Pooled Analysis of Phosphatidylinositol 3-Kinase Pathway Variants and Risk of Prostate Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Pooled Analysis of Phosphatidylinositol 3-Kinase Pathway Variants and Risk of Prostate Cancer Published OnlineFirst March 2, 2010; DOI: 10.1158/0008-5472.CAN-09-3575 Prevention and Epidemiology Cancer Research Pooled Analysis of Phosphatidylinositol 3-Kinase Pathway Variants and Risk of Prostate Cancer Stella Koutros1, Fredrick R. Schumacher2, Richard B. Hayes3, Jing Ma4, Wen-Yi Huang1, Demetrius Albanes1, Federico Canzian6, Stephen J. Chanock1, E. David Crawford7, W. Ryan Diver8, Heather Spencer Feigelson8,9, Edward Giovanucci5, Christopher A. Haiman2, Brian E. Henderson2, David J. Hunter9, Rudolf Kaaks6, Laurence N. Kolonel10, Peter Kraft5, Loïc Le Marchand10, Elio Riboli11, Afshan Siddiq11, Mier J. Stampfer4,5, Daniel O. Stram2, Gilles Thomas1, Ruth C. Travis12, Michael J. Thun8, Meredith Yeager1, and Sonja I. Berndt1 Abstract The phosphatidylinositol 3-kinase (PI3K) pathway regulates various cellular processes, including cellular proliferation and intracellular trafficking, and may affect prostate carcinogenesis. Thus, we explored the as- sociation between single-nucleotide polymorphisms (SNP) in PI3K genes and prostate cancer. Pooled data from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium were examined for asso- ciations between 89 SNPs in PI3K genes (PIK3C2B, PIK3AP1, PIK3C2A, PIK3CD, and PIK3R3) and prostate can- cer risk in 8,309 cases and 9,286 controls. Odds ratios (OR) and 95% confidence intervals (95% CI) were estimated using logistic regression. SNP rs7556371 in PIK3C2B was significantly associated with prostate can- – P P cer risk [ORper allele, 1.08 (95% CI, 1.03 1.14); trend = 0.0017] after adjustment for multiple testing ( adj = 0.024). Simultaneous adjustment of rs7556371 for nearby SNPs strengthened the association [ORper allele, 1.21 (95% CI, – P 1.09 1.34); trend = 0.0003]. The adjusted association was stronger for men who were diagnosed before the age of 65 years [ORper allele, 1.47 (95% CI, 1.20–1.79); Ptrend = 0.0001] or had a family history [ORper allele = 1.57 (95% CI, 1.11–2.23); Ptrend = 0.0114], and was strongest in those with both characteristics [ORper allele = 2.31 (95% CI, 1.07–5.07), P-interaction = 0.005]. Increased risks were observed among men in the top tertile of circulating insulin-like growth factor-I (IGF-I) levels [ORper allele = 1.46 (95% CI, 1.04–2.06); Ptrend = 0.075]. No differences ≥ were observed with disease aggressiveness (Gleason grade 8 or stage T3/T4 or fatal). In conclusion, we ob- served a significant association between PIK3C2B and prostate cancer risk, especially for familial, early-onset disease, which may be attributable to IGF-dependent PI3K signaling. Cancer Res; 70(6); 2389–96. ©2010 AACR. Introduction fication, and rearrangement in the PI3K pathway and its downstream targets have been observed in several cancer The phosphatidylinositol 3-kinase (PI3K) pathway regu- sites, including prostate cancer (9–11). Because of the role lates various cellular processes such as cell growth, prolif- of PI3Ks in cell proliferation, much of the research on this eration, apoptosis, motility, differentiation, survival, and pathway concerns its potential as a target for anticancer intracellular trafficking (1). PI3Ks are heterodimeric lipid therapies. kinases that are composed of regulatory and catalytic sub- Despite the well-known role of this pathway in cancer pro- units that catalyze the production of several phosphoinosi- gression, genetic variants in PI3K genes have not been well tides critical for the signal transduction in these multiple studied. One study found an association between a PIK3CA cellular processes (2). In addition, numerous growth fac- SNP (rs2865084) and endometrioid