Jtc1/Sc2/Wg2 N3412 L2/08-131
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Method to Accommodate Backward Compatibility on the Learning Application-Based Transliteration to the Balinese Script
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 12, No. 6, 2021 A Method to Accommodate Backward Compatibility on the Learning Application-based Transliteration to the Balinese Script 1 3 4 Gede Indrawan , I Gede Nurhayata , Sariyasa I Ketut Paramarta2 Department of Computer Science Department of Balinese Language Education Universitas Pendidikan Ganesha (Undiksha) Universitas Pendidikan Ganesha (Undiksha) Singaraja, Indonesia Singaraja, Indonesia Abstract—This research proposed a method to accommodate transliteration rules (for short, the older rules) from The backward compatibility on the learning application-based Balinese Alphabet document 1 . It exposes the backward transliteration to the Balinese Script. The objective is to compatibility method to accommodate the standard accommodate the standard transliteration rules from the transliteration rules (for short, the standard rules) from the Balinese Language, Script, and Literature Advisory Agency. It is Balinese Language, Script, and Literature Advisory Agency considered as the main contribution since there has not been a [7]. This Bali Province government agency [4] carries out workaround in this research area. This multi-discipline guidance and formulates programs for the maintenance, study, collaboration work is one of the efforts to preserve digitally the development, and preservation of the Balinese Language, endangered Balinese local language knowledge in Indonesia. The Script, and Literature. proposed method covered two aspects, i.e. (1) Its backward compatibility allows for interoperability at a certain level with This study was conducted on the developed web-based the older transliteration rules; and (2) Breaking backward transliteration learning application, BaliScript, for further compatibility at a certain level is unavoidable since, for the same ubiquitous Balinese Language learning since the proposed aspect, there is a contradictory treatment between the standard method reusable for the mobile application [8], [9]. -
Ka И @И Ka M Л @Л Ga Н @Н Ga M М @М Nga О @О Ca П
ISO/IEC JTC1/SC2/WG2 N3319R L2/07-295R 2007-09-11 Universal Multiple-Octet Coded Character Set International Organization for Standardization Organisation Internationale de Normalisation Международная организация по стандартизации Doc Type: Working Group Document Title: Proposal for encoding the Javanese script in the UCS Source: Michael Everson, SEI (Universal Scripts Project) Status: Individual Contribution Action: For consideration by JTC1/SC2/WG2 and UTC Replaces: N3292 Date: 2007-09-11 1. Introduction. The Javanese script, or aksara Jawa, is used for writing the Javanese language, the native language of one of the peoples of Java, known locally as basa Jawa. It is a descendent of the ancient Brahmi script of India, and so has many similarities with modern scripts of South Asia and Southeast Asia which are also members of that family. The Javanese script is also used for writing Sanskrit, Jawa Kuna (a kind of Sanskritized Javanese), and Kawi, as well as the Sundanese language, also spoken on the island of Java, and the Sasak language, spoken on the island of Lombok. Javanese script was in current use in Java until about 1945; in 1928 Bahasa Indonesia was made the national language of Indonesia and its influence eclipsed that of other languages and their scripts. Traditional Javanese texts are written on palm leaves; books of these bound together are called lontar, a word which derives from ron ‘leaf’ and tal ‘palm’. 2.1. Consonant letters. Consonants have an inherent -a vowel sound. Consonants combine with following consonants in the usual Brahmic fashion: the inherent vowel is “killed” by the PANGKON, and the follow- ing consonant is subjoined or postfixed, often with a change in shape: §£ ndha = § NA + @¿ PANGKON + £ DA-MAHAPRANA; üù n. -
The Unicode Cookbook for Linguists: Managing Writing Systems Using Orthography Profiles
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 The Unicode Cookbook for Linguists: Managing writing systems using orthography profiles Moran, Steven ; Cysouw, Michael DOI: https://doi.org/10.5281/zenodo.290662 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-135400 Monograph The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License. Originally published at: Moran, Steven; Cysouw, Michael (2017). The Unicode Cookbook for Linguists: Managing writing systems using orthography profiles. CERN Data Centre: Zenodo. DOI: https://doi.org/10.5281/zenodo.290662 The Unicode Cookbook for Linguists Managing writing systems using orthography profiles Steven Moran & Michael Cysouw Change dedication in localmetadata.tex Preface This text is meant as a practical guide for linguists, and programmers, whowork with data in multilingual computational environments. We introduce the basic concepts needed to understand how writing systems and character encodings function, and how they work together. The intersection of the Unicode Standard and the International Phonetic Al- phabet is often not met without frustration by users. Nevertheless, thetwo standards have provided language researchers with a consistent computational architecture needed to process, publish and analyze data from many different languages. We bring to light common, but not always transparent, pitfalls that researchers face when working with Unicode and IPA. Our research uses quantitative methods to compare languages and uncover and clarify their phylogenetic relations. However, the majority of lexical data available from the world’s languages is in author- or document-specific orthogra- phies. -
