Pest Management in Cereals and Oilseed Rape – a Guide

Total Page:16

File Type:pdf, Size:1020Kb

Pest Management in Cereals and Oilseed Rape – a Guide Pest management in cereals and oilseed rape – a guide Autumn 2003 Contents BYDV vectors 4 Grey field slug 6 Gout fly 7 The impact of pests on yield and quality can be more variable than that of many diseases. Wheat bulb fly 8 However, they do pose a serious threat to UK crops and can reduce yield by 10% or more, Yellow cereal fly 9 sometimes much more. Wireworms 10 With increasing concerns about the environment, there is a need to balance pest Leatherjackets 11 control against encouraging other insects which Summer aphids 12 can actually benefit the crop. Orange wheat blossom midge 13 Integrated strategies seek to use cultural control options, encourage natural enemies and only use Peach-potato aphid 14 crop protection methods when they are fully justified – usually by the use of thresholds. Cabbage aphid 14 Developing such strategies depends on a sound Cabbage stem flea beetle 15 understanding of pests, their life cycles and their natural enemies.This guide brings together the Other flea beetles 16 latest knowledge from research funded by Defra and HGCA. Wessex flea beetle Turnip flea beetle Jon Oakley, a leading entomologist, has gathered here information that will be invaluable to Large striped flea beetle growers who seek to minimise pest damage, Pollen beetle 17 maximise the marketability of their crops and enhance the environment on their farms. Cabbage seed weevil 18 Brassica pod midge 18 Other pests 19 Frit fly Thrips Professor Graham Jellis Saddle gall midge Director of Research HGCA Rape winter stem weevil Cereal ground beetle Cabbage stem weevil The Home-Grown Cereals Authority (HGCA) has provided funding for some of the projects on which this guide is based but has not conducted the research or written this guide. While the authors have worked on Biological and cultural control 20 the best information available to them, neither the HGCA nor the authors shall in any event be liable for any loss, damage or injury Further information 23 howsoever suffered directly or indirectly in relation to the booklet or the research on which it is based. Front cover: Gout fly and parasitoids on wild flowers Reference herein to trade names and proprietary products without in a field margin. stating that they are protected does not imply they may be regarded as pest management in cereals and unprotected and thus free for general use. No endorsement of named oilseed rape – a guide products is intended, nor is any criticism implied of other alternative, but unnamed products. 2 Effective pest control ➤ Assess the risk of infestations. ➤ Minimise pest risk by cultural means. ➤ Maximise the effects of natural enemies. ➤ Only use treatments if economically justified. General principles of pest management For pests Yes Order that seed Have these seed treatments pests caused Yes treatment may control damage in Has risk (eg cabbage previous No of pest stem flea beetle, crops? increased? wireworm, No Do not use seed wheat bulb fly) treatment For pests Yes Plough early, or use desiccant that Does cultivations previous crop BEFORE SOWING may control or stubble (eg green bridge regrowth No BYDV, increase risk? leatherjackets, frit fly) Do slugs pose Yes Sow deeper and Monitor a particular roll after sowing using traps threat? Control (eg is there a of slugs history of slug Yes Apply problems, does Are slugs above molluscicide the weather threshold? No No EMERGENCE favour the pest?) FROM SOWING TO SOWING FROM Consider Monitor for No Will pest levels Yes treatment at pests that Is there a exceed correct timing affect growing risk of threshold? No crops imminent (eg pollen beetle, attack? No AFTER Are natural wheat blossom Yes midge, gout fly) enemies present? EMERGENCE No Yes 3 BYDV VECTORS BYDV Two different aphid species transmit barley yellow dwarf luteovirus (BYDV) to cereals and grasses in the UK. Very low populations, which may go unnoticed, can cause economic damage. In autumn most aphids probably come from grasses, especially perennial ryegrass.Virus may also come from other cereal crops and volunteers. Grain aphid Bird cherry-oat aphid Sitobion avenae Rhopalosiphum padi The aphids may be green, The aphids are green to red or brown with black dusky brown with rust red legs. patches at the rear. Transmits: The MAV and Transmits: The PAV and PAV strains of BYDV. RPV strains of BYDV. Economic importance Economic importance The grain aphid is the main and northern Britain. Losses can The bird cherry-oat aphid is the west England and in warm BYDV vector in eastern, mid be up to 2.5 t/ha. main vector of BYDV in south- autumns elsewhere. Risk factors Risk factors Winter crops: In mild winters Spring crops: After mild Winter crops: Crops sown Spring crops: After mild significant spread may occur