Brain Region-Specific Gene Signatures Revealed by Distinct Astrocyte Subpopulations Unveil Links to Glioma and Neurodegenerative Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Brain Region-Specific Gene Signatures Revealed by Distinct Astrocyte Subpopulations Unveil Links to Glioma and Neurodegenerative Diseases This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Article: New Research | Disorders of the Nervous System Brain region-specific gene signatures revealed by distinct astrocyte subpopulations unveil links to glioma and neurodegenerative diseases Raquel Cuevas Diaz Duran1,2,3, Chih-Yen Wang4, Hui Zheng5,6,7, Benjamin Deneen8,