Assessment of Options for Handling Full Unicode Character Encodings in MARC21 a Study for the Library of Congress
1 Assessment of Options for Handling Full Unicode Character Encodings in MARC21 A Study for the Library of Congress Part 1: New Scripts Jack Cain Senior Consultant Trylus Computing, Toronto 1 Purpose This assessment intends to study the issues and make recommendations on the possible expansion of the character set repertoire for bibliographic records in MARC21 format. 1.1 “Encoding Scheme” vs. “Repertoire” An encoding scheme contains codes by which characters are represented in computer memory. These codes are organized according to a certain methodology called an encoding scheme. The list of all characters so encoded is referred to as the “repertoire” of characters in the given encoding schemes. For example, ASCII is one encoding scheme, perhaps the one best known to the average non-technical person in North America. “A”, “B”, & “C” are three characters in the repertoire of this encoding scheme. These three characters are assigned encodings 41, 42 & 43 in ASCII (expressed here in hexadecimal). 1.2 MARC8 "MARC8" is the term commonly used to refer both to the encoding scheme and its repertoire as used in MARC records up to 1998. The ‘8’ refers to the fact that, unlike Unicode which is a multi-byte per character code set, the MARC8 encoding scheme is principally made up of multiple one byte tables in which each character is encoded using a single 8 bit byte. (It also includes the EACC set which actually uses fixed length 3 bytes per character.) (For details on MARC8 and its specifications see: http://www.loc.gov/marc/.) MARC8 was introduced around 1968 and was initially limited to essentially Latin script only. -
COSC345 Week 24 Internationalisation And
COSC345 Week 24 Internationalisation and Localisation 29 September 2015 Richard A. O'Keefe 1 From a Swedish h^otelroom Hj¨alposs att v¨arnerom v˚armilj¨o! F¨oratt minska utsl¨appav tv¨attmedel, byter vi Er handduk bara n¨arNi vill: 1. Handduk p˚agolvet | betyder att Ni vill ha byte 2. ... 2 The translation Help us to care for our environment! To reduce the use of laundry detergents, we shall change your towel as follows: 1. Towel on the floor | you want to have a new towel. 2. Towel hung up | you want to use it again. 3 People should be able to use computers in their own language. | It's just right not to make people struggle with unfamiliar lin- guistic and cultural codes. | Sensible people won't pay for programs that are hard to use. | Internationalisation (I18N) means making a program so that it does not enforce a particular language or set of cultural conventions | Localisation (L10N) means adapting an internationalised pro- gram to a particular language etc. | UNIX, VMS, Windows, all support internationalisation and lo- calisation; the Macintosh operating system has done this better for longer. 4 Characters You know that there are 26 letters in 2 cases. But Swedish has ˚a,¨a,¨o, A,˚ A,¨ and O¨ (29 letters), Croatian has d j, D j, D J, and others (3 cases), German has ß, which has no single upper case version (might be SS, might be SZ, both of which are two letters), Latin-1 has 58 letters in 2 cases (including 2 lower case letters with no upper case version), Arabic letters have 4 contextual shapes (beginning, middle, or end of word, or isolated), which are not case variants (Greek has one such letter, and Hebrew has several; even English used to), and Chinese has tens of thousands of characters. -
Proposal to Encode 0D5F MALAYALAM LETTER ARCHAIC II
Proposal to encode 0D5F MALAYALAM LETTER ARCHAIC II Shriramana Sharma, jamadagni-at-gmail-dot-com, India 2012-May-22 §1. Introduction In the Malayalam Unicode encoding, the independent letter form for the long vowel Ī is: ഈ where the length mark ◌ൗ is appended to the short vowel ഇ to parallel the symbols for U/UU i.e. ഉ/ഊ. However, Ī was originally written as: As these are entirely different representations of Ī, although their sound value may be the same, it is proposed to encode the archaic form as a separate character. §2. Background As the core Unicode encoding for the major Indic scripts is based on ISCII, and the ISCII code chart for Malayalam only contained the modern form for the independent Ī [1, p 24]: … thus it is this written form that came to be encoded as 0D08 MALAYALAM LETTER II. While this “new” written form is seen in print as early as 1936 CE [2]: … there is no doubt that the much earlier form was parallel to the modern Grantha , both of which are derived from the old Grantha Ī as seen below: 1 ma - īdṛgvidhā | tatarāya īṇ Old Grantha from the Iḷaiyānputtūr copper plates [3, p 13]. Also seen is the Vatteḻuttu Ī of the same time (line 2, 2nd char from right) which also exhibits the two dots. Of course, both are derived from old South Indian Brahmi Ī which again has the two dots. It is said [entire paragraph: Radhakrishna Warrier, personal communication] that it was the poet Vaḷḷattōḷ Nārāyaṇa Mēnōn (1878–1958) who introduced the new form of Ī ഈ. -