in winters BYDV may be early,particularly in a warm winters BYDV may be any crops exposed to transmitted to late-sown crops autumn, are most susceptible to transmitted to late-sown crops migrations of the winged by winged aphids. bird cherry-oat attack.These by winged aphids. aphids.These can continue into conditions allow aphids to breed November and infect later sown rapidly before frosts kill them. crops. Life cycle Life cycles The grain aphid is mainly 50% of the aphids) of -8ºC. The asexual strain The sexual strain asexual feeding on cereals and Grain aphids survive on crops – overwinters on cereals – overwinters as eggs on bird grasses all year round.The aphid through most winters. Numbers and grasses. cherry trees. is more frost-resistant than the increase during mild spells Aphids are frost-susceptible, the Most wild bird cherry trees are bird cherry-oat aphid with a when further BYDV spread LT50 being -0.5ºC. In colder found in northern Britain LT50 (lethal temperature for may occur. winters survival of this strain is although they occur across restricted to milder coastal the UK. districts. Eggs of bird cherry-oat aphid are very frost-resistant. Bird cherry trees are not infected by BYDV,so spring migrants are initially virus-free. Aphids of the sexual strain do not transmit BYDV within winter cereal crops. 4 BYDV VECTORS Both species Natural enemies Ground beetles and spiders may attack aphids in the autumn and Grass banks and grassed field margins may assist predator survival, winter and parasitoids can be active in mild weather. Minimum tillage but can also harbour infective aphids. Grassed areas should be leaves more predators, but increases the risk of ‘green bridge’ transfer. considered in large arable fields of 20 ha or more. ‘Green bridge’ transmission Warm, moist soil conditions facilitate aphid movement through weedy stubbles to new cereal crops.The aphids can feed on new soil.‘Green bridge’ transmission is most likely in south-west crop roots, and transmit virus directly without appearing above England, on early-sown crops and in mild, damp autumns. ground level to provide a control opportunity. Any cereal aphid Aphids can transfer directly from grass or ploughed-down grass or species present may transmit virus – often the RPV strain of BYDV. Cultural control 1. Clean stubble before preparing seedbed. 2. Leave at least five weeks between ploughing and sowing the new crop. 3. Consider applying a desiccant herbicide if cultivation to sowing interval is less than five weeks. 4. Delay sowing by a week to reduce BYDV spread by up to half. 5. Choose a moderately resistant spring barley variety (see HGCA Recommended Lists) if growing crops after mild winters or in milder districts. Chemical control Applying a seed treatment incorporating Spray timing imidacloprid (Secur) can provide about six BYDV starts to spread within the crop 1. Calculate ‘T sum’ by subtracting 3ºC from weeks’ protection, less at very low seed when the second wingless aphid generation the daily mean temperature and adding rates. It may not replace the need to spray. emerges. Spread, initially slow, accelerates as the result to the running total. In mild seasons the threat of aphid the third wingless aphid generation 2. If ‘T sum’is 170 (second generation could infestation may continue through the winter. appears. Aphid breeding is governed by be starting) A pyrethroid spray will kill most wingless temperature, so a ‘T sum’system of – consider a tank-mix insecticide if aphids. accumulated day degrees above 3ºC can be treating the crop for another purpose. Chemical control is ineffective on spring- used to predict best spray timings. 3. If ‘T sum’is 340 (significant spread sown crops. Temperature accumulation should be imminent) started from: – apply a spray treatment as a priority. Action thresholds M six weeks after sowing for imidacloprid- A crop should suffer little yield loss from No satisfactory thresholds for treatment treated crops fresh BYDV infection after GS 31 or after a exist. M date of emergence for other crops prolonged cold period. A month with mean M one week after application for pyrethroid- daily temperatures below 5ºC will severely treated crops. reduce grain aphid survival. An example of the effect of date of crop emergence on need to spray in a mild winter 26 Nov Early emerged crops are most at risk of BYDV infection. Decisions on whether to 19 Nov t n treat crops emerging in September must e ix be made by the start of October. The 12 Nov treatment window is wider for later- tm m emerging crops. 5 Nov a k e 29 Oct r tan Use ‘T-sum’ (see above) for specific t locality. 22 Oct o n rity 15 Oct 8 Oct high prio Date of crop emergence Date of crop 1 Oct 24 Sept 17 Sept too late Sept Oct Nov Dec Jan Feb Mar Month 5 CEREAL & OILSEED RAPE PESTS Grey field slug Deroceras reticulatum Many slug species are found in arable fields.