ovarian cancer but not tors signal through the PI3K pathway (3, 4), including in- overall ovarian cancer risk (12). Two studies have evaluated sulin-like growth factors (IGF), which have also been the functional variant Met326Ile (rs3730089) in PIK3R1 and linked with prostate carcinogenesis (5–8). Mutation, ampli- risk of colon (13) and prostate (14) cancers and found no Authors' Affiliations: 1Division of Cancer Epidemiology and Genetics, Department of Clinical Medicine, University of Oxford, Oxford, United National Cancer Institute, Rockville, Maryland; 2Department of Kingdom Preventive Medicine, University of Southern California, Los Angeles, Note: Supplementary data for this article are available at Cancer California; 3New York University School of Medicine, New York, New Research Online (http://cancerres.aacrjournals.org/). York; 4Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; 5Harvard School of Corresponding Author: Stella Koutros, Occupational and Environmental Public Health, Boston, Massachusetts; 6German Cancer Research Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Center (DKFZ), Heidelberg, Germany; 7Department of Urology, National Cancer Institute, 6120 Executive Boulevard, EPS 8115, MSC University of Colorado Health Sciences Center, Aurora, Colorado; 7240, Rockville, MD 20852. Phone: 301-594-6352; Fax: 301-402-1819; 8Department of Epidemiology, American Cancer Society, Atlanta, E-mail: [email protected]. Georgia; 9Kaiser Permanente, Denver, Colorado; 10Cancer Research doi: 10.1158/0008-5472.CAN-09-3575 Center, University of Hawaii, Honolulu, Hawaii; 11Imperial College, London, United Kingdom; and 12Cancer Epidemiology Unit, Nuffield ©2010 American Association for Cancer Research. www.aacrjournals.org 2389 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2010 American Association for Cancer Research. Published OnlineFirst March 2, 2010; DOI: 10.1158/0008-5472.CAN-09-3575 Koutros et al. association with either cancer site. Although some studies Diagnostic System Laboratories. Blood levels were catego- have looked at polymorphisms in genes of downstream tar- rized into tertiles based on the distribution among the con- gets of PI3K and prostate cancer risk (15–17), there is mini- trols. Although the blood level assays were done at different mal information about the effect of variants in the PI3K gene times, batch effects did not seem to confound the results, family on prostate cancer risk. and the analyses were pooled across cohorts controlling for Given the limited evaluation of PI3K gene variants, we study. sought to further explore the association between germline Genotyping and SNP selection. Tag SNPs for the five PI3K polymorphisms, which may alter the function of these genes candidate genes potentially related to the IGF pathway were and the proteins they encode, and risk of prostate cancer. selected using the CEU HapMap data assuming a minor al- Pooled data from seven prospective studies in the National lele frequency >0.02, an Illumina design score >0.4, and an r2 Cancer Institute (NCI) Breast and Prostate Cancer Cohort >0.8 for binning.(22) Genotyping in the prostate cancer cases Consortium (BPC3; ref. 18) were examined for associations and controls was done in four laboratories (University of between 89 single-nucleotide polymorphisms (SNP) in five Southern California, Los Angeles, CA; Harvard School of Pub- PI3K pathway genes, PIK3C2B (chromosome 1), PIK3AP1 lic Health, Boston, MA; Core Genotyping Facility, National (chromosome 10), PIK3C2A (chromosome 11), PIK3CD (chro- Cancer Institute, Bethesda, MD; and Imperial College, Lon- mosome 1), and PIK3R3 (chromosome 1), and prostate can- don, United Kingdom) using Illumina GoldenGate technology cer risk in 8,751 cases and 9,742 controls. We also evaluated as part of a larger array of 1,536 SNPs in