Bopomofo Extended Range: 31A0–31BF
Bopomofo Extended Range: 31A0–31BF This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 14.0 This file may be changed at any time without notice to reflect errata or other updates to the Unicode Standard. See https://www.unicode.org/errata/ for an up-to-date list of errata. See https://www.unicode.org/charts/ for access to a complete list of the latest character code charts. See https://www.unicode.org/charts/PDF/Unicode-14.0/ for charts showing only the characters added in Unicode 14.0. See https://www.unicode.org/Public/14.0.0/charts/ for a complete archived file of character code charts for Unicode 14.0. Disclaimer These charts are provided as the online reference to the character contents of the Unicode Standard, Version 14.0 but do not provide all the information needed to fully support individual scripts using the Unicode Standard. For a complete understanding of the use of the characters contained in this file, please consult the appropriate sections of The Unicode Standard, Version 14.0, online at https://www.unicode.org/versions/Unicode14.0.0/, as well as Unicode Standard Annexes #9, #11, #14, #15, #24, #29, #31, #34, #38, #41, #42, #44, #45, and #50, the other Unicode Technical Reports and Standards, and the Unicode Character Database, which are available online. See https://www.unicode.org/ucd/ and https://www.unicode.org/reports/ A thorough understanding of the information contained in these additional sources is required for a successful implementation. -
Proposal for a Kannada Script Root Zone Label Generation Ruleset (LGR)
Proposal for a Kannada Script Root Zone Label Generation Ruleset (LGR) Proposal for a Kannada Script Root Zone Label Generation Ruleset (LGR) LGR Version: 3.0 Date: 2019-03-06 Document version: 2.6 Authors: Neo-Brahmi Generation Panel [NBGP] 1. General Information/ Overview/ Abstract The purpose of this document is to give an overview of the proposed Kannada LGR in the XML format and the rationale behind the design decisions taken. It includes a discussion of relevant features of the script, the communities or languages using it, the process and methodology used and information on the contributors. The formal specification of the LGR can be found in the accompanying XML document: proposal-kannada-lgr-06mar19-en.xml Labels for testing can be found in the accompanying text document: kannada-test-labels-06mar19-en.txt 2. Script for which the LGR is Proposed ISO 15924 Code: Knda ISO 15924 N°: 345 ISO 15924 English Name: Kannada Latin transliteration of the native script name: Native name of the script: ಕನ#ಡ Maximal Starting Repertoire (MSR) version: MSR-4 Some languages using the script and their ISO 639-3 codes: Kannada (kan), Tulu (tcy), Beary, Konkani (kok), Havyaka, Kodava (kfa) 1 Proposal for a Kannada Script Root Zone Label Generation Ruleset (LGR) 3. Background on Script and Principal Languages Using It 3.1 Kannada language Kannada is one of the scheduled languages of India. It is spoken predominantly by the people of Karnataka State of India. It is one of the major languages among the Dravidian languages. Kannada is also spoken by significant linguistic minorities in the states of Andhra Pradesh, Telangana, Tamil Nadu, Maharashtra, Kerala, Goa and abroad. -
Haptiread: Reading Braille As Mid-Air Haptic Information
HaptiRead: Reading Braille as Mid-Air Haptic Information Viktorija Paneva Sofia Seinfeld Michael Kraiczi Jörg Müller University of Bayreuth, Germany {viktorija.paneva, sofia.seinfeld, michael.kraiczi, joerg.mueller}@uni-bayreuth.de Figure 1. With HaptiRead we evaluate for the first time the possibility of presenting Braille information as touchless haptic stimulation using ultrasonic mid-air haptic technology. We present three different methods of generating the haptic stimulation: Constant, Point-by-Point and Row-by-Row. (a) depicts the standard ordering of cells in a Braille character, and (b) shows how the character in (a) is displayed by the three proposed methods. HaptiRead delivers the information directly to the user, through their palm, in an unobtrusive manner. Thus the haptic display is particularly suitable for messages communicated in public, e.g. reading the departure time of the next bus at the bus stop (c). ABSTRACT Author Keywords Mid-air haptic interfaces have several advantages - the haptic Mid-air Haptics, Ultrasound, Haptic Feedback, Public information is delivered directly to the user, in a manner that Displays, Braille, Reading by Blind People. is unobtrusive to the immediate environment. They operate at a distance, thus easier to discover; they are more hygienic and allow interaction in 3D. We validate, for the first time, in INTRODUCTION a preliminary study with sighted and a user study with blind There are several challenges that blind people face when en- participants, the use of mid-air haptics for conveying Braille. gaging with interactive systems in public spaces. Firstly, it is We tested three haptic stimulation methods, where the hap- more difficult for the blind to maintain their personal privacy tic feedback was either: a) aligned temporally, with haptic when engaging with public displays. -