Recommended publications
  • Abstract List of New Taxa, Synonyms and Nomenclatural Changes
    Abstract This volume deals with North European species From Fennoscandia and Denmark are known 48 of the family Chloropidae, known as frit flies or genera and 209 species of frit flies: Rhodesiellinae chloropid flies, a large family of acalyptrate flies 1 species, Oscinellinae 111 species, Chloropinae 97 including some notarial, economically pests of ce- species. Among them 119 species are known from reals and fodder grasses. The taxonomy, biology Denmark, 97 from Norway, 189 from Sweden, 144 and faunistics of all NW European species are re- from Finland, and 115 from included provinces of vised. Keys are given to subfamilies, genera and Russia (Karelian Isthmus, Karelia, and the Kola species for the adults, for the larvae to generic level Peninsula). One new genus and 11 new species are as far as possible, and to specific level for a few ge- described, and some new synonyms and nomen- nera. Brief descriptions of the adult flies are given clatural changes are proposed. Some other new for all genera and species. Species distributions species, new synonyms, and overlooked specific in Fennoscandia and Denmark and elsewhere are names resulting from this revision have been pub- briefly outlined and further tabulated in a cata- lished earlier (Nartshuk, 1992, 1998, 1999, 2002a; logue. The known biology and ecology is summa- Nartshuk & Andersson, 2002; Nartshuk & Przhi- rized in general chapters and for each species. Il- boro, 2009; Nartshuk & Tschirnhaus, 2012). lustrations are given of the male genitalia and also of other characters of diagnostic importance. List of new taxa, synonyms and nomenclatural changes New taxa: Rhopalopterum tomentosum sp.
    [Show full text]
  • Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
    Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N.
    [Show full text]
  • The Role of Agrotechnical Factors in Shaping the Health of Maize Plants (Zea Mays L.)
    Pol. J. Environ. Stud. Vol. 30, No. 1 (2021), 863-869 DOI: 10.15244/pjoes/122447 ONLINE PUBLICATION DATE: 2020-09-18 Original Research The Role of Agrotechnical Factors in Shaping the Health of Maize Plants (Zea mays L.) Piotr Szulc1*, Katarzyna Ambroży-Deręgowska2, Iwona Mejza2, Joanna Kobus-Cisowska3, Marta Ligaj4, Daniel Krauklis1 1Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland 2Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland 3Poznań University of Life Sciences, Department of Gastronomy Sciences and Functional Foods, Wojska Polskiego 31, 60-624, Poznań, Poland 4Department of Industrial Products and Packaging Quality, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland Received: 27 March 2020 Accepted: 14 May 2020 Abstract The article presents the results of 3-year field studies, whose purpose was to assess the impact of maize sowing method, type of cultivar and NP fertiliser sowing method on the health of maize plants. Changing weather conditions during the study years significantly differentiated the percentage of maize plants damaged by pests and affected by diseases. The positive effect of the row method of NP fertiliser application in maize cultivation not only reduced plant infestation by Fusarium diseases, but also reduced Frit fly Oscinella( frit L.) pressure. The “stay-green” hybrid was characterized by a significantly lower susceptibility to feeding of the European corn borer (Ostrinia nubilalis Hbn.) compared to the traditional cultivar. Sowing maize of the traditional cultivar using the direct sowing system increased damage to plants caused by Frit fry larvae (Oscinella frit L.) compared to sowing into soil cultivated in a traditional way.
