy 2012/205 - Drosophila suzukii continues to spread in Europe 2012/206 - First report of Drosophila suzukii in Germany 2012/207 - First report of Drosophila suzukii in Croatia 2012/208 - First report of Drosophila suzukii in the United Kingdom 2012/209 - First report of Drosophila suzukii in Portugal 2012/210 - First report of Drosophila suzukii in the Netherlands 2012/211 - Situation of Drosophila suzukii in Belgium 2012/212 - First report of Aculops fuchsiae in Belgium 2012/213 - First report of Carpomya incompleta in France 2012/214 - Outbreaks of Bemisia tabaci in Finland 2012/215 - Update on the situation of Diabrotica virgifera virgifera in the Czech Republic 2012/216 - Synchytrium endobioticum no longer found in Northern Ireland, United Kingdom 2012/217 - Outbreak of Anacridium melanorhodon arabafrum in Qatar 2012/218 - Ralstonia solanacearum detected in the Czech Republic 2012/219 - First report of „Candidatus Liberibacter solanacearum‟ on carrots in France, in association with Trioza apicalis 2012/220 - Occurrence of „Candidatus Phytoplasma pyri‟ is confirmed in Belgium 2012/221 - „Syndrome des basses richesses‟ detected in Germany: addition to
    [Show full text]
  • Incipient Non-Adaptive Radiation by Founder Effect? Oliarus Polyphemus Fennah, 1973 – a Subterranean Model Case
    Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Diplom-Biologe Andreas Wessel geb. 30.11.1973 in Berlin Präsident der Humboldt-Universität zu Berlin Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. Lutz-Helmut Schön Gutachter/innen: 1. Prof. Dr. Hannelore Hoch 2. Prof. Dr. Dr. h.c. mult. Günter Tembrock 3. Prof. Dr. Kenneth Y. Kaneshiro Tag der mündlichen Prüfung: 20. Februar 2009 Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Doctoral Thesis by Andreas Wessel Humboldt University Berlin 2008 Dedicated to Francis G. Howarth, godfather of Hawai'ian cave ecosystems, and to the late Hampton L. Carson, who inspired modern population thinking. Ua mau ke ea o ka aina i ka pono. Zusammenfassung Die vorliegende Arbeit hat sich zum Ziel gesetzt, den Populationskomplex der hawai’ischen Höhlenzikade Oliarus polyphemus als Modellsystem für das Stu- dium schneller Artenbildungsprozesse zu erschließen. Dazu wurde ein theoretischer Rahmen aus Konzepten und daraus abgeleiteten Hypothesen zur Interpretation be- kannter Fakten und Erhebung neuer Daten entwickelt. Im Laufe der Studie wurde zur Erfassung geografischer Muster ein GIS (Geographical Information System) erstellt, das durch Einbeziehung der historischen Geologie eine präzise zeitliche Einordnung von Prozessen der Habitatsukzession erlaubt. Die Muster der biologi- schen Differenzierung der Populationen wurden durch morphometrische, etho- metrische (bioakustische) und molekulargenetische Methoden erfasst.
    [Show full text]
  • Title: the Phylogenetic Information Carried by a New Set Of
    CORE Metadata, citation and similar papers at core.ac.uk Title: The phylogenetic information carried by a new set of morphological characters in planthoppers : the internal mouthpart structures and test in the Cixiidae model (Hemiptera: Fulgoromorpha) Author: Jolanta Brożek, Thierry Bourgoin Citation style: Brożek Jolanta, Bourgoin Thierry. (2013). The phylogenetic information carried by a new set of morphological characters in planthoppers : the internal mouthpart structures and test in the Cixiidae model (Hemiptera: Fulgoromorpha).. "Zoomorphology" (2013, no. 4, s. 403-420), doi 10.1007/s00435-013-0195-2 Zoomorphology (2013) 132:403–420 DOI 10.1007/s00435-013-0195-2 ORIGINAL PAPER The phylogenetic information carried by a new set of morphological characters in planthoppers: the internal mouthpart structures and test in the Cixiidae model (Hemiptera: Fulgoromorpha) Jolanta Brozek_ • Thierry Bourgoin Received: 28 January 2013 / Revised: 28 April 2013 / Accepted: 4 May 2013 / Published online: 23 May 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Internal morphological structures of Cixiidae Introduction mouthparts are described and compared in various repre- sentatives of the Cixiidae and several other representatives The Hemiptera are characterised by a deep modification of of hemipterans. The morphological study shows that the their buccal apparatus into a rostrum consisting of the mouthpart structures have not evolved uniformly and labium guiding two pairs of respective mandibular and reveals the great disparity of these structures. Particularly, maxillar stylets allowing their penetration into feedings the connecting system of the mouthparts, localisation of tissues. For mechanical efficiency, these stylets are mor- salivary canal and shape of the mandibular and maxillar phologically more or less strongly coapted through inter- stylets provide together a new set of 17 new characters.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 9 PARIS, 2010-09-01 CONTENTS _____________________________________________________________________ Pests & Diseases 2010/145 - First record of Paysandisia archon in Switzerland 2010/146 - Paysandisia archon found again in Liguria region (IT) 2010/147 - Situation of Aleurocanthus spiniferus in Puglia region (IT) 2010/148 - First report of Phytophthora kernoviae in Ireland 2010/149 - Phytophthora ramorum found on Quercus phillyraeoides in Ireland 2010/150 - Phytophthora ramorum found on Larix kaempferi in Ireland 2010/151 - First report of Chalara fraxinea in the Netherlands 2010/152 - Chalara fraxinea occurs in Lithuania 2010/153 - Monilinia fructicola detected for the first time in Emilia-Romagna (IT) 2010/154 - Puccinia horiana detected in Veneto region (IT) 2010/155 - Stolbur phytoplasma found on potatoes in Germany 2010/156 - Studies on the insect vectors of Stolbur phytoplasma 2010/157 - Clavibacter michiganensis subsp. michiganensis detected in Puglia (IT) 2010/158 - Situation of Potato spindle tuber viroid in Belgium 2010/159 - Studies on Potato spindle tuber viroid in Russia 2010/160 - Potato spindle tuber viroid detected on Cestrum spp. in Italy 2010/161 - Incursions of Chrysanthemum stunt viroid in Austria 2010/162 - Incursion of Chrysanthemum stunt viroid in the Czech Republic CONTENTS _______________________________________________________________________Invasive Plants
    [Show full text]