Proposal for a Gujarati Script Root Zone Label Generation Ruleset (LGR)
Proposal for a Gujarati Root Zone LGR Neo-Brahmi Generation Panel Proposal for a Gujarati Script Root Zone Label Generation Ruleset (LGR) LGR Version: 3.0 Date: 2019-03-06 Document version: 3.6 Authors: Neo-Brahmi Generation Panel [NBGP] 1 General Information/ Overview/ Abstract The purpose of this document is to give an overview of the proposed Gujarati LGR in the XML format and the rationale behind the design decisions taken. It includes a discussion of relevant features of the script, the communities or languages using it, the process and methodology used and information on the contributors. The formal specification of the LGR can be found in the accompanying XML document: proposal-gujarati-lgr-06mar19-en.xml Labels for testing can be found in the accompanying text document: gujarati-test-labels-06mar19-en.txt 2 Script for which the LGR is proposed ISO 15924 Code: Gujr ISO 15924 Key N°: 320 ISO 15924 English Name: Gujarati Latin transliteration of native script name: gujarâtî Native name of the script: ગજુ રાતી Maximal Starting Repertoire (MSR) version: MSR-4 1 Proposal for a Gujarati Root Zone LGR Neo-Brahmi Generation Panel 3 Background on the Script and the Principal Languages Using it1 Gujarati (ગજુ રાતી) [also sometimes written as Gujerati, Gujarathi, Guzratee, Guujaratee, Gujrathi, and Gujerathi2] is an Indo-Aryan language native to the Indian state of Gujarat. It is part of the greater Indo-European language family. It is so named because Gujarati is the language of the Gujjars. Gujarati's origins can be traced back to Old Gujarati (circa 1100– 1500 AD). -
Comment on L2/13-065: Grantha Characters from Other Indic Blocks Such As Devanagari, Tamil, Bengali Are NOT the Solution
Comment on L2/13-065: Grantha characters from other Indic blocks such as Devanagari, Tamil, Bengali are NOT the solution Dr. Naga Ganesan ([email protected]) Here is a brief comment on L2/13-065 which suggests Devanagari block for Grantha characters to write both Aryan and Dravidian languages. From L2/13-065, which suggests Devanagari block for writing Sanskrit and Dravidian languages, we read: “Similar dedicated characters were provided to cater different fonts as URUDU MARATHI SINDHI MARWARI KASHMERE etc for special conditions and needs within the shared DEVANAGARI range. There are provisions made to suit Dravidian specials also as short E short O LLLA RRA NNNA with new created glyptic forms in rhythm with DEVANAGARI glyphs (with suitable combining ortho-graphic features inside DEVANAGARI) for same special functions. These will help some aspirant proposers as a fall out who want to write every Indian language contents in Grantham when it is unified with DEVANAGARI because those features were already taken care of by the presence in that DEVANAGARI. Even few objections seen in some docs claim them as Tamil characters to induce a bug inside Grantham like letters from GoTN and others become tangential because it is going to use the existing Sanskrit properties inside shared DEVANAGARI and also with entirely new different glyph forms nothing connected with Tamil. In my doc I have shown rhythmic non-confusable glyphs for Grantham LLLA RRA NNNA for which I believe there cannot be any varied opinions even by GoTN etc which is very much as Grantham and not like Tamil form at all to confuse (as provided in proposals).” Grantha in Devanagari block to write Sanskrit and Dravidian languages will not work. -
Proposal for Ethiopic Script Root Zone LGR
Proposal for Ethiopic Script Root Zone LGR LGR Version 2 Date: 2017-05-17 Document version:5.2 Authors: Ethiopic Script Generation Panel Contents 1 General Information/ Overview/ Abstract ........................................................................................ 3 2 Script for which the LGR is proposed ................................................................................................ 3 3 Background on Script and Principal Languages Using It .................................................................... 4 3.1 Local Languages Using the Script .............................................................................................. 4 3.2 Geographic Territories of the Language or the Language Map of Ethiopia ................................ 7 4 Overall Development Process and Methodology .............................................................................. 8 4.1 Sources Consulted to Determine the Repertoire....................................................................... 8 4.2 Team Composition and Diversity .............................................................................................. 9 4.3 Analysis of Code Point Repertoire .......................................................................................... 10 4.4 Analysis of Code Point Variants .............................................................................................. 11 5 Repertoire ....................................................................................................................................