    [Show full text]
  • Distribution of Oscinellinae (Diptera: Chloropidae) in the Danish Landscape Lise Brunberg Nielsen
    Distribution of Oscinellinae (Diptera: Chloropidae) in the Danish landscape Lise Brunberg Nielsen Nielsen, Lise Brunberg: Distribution of Oscinellinae (Diptera: Chloropidae) in the Danish Landscape. Ent. Meddr 82: 39-62, Copenhagen, Denmark, 2014. ISSN 0013-8851 Abstract About 29,700 Oscinellinae were collected by means of sweep net, water traps and pitfalls in a variety of uncultivated habitats in Denmark mainly in Jutland. So far 75 species belonging to 21 genera are re­ corded from Denmark. Eleven species are new to the Danish fauna. Morphological details of Aphanotrigonum brachypterum, A. hungaricum, A. nigripes, Conioscinella gallarum, lncertella albipalpis, I. nigrifrons, I. kerteszi, I. scotica and Oscinella angustipennis are presented. The distribu­ tion of Oscinellinae in the Danish landscape is discussed. In Denmark, farmland dominates, so the two most abundant Oscinellarspecies of ara­ ble land, Oscinella frit and 0. vastator, are also predominant in most nat­ ural habitats. Small and larger uncultivated areas, however, making up only 25 % of the Danish landscape, contain a rich fauna of Oscinel­ lines. The advantage of different sampling methods combined is demonstrated. Sammendrag Fordelingen af fritf1uer (Diptera: Chloropidae) i det danske landskab. De fa millimeter lange, sorte eller sort-gule fritf1uer (Chloropidae) er nogle af de mest almindelige fluer pa gr<esarealer i Danmark. Et start materiale indsamlet med ketcher, i fangbakker og nedgravede fangglas pa forskellige udyrkede gr<esarealer er artsbestemt. Hovedparten af materialet, ea. 29.700 individer tilh0rer underfamilen Oscinellinae, der i Danmark omfatter 21 sl<egter og 75 arter. Elleve arter er nye for den danske fauna. Alle arter er beskrevet i Nartshuk & Andersson (2013), men supplerende morfologiske detaljer er her tilf0jet for 9 af dem: Aphanotrigonum brachypterum, A.
    [Show full text]
  • 61014 Information Leaflet
    Rothamsted ROTHAMSTED RESEARCH Long-term Experiments ROTHAMSTED RESEARCH Guide to the Classical and other Long-term Experiments, Datasets and Sample Archive. 2006 Rothamsted Research Harpenden, Herts, AL5 2JQ, UK Tel +44 (0) 1582 763133 Fax +44 (0) 1582 760981 web http:www.rothamsted.ac.uk © Lawes Agricultural Trust Co. Ltd ISBN 0 9514456 9 3 Rothamsted Research: Guide to the Classical and other Long-term Experiments, Datasets and Sample Archive. Front cover: Broadbalk from the air. Back cover: Park Grass from the air. Printed by Premier Printers Ltd, Bury St Edmunds, Suffolk. CONTENTS Introduction ................................................................................................................5 The Classical Experiments • Broadbalk Winter Wheat ..................................................................................8 • Broadbalk and Geescroft Wildernesses ........................................................19 • Park Grass......................................................................................................20 • Hoosfield Spring Barley ..................................................................................31 • Exhaustion Land ............................................................................................35 • Hoosfield Wheat and Fallow ..........................................................................36 • Garden Clover ................................................................................................37 • Barnfield..........................................................................................................38
    [Show full text]
  • Chloropidae (Diptera) of Turkey with Descriptions of New Species and New Records
    ISRAEL JOURNAL OF ENTOMOLOGY, Vol. 41–42, 2011–2012, pp. 115–144 Chloropidae (Diptera) of Turkey with descriptions of new species and new records EMILIA P. NARTSHUK Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab 1, 199034 St. Petersburg. E-mail: [email protected] ABSTRACT A list of Chloropidae from Turkey is provided, containing 64 species from 31 genera and 4 subfamilies. Three species are described as new. Two additional species were only identified to genus level. Twelve species are listed based only on literature data. Most species (40) are recorded from Turkey for the first time. KEYWORDS: Diptera, Chloropidae, Asia Minor, Turkey, new species, new faunistic data INTRODUCTION Grass flies of the family Chloropidae (Diptera, Cyclorrhapha) of Turkey are insuf- ficiently studied, and only 21 species have been recorded to date. Loew (1858) de- scribed 3 species: Oscinis brevirostris (now Aphanotrigonum cinctellum (Zetterstedt)), O. marginata (now Polyodaspis ruficornis (Macquart)) and Crassiseta megaspis (now in Elachiptera). He also cited Constantinopolis as type locality for the two former spe- cies and Asia minor for the latter species. Becker (1912) described Chlorops pallidior from Asia Minor. Duda (1932-1933) recorded Oscinimorpha albisetosa Duda, Chlo- rops fasciatus Meigen and Thaumatomyia sulcifrons Becker from Asia minor, Lodos (1957) recorded Oscinella frit (Linnaeus) as Scatopse nigra, but his drawings of the fly, including its wing, beyond question refer to O. frit. This species was mentioned by Özer (1976) as well. Lessman (1962), who studied pests of cones of Ceder libani, found larvae of a fly, which he did not name (see comments below under Hapleginella laevi- frons (Loew, 1858)).