total. Each genotype the effects of these PI3K pathway SNPs and circulating IGF-I center genotyped 30 CEU HapMap trios to evaluate interla- and IGF binding protein 3 (IGFBP-3) on prostate cancer risk boratory reproducibility, and for the 1,536 SNPs that made up in a subgroup of 6,076 men using prediagnostic sera. the Illumina platform, the interlaboratory concordance was 99.5% (before excluding failed SNPs or samples). Within each Materials and Methods study, blinded duplicate samples (∼5%) were also included and concordance of these samples ranged from 97.2% to Study population. The BPC3 has been described else- 99.9% across studies. where (18). Briefly, the consortium includes large well-estab- Data filtering and imputation. Any sample where more lished cohorts assembled in the United States and Europe than 25% of the SNPs attempted on a given platform failed that have DNA for genotyping and extensive questionnaire was removed from the data set. Data were filtered by study to data from cohort members. The prostate cancer study remove poorly performing SNPs: All SNPs that failed on 25% includes seven case-control studies nested within these or more samples were excluded from the data set, as were all − cohorts: the American Cancer Society (ACS) Cancer Preven- SNPs that showed statistically significant (P <105) devia- tion Study II, the Alpha-Tocopherol, Beta-Carotene Cancer tions from Hardy-Weinberg equilibrium genotype frequen- Prevention Study (ATBC), the European Prospective Investi- cies among European-ancestry controls and all SNPs with gation into Cancer and Nutrition (EPIC), the Health Profes- minor allele frequency <1%. Any SNP that was missing or sionals Follow-up Study (HPFS), the Physicians Health Study excluded in more than three studies or exhibited large differ- (PHS), the Hawaii-Los Angeles Multiethnic Cohort (MEC), ences in European-ancestry allele frequencies across cohorts and the Prostate, Lung, Colorectal, and Ovarian Cancer (Fst > 0.02) was excluded from further analysis. The
Recommended publications
  • Phosphoinositide 3-Kinase-C2α Regulates Polycystin-2 Ciliary Entry
    BASIC RESEARCH www.jasn.org Phosphoinositide 3-Kinase-C2a Regulates Polycystin-2 Ciliary Entry and Protects against Kidney Cyst Formation † Irene Franco,* Jean Piero Margaria,* Maria Chiara De Santis,* Andrea Ranghino, ‡ Daniel Monteyne, Marco Chiaravalli,§ Monika Pema,§ Carlo Cosimo Campa,* ‡| Edoardo Ratto,* Federico Gulluni,* David Perez-Morga, Stefan Somlo,¶ Giorgio R. Merlo,* Alessandra Boletta,§ and Emilio Hirsch* *Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy; †Renal Transplantation Center “A. Vercellone”, Division of Nephrology, Dialysis and Transplantation, Department of Medical Sciences, Città della Salute e della Scienza, Hospital and Research Center for Experimental Medicine (CeRMS) and Center for Molecular Biotechnology, University of Torino, Turin, Italy; ‡Laboratoire de Parasitologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Gosselies, Charleroi, Belgium; §Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Milan, Italy; |Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium; and ¶Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut. ABSTRACT Signaling from the primary cilium regulates kidney tubule development and cyst formation. However, the mechanism controlling targeting of ciliary components necessary for cilium morphogenesis and signaling is largely unknown. Here, we studied the function of class II phosphoinositide 3-kinase-C2a (PI3K-C2a)inrenal tubule-derived inner medullary collecting duct 3 cells and show that PI3K-C2a resides at the recycling endo- some compartment in proximity to the primary cilium base. In this subcellular location, PI3K-C2a controlled the activation of Rab8, a key mediator of cargo protein targeting to the primary cilium.