    [Show full text]
  • Diptera) of Finland 311 Doi: 10.3897/Zookeys.441.7505 CHECKLIST Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 441: 311–318 (2014)Checklist of the family Chloropidae (Diptera) of Finland 311 doi: 10.3897/zookeys.441.7505 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chloropidae (Diptera) of Finland Emilia Nartshuk1, Jere Kahanpää2 1 Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1 St.-Petersburg 199034 Russia 2 Finnish Museum of Natural History, Zoology Unit, P.O. Box 17, FI-00014 University of Helsinki, Finland Corresponding author: Emilia Nartshuk ([email protected]) Academic editor: J. Salmela | Received 24 March 2014 | Accepted 10 June 2014 | Published 19 September 2014 http://zoobank.org/782B4E3D-E88F-46E7-BB77-1A51666A4DD5 Citation: Nartshuk E, Kahanpää J (2014) Checklist of the family Chloropidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 311–318. doi: 10.3897/zookeys.441.7505 Abstract A checklist of 147 species the Chloropidae (Diptera) recorded from Finland. Centorisoma elegantulum Becker is recorded for the first time from Finland. Keywords Finland, Chloropidae, species list, biodiversity, faunistics Introduction The Chloropidae is a large family of acalyptrate Diptera. It belongs to superfamily Carnoidea with Milichiidae as the closest relative. The classification of the family used follows Andersson (1977) and Nartshuk (1983). The North European chloropid fauna has recently been revised by Nartshuk and Andersson (2013). Details of Finnish chloropid literature, species distribution and ecology, and other details can be found in their book. In comparison with the neigh- bouring countries, Finland ranks second in the number of chloropid species after Swe- den (189 species) but well ahead of Denmark (119 species) and Norway (97 species).
    [Show full text]
  • Preliminary Observations on the Habits of Oscinella Frit
    105 1olly m s made t many i food is PRELIMINARY OBSERVATIONS ON THE HABITS pterous ;he rest OF OSCINELZA FRIT, L1NN.l breed BY CUNLIFFE, M.A. (CANTAB.), ne, are NORMAN broods Christopher Welch Lecturer in Economic Zoology, ngl-, University of Oxford. tion of 3t con- (With 1 Text-figure and 2 Charts.) which of the COITCENTS. PAGE iduals Introaactory remarks .......106 leaves A. Pravalenceoftheimagointhefield ....108 pies B. Hostplantaemongwildandpturegrasses . 119 C. Appendix:- ........123 I other (1) The longevity of the imago in captivity . 123 esring (2) The value of ploughing es a repressive meeeure 125 (3) Theeffeotofmsnurialtreetment ...129 in the (4) Pal'Mi- ........132 prove summary .........la3 INTRODUCTORY REMARKS. INhis summary of our knowledge of the frit-fly, Collin(8) indicates that elucidation of the bionomics o€the fly in England is very neceaeq. 46 i Most of the data published-in recent years are Ruesian in migin, and probably not applicable to this country. [ It WSE considered advisable to ascertain the relationslip between the p 78. I fly and ite environment, therefore the following observations were made in 1919-20 with the view of obtaining evidence as to (a)the prevalence .,i of the fly in the field in the different ae.asons, and (b) the host planla I additional or alternative to cereals. Observations on prevalence in the field must be obtained in different localities, over several yeam and correlated with meteorologial con- 1 ditions, for the periods of maximum prevalence to be ked wit& the limite indud by seaeonel variations. The kation of these periods will f be of importance if control through partial immunity is eought.
    [Show full text]
  • Arthropods of Canadian Grasslands
    Arthropods of Canadian Grasslands Number 11 2005 Contents Contributions welcome . inside front cover Grasslands project action Grassland Project Key Site 2005: Waterton Lakes National Park . 1 Aweme Bioblitz 2004 . 3 Restoration project for the Criddle laboratory . 4 Long term research: Norman Criddle, John Merton Aldrich and the grass fl ies of Aweme . 5 Immigrant insects help restore Canada’s grassland communities . 14 Ants of the South Okanagan grasslands, British Columbia. 17 Web watch: Ants of the tallgrass prairie . 23 Some recent publications . 24 Mailing list for the Grasslands Newsletter . 25 Arthropods of Canadian Grasslands supports the grasslands project of the Biological Survey of Canada (Terrestrial Arthropods) by providing information relevant to the study of grassland arthropods in Canada. Chloropid fl ies are common in grasslands, and historical records from early in the 20th century, available because of careful recording and preservation of specimens and documents, allow interesting present- day comparisons in the same places, as explained on page 5. 1 Contributions welcome Please consider submitting items to Arthropods of Canadian Grasslands Grassland site Current research – descriptions project reports Short news items Feature articles Grassland species Selected accounts publications Contributions such as these, as well as other items of interest to students of grasslands and their arthropods, are welcomed by the editor. This publication (formerly Newsletter, Arthropods of Canadian Grasslands) appears annually in March; final copy deadline for the next issue is January 31, 2006. Editor: H.V. Danks Biological Survey of Canada (Terrestrial Arthropods) Canadian Museum of Nature P.O. Box 3443, Station “D” Ottawa, ON K1P 6P4 613-566-4787 (tel.) 613-364-4022 (fax) [email protected] Articles without other accreditation are prepared by the Editor.
    [Show full text]
  • Marine Insects
    UC San Diego Scripps Institution of Oceanography Technical Report Title Marine Insects Permalink https://escholarship.org/uc/item/1pm1485b Author Cheng, Lanna Publication Date 1976 eScholarship.org Powered by the California Digital Library University of California Marine Insects Edited by LannaCheng Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92093, U.S.A. NORTH-HOLLANDPUBLISHINGCOMPANAY, AMSTERDAM- OXFORD AMERICANELSEVIERPUBLISHINGCOMPANY , NEWYORK © North-Holland Publishing Company - 1976 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,without the prior permission of the copyright owner. North-Holland ISBN: 0 7204 0581 5 American Elsevier ISBN: 0444 11213 8 PUBLISHERS: NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY LTD. - OXFORD SOLEDISTRIBUTORSFORTHEU.S.A.ANDCANADA: AMERICAN ELSEVIER PUBLISHING COMPANY, INC . 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017 Library of Congress Cataloging in Publication Data Main entry under title: Marine insects. Includes indexes. 1. Insects, Marine. I. Cheng, Lanna. QL463.M25 595.700902 76-17123 ISBN 0-444-11213-8 Preface In a book of this kind, it would be difficult to achieve a uniform treatment for each of the groups of insects discussed. The contents of each chapter generally reflect the special interests of the contributors. Some have presented a detailed taxonomic review of the families concerned; some have referred the readers to standard taxonomic works, in view of the breadth and complexity of the subject concerned, and have concentrated on ecological or physiological aspects; others have chosen to review insects of a specific set of habitats.