    [Show full text]
  • Mutations in PIK3C2A Cause Syndromic Short Stature
    University of Groningen Mutations in PIK3C2A cause syndromic short stature, skeletal abnormalities, and cataracts associated with ciliary dysfunction Tiosano, Dov; Baris, Hagit N; Chen, Anlu; Hitzert, Marrit M; Schueler, Markus; Gulluni, Federico; Wiesener, Antje; Bergua, Antonio; Mory, Adi; Copeland, Brett Published in: PLoS genetics DOI: 10.1371/journal.pgen.1008088 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2019 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Tiosano, D., Baris, H. N., Chen, A., Hitzert, M. M., Schueler, M., Gulluni, F., ... Buchner, D. A. (2019). Mutations in PIK3C2A cause syndromic short stature, skeletal abnormalities, and cataracts associated with ciliary dysfunction. PLoS genetics, 15(4), [e1008088]. https://doi.org/10.1371/journal.pgen.1008088 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Brain Region-Specific Gene Signatures Revealed by Distinct Astrocyte Subpopulations Unveil Links to Glioma and Neurodegenerative
    New Research Disorders of the Nervous System Brain Region-Specific Gene Signatures Revealed by Distinct Astrocyte Subpopulations Unveil Links to Glioma and Neurodegenerative Diseases Raquel Cuevas-Diaz Duran,1,2,3 Chih-Yen Wang,4 Hui Zheng,5,6,7 Benjamin Deneen,8,9,10,11 and Jia Qian Wu1,2 https://doi.org/10.1523/ENEURO.0288-18.2019 1The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, 2Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, Texas 77030, 3Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey NL 64710, Mexico, 4Department of Life Sciences, National Cheng Kung University, Tainan City 70101, Taiwan, 5Huffington Center on Aging, 6Medical Scientist Training Program, 7Department of Molecular and Human Genetics, 8Center for Cell and Gene Therapy, 9Department of Neuroscience, 10Neurological Research Institute at Texas’ Children’s Hospital, and 11Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030 Abstract Currently, there are no effective treatments for glioma or for neurodegenerative diseases because of, in part, our limited understanding of the pathophysiology and cellular heterogeneity of these diseases. Mounting evidence suggests that astrocytes play an active role in the pathogenesis of these diseases by contributing to a diverse range of pathophysiological states. In a previous study, five molecularly distinct astrocyte subpopulations from three different brain regions were identified. To further delineate the underlying diversity of these populations, we obtained mouse brain region-specific gene signatures for both protein-coding and long non-coding RNA and found that these astrocyte subpopulations are endowed with unique molecular signatures across diverse brain regions.
    [Show full text]
  • TRIM24 As an Oncogene in the Mammary Gland
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2018 TRIM24 as an Oncogene in the Mammary Gland Aundrietta Duncan Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Cancer Biology Commons, Medicine and Health Sciences Commons, and the Other Genetics and Genomics Commons Recommended Citation Duncan, Aundrietta, "TRIM24 as an Oncogene in the Mammary Gland" (2018). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 845. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/845 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. TRIM24 AS AN ONCOGENE IN THE MAMMARY GLAND by Aundrietta DeVan Duncan, M.S. APPROVED: ______________________________ Michelle C. Barton, Ph.D. Advisory Professor ______________________________ Richard
    [Show full text]
  • 1 Mutations in PIK3C2A Cause Syndromic Short Stature, Skeletal
    bioRxiv preprint doi: https://doi.org/10.1101/488411; this version posted December 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Mutations In PIK3C2A Cause Syndromic Short Stature, Skeletal Abnormalities, and Cataracts Associated With Ciliary Dysfunction Dov Tiosano,1,2,17 Hagit Baris Feldman,2,3,17 Anlu Chen,4,17 Marrit M. Hitzert,5,17 Markus Schueler,6,17 Federico Gulluni,7,17 Antje Wiesener,8 Antonio Bergua,9 Adi Mory,3 Brett Copeland,10 Joseph G. Gleeson,10,11 Patrick Rump,5 Hester van Meer,12 Deborah A. Sival,12 Volker Haucke,13 Josh Kriwinsky14, Karl X. Knaup,6 André Reis,8 Nadine N. Hauer,8 Emilio Hirsch,7 Ronald Roepman,15 Rolph Pfundt,15 Christian T. Thiel,8,18 Michael S. Wiesener,6,18 Mariam G. Aslanyan,15,18 and David A. Buchner4,14,16,18* 1Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel. 2Rappaport Family Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 30196, Israel. 3The Genetics Institute, Rambam Health Care Campus, Haifa 3109601, Israel. 4Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA. 5Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001 9700 RB Groningen, The Netherlands. 6Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen- Nürnberg, Erlangen, Germany. 7Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126, Torino, Italy.