    [Show full text]
  • Efficacy of Entomopathogenic Nematodes Against the Frit Fly Oscinella Frit (L.) (Diptera: Chloropidae) on Spring Wheat
    JOURNAL FÜR KULTURPFLANZEN, 65 (1). S. 9–18, 2013, ISSN 1867-0911 VERLAG EUGEN ULMER KG, STUTTGART Originalarbeit Nabil El-Wakeil1,2, Christa Volkmar2 Efficacy of entomopathogenic nematodes against the frit fly Oscinella frit (L.) (Diptera: Chloropidae) on spring wheat Zur biologischen Regulation der Fritfliege Oscinella frit (L.) durch entomopathogene Nematoden an Sommerweizen 9 Abstract vided the greatest yields. These results confirmed that EPNs can be used as biocontrol agents in Integrated Pest The efficiency of three species of entomopathogenic nema- Management (IPM) programs of O. frit. todes (EPNs) (Steinernema carpocapsae, S. feltiae and Het- erorhabditis bacteriophora) and one pyrethroid (lambda- Key words: Oscinella frit, spring wheat, biological con- cyhalothrin) were evaluated to control frit fly, Oscinella trol, λ-cyhalothrin, yield frit (L.) in the laboratory and field on two wheat varieties (Triso and Sakha 93) during 2009 and 2010. This is the first research studying the efficiency of EPNs against Zusammenfassung O. frit. Within seven days in laboratory tests, up to 100% mortality was observed in O. frit larvae with all nematodes Die Larven der Fritfliege können während der Blattent- and the pyrethroid; however, the pyrethroid was only wicklung und Bestockungsphase beträchtliche Schäden 100% effective when high concentrations and young pest an Sommerweizen hervorrufen. Aufgrund der Diskussion larvae were used. In laboratory tests, H. bacteriophora um die Beizproblematik wurde nach alternativen Be- was more efficacious than S. carpocapsae against O. frit, kämpfungsmaßnahmen in der Frühphase der Pflanzen- while the latter was more efficient in field experiments. entwicklung gesucht. Deshalb wurde in den Jahren 2009 In 2009 field experiments, Steinernema carpocapsae was und 2010 eine Untersuchung zum Befall des deutschen more efficacious than S.
    [Show full text]
  • Pests of Cultivated Plants in Finland
    ANNALES AGRICULTURAE FE,NNIAE Maatalouden tutkimuskeskuksen aikakauskirja Vol. 1 1962 Supplementum 1 (English edition) Seria ANIMALIA NOCENTIA N. 5 — Sarja TUHOELÄIMET n:o 5 Reprinted from Acta Entomologica Fennica 19 PESTS OF CULTIVATED PLANTS IN FINLAND NIILO A.VAPPULA Agricultural Research Centre, Department of Pest Investigation, Tikkurila, Finland HELSINKI 1965 ANNALES AGRICULTURAE FENNIAE Maatalouden tutkimuskeskuksen aikakauskirja journal of the Agricultural Researeh Centre TOIMITUSNEUVOSTO JA TOIMITUS EDITORIAL BOARD AND STAFF E. A. jamalainen V. Kanervo K. Multamäki 0. Ring M. Salonen M. Sillanpää J. Säkö V.Vainikainen 0. Valle V. U. Mustonen Päätoimittaja Toimitussihteeri Editor-in-chief Managing editor Ilmestyy 4-6 numeroa vuodessa; ajoittain lisänidoksia Issued as 4-6 numbers yearly and occasional supplements SARJAT— SERIES Agrogeologia, -chimica et -physica — Maaperä, lannoitus ja muokkaus Agricultura — Kasvinviljely Horticultura — Puutarhanviljely Phytopathologia — Kasvitaudit Animalia domestica — Kotieläimet Animalia nocentia — Tuhoeläimet JAKELU JA VAIHTOTI LAUKS ET DISTRIBUTION AND EXCHANGE Maatalouden tutkimuskeskus, kirjasto, Tikkurila Agricultural Research Centre, Library, Tikkurila, Finland ANNALES AGRICULTURAE FENNIAE Maatalouden tutkimuskeskuksen aikakauskirja 1962 Supplementum 1 (English edition) Vol. 1 Seria ANIMALIA NOCENTIA N. 5 — Sarja TUHOELÄIMET n:o 5 Reprinted from Acta Entomologica Fennica 19 PESTS OF CULTIVATED PLANTS IN FINLAND NIILO A. VAPPULA Agricultural Research Centre, Department of Pest Investigation,
    [Show full text]