    [Show full text]
  • Supplementary Information  1
    Supplementary Information 1 SUPPLEMENTARY INFORMATION Supplementary Information 2 Supplementary Figure 1 Supplementary Figure 1 (a) Sequence electropherograms show the EBF3 c.625C>T mutation in DNA isolated from leukocytes and fibroblasts of the two affected siblings (subjects 1 and 2) in the heterozygous state (top rows). Sanger sequencing demonstrated mosaicism of the c.625C>T mutation in leukocyte-derived DNA of the mother. The mutation was not visible in the sequence derived from her buccal cell-derived DNA (third row). The healthy family members showed wild-type sequence in leukocyte- derived DNA. Sanger traces show the c.1101+1G>T, c.530C>T and c.469_477dup mutations in leukocyte-derived DNA of subjects 5, 6, and 10 (left bottom row), respectively, and wild-type sequence in their parents (right bottom rows). Arrows point to the position of the mutations. (b) Cloning of exon 7-containing amplicons, followed by colony PCR and sequencing revealed that ~18% of leukocytes and ~4% of buccal cells of the mother contain the heterozygous EBF3 mutation (9% and 2% of clones with the mutated allele). (c) Sequence electropherograms show heterozygosity of the c.625C>T mutation in fibroblast-derived cDNA of subjects 1 and 2. Supplementary Information 3 Supplementary Figure 2 66 EBF3_human 50 ARAHFEKQPPSNLRKSNFFHFVLALYDRQGQPVEIERTAFVDFVEKEKEPNNEKTNNGIHYKLQLLYSN EBF3_chimpanzee 50 ARAHFEKQPPSNLRKSNFFHFVLALYDRQGQPVEIERTAFVDFVEKEKEPNNEKTNNGIHYKLQLLYSN EBF3_macaque 50 ARAHFEKQPPSNLRKSNFFHFVLALYDRQGQPVEIERTAFVDFVEKEKEPNNEKTNNGIHYKLQLLYSN EBF3_mouse
    [Show full text]
  • Mutations in PIK3C2A Cause Syndromic Short Stature, Skeletal Abnormalities, and Cataracts Associated with Ciliary Dysfunction
    RESEARCH ARTICLE Mutations in PIK3C2A cause syndromic short stature, skeletal abnormalities, and cataracts associated with ciliary dysfunction Dov Tiosano1,2☯, Hagit N. Baris2,3☯, Anlu Chen4☯, Marrit M. Hitzert5☯, Markus Schueler6☯, 7☯ 8 9 3 10 Federico Gulluni , Antje Wiesener , Antonio Bergua , Adi MoryID , Brett Copeland , 10,11 5 12 12 Joseph G. Gleeson , Patrick RumpID , Hester van Meer , Deborah A. Sival , 13 14 6 8 8 Volker HauckeID , Josh KriwinskyID , Karl X. Knaup , Andre Reis , Nadine N. Hauer , 7 15 15 8³ Emilio Hirsch , Ronald Roepman , Rolph PfundtID , Christian T. ThielID , Michael a1111111111 6³ 15³ 4,14,16³ S. Wiesener , Mariam G. AslanyanID , David A. BuchnerID * a1111111111 a1111111111 1 Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa, Israel, a1111111111 2 Rappaport Family Faculty of Medicine, TechnionÐIsrael Institute of Technology, Haifa, Israel, 3 The a1111111111 Genetics Institute, Rambam Health Care Campus, Haifa, Israel, 4 Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America, 5 Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands, 6 Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-NuÈrnberg, Erlangen, Germany, 7 Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy, 8 Institute of Human Genetics, Friedrich-Alexander University Erlangen-NuÈrnberg, OPEN ACCESS Erlangen, Germany, 9 Department of Ophthalmology, Friedrich-Alexander University Erlangen-NuÈrnberg, Erlangen, Germany, 10 Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, Citation: Tiosano D, Baris HN, Chen A, Hitzert MM, United States of America, 11 Department of Neurosciences, University of California, San Diego, La Jolla, Schueler M, Gulluni F, et al.
    [Show full text]
  • Class II Pi3ks at the Intersection Between Signal Transduction and Membrane Trafficking
    biomolecules Review Class II PI3Ks at the Intersection between Signal Transduction and Membrane Trafficking Jean Piero Margaria , Edoardo Ratto, Luca Gozzelino, Huayi Li and Emilio Hirsch * Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy; [email protected] (J.P.M.); [email protected] (E.R.); [email protected] (L.G.); [email protected] (H.L.) * Correspondence: [email protected] Received: 30 January 2019; Accepted: 11 March 2019; Published: 15 March 2019 Abstract: Phosphorylation of inositol phospholipids by the family of phosphoinositide 3-kinases (PI3Ks) is crucial in controlling membrane lipid composition and regulating a wide range of intracellular processes, which include signal transduction and vesicular trafficking. In spite of the extensive knowledge on class I PI3Ks, recent advances in the study of the three class II PI3Ks (PIK3C2A, PIK3C2B and PIK3C2G) reveal their distinct and non-overlapping cellular roles and localizations. By finely tuning membrane lipid composition in time and space among different cellular compartments, this class of enzymes controls many cellular processes, such as proliferation, survival and migration. This review focuses on the recent developments regarding the coordination of membrane trafficking and intracellular signaling of class II PI3Ks through the confined phosphorylation of inositol phospholipids. Keywords: PIK3C2A; PIK3C2B; PIK3C2G; PI3K-C2α; PI3K-C2β; PI3K-C2γ; PI3K68D; piki-1; membrane trafficking; signal transduction 1. Introduction Phosphoinositide 3-kinases (PI3Ks) are a family of enzymes involved in the phosphorylation of the 30 position of the inositol group. The family is divided into three classes based on their structure and substrate specificity [1].
    [Show full text]
  • Page 1 Exploring the Understudied Human Kinome For
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.02.022277; this version posted June 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Exploring the understudied human kinome for research and therapeutic opportunities Nienke Moret1,2,*, Changchang Liu1,2,*, Benjamin M. Gyori2, John A. Bachman,2, Albert Steppi2, Rahil Taujale3, Liang-Chin Huang3, Clemens Hug2, Matt Berginski1,4,5, Shawn Gomez1,4,5, Natarajan Kannan,1,3 and Peter K. Sorger1,2,† *These authors contributed equally † Corresponding author 1The NIH Understudied Kinome Consortium 2Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts 02115, USA 3 Institute of Bioinformatics, University of Georgia, Athens, GA, 30602 USA 4 Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA 5 Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA Key Words: kinase, human kinome, kinase inhibitors, drug discovery, cancer, cheminformatics, † Peter Sorger Warren Alpert 432 200 Longwood Avenue Harvard Medical School, Boston MA 02115 [email protected] cc: [email protected] 617-432-6901 ORCID Numbers Peter K. Sorger 0000-0002-3364-1838 Nienke Moret 0000-0001-6038-6863 Changchang Liu 0000-0003-4594-4577 Ben Gyori 0000-0001-9439-5346 John Bachman 0000-0001-6095-2466 Albert Steppi 0000-0001-5871-6245 Page 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.02.022277; this version posted June 30, 2020.
    [Show full text]
  • Comparative Genomics Approaches to Study Species Divergence in Ageing
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Liverpool Repository Comparative genomics approaches to study species divergence in ageing Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Master in Philosophy by Yang Li September 2010 ABSTRACT Life, ageing and death have been concepts known to man since time immemorial. To this day, human beings have been fascinated by death and focused on stipulating what occurs after the life ends. In comparison, little attention has been given to ageing, which all experience daily and many take for granted. It is only the recent scientific movement that enabled mankind to shift its attention to studying ageing through the field of biology and gerontology. The observation that different species show different ageing phenotypes has intrigued many biologists. Comparative biologists, who study genetic, anatomy and behaviour of different species in order to understand the diversity of life, have been trying to explain the different ageing phenotypes through their divergence in their anatomy, natural habitat and behaviour. And since the expansion of the field of genetics, comparative biologists have been employing genomics to study differences in ageing phenotypes at the genome level. In the last few years, the number of species with their genome sequenced has increased at an impressive rate. However, the number of studies exploiting this wealth of data to study specific phenotypes has remained surprisingly small. Here, we present our work on comparative genomics to study species differences in i ageing, that is, why many species age at different rates.
    [Show full text]
  • Table 3. Cis -Regulated Genes in DBA Blocks of C57BLKS/J Page 1
    Table 3. Cis -Regulated Genes in DBA blocks of C57BLKS/J Page 1 Corrrelated Mor- Phenotype Code gan Locus Link/ (See - Supp.Table Gene Loca- eQTL Genbank ID Gene Symbol Full Gene Name 5) Location bp tion Location Lod r2 Chromosome 1: 32.4 Mb to 72.3 Mb 214854 Lincr lung-inducible neuralized-related C3HC4 RING domain protein 36,965,152 0.120 35,852,951 17.1 0.527 108991 1700001A24Rik RIKEN cDNA 1700001A24 gene 28, 30 38,115,236 0.129 37,452,965 7.6 0.232 22592 Ercc5 excision repair cross-complementing rodent repair deficiency,complementation group 5 45,050,855 0.249 52,560,431 6.7 0.296 227059 Slc39a10 solute carrier family 39 (zinc transporter), member 10 47,896,973 0.289 57,596,253 4.3 0.389 56363 Tmeff2 transmembrane protein with EGF-like and two follistatin-like domains 2 18, 25 52,090,466 0.209 47,524,609 4.7 0.220 71724 Aox 3 Aldehyde Oxidase 3 6, 18 59,646,711 0.229 50,042,520 30.2 0.832 71407 5230400C17Rik RIKEN cDNA 5230400C17 gene 66,881,227 0.407 72,702,447 15.9 0.349 66646 Rpe ribulose-5-phosphate-3-epimerase 68,278,842 0.289 57,596,253 11.8 0.462 75742 6820402A03Rik RIKEN cDNA 6820402A03 gene 68,371,594 0.309 60,114,164 4.5 0.196 68691 1110028C15Rik RIKEN cDNA 1110028C15 gene 68,375,269 0.349 65,149,986 10.6 0.321 AW047739 UI-M-BH1-alk-b-03-0-UI.s1 NIH_BMAP_M_S2 Mus musculus cDNA clone 68,378,858 0.329 62,632,075 5.9 0.240 14768 Lancl1 LanC (bacterial lantibiotic synthetase component C)-like 1 2, 10 68,584,791 0.367 67,466,963 4.6 0.143 BE993185 UI-M-BZ1-bjo-f-01-0-UI.s1 NIH_BMAP_MHI2_S1 Mus musculus cDNA clone 3, 4, 5, 14,
    [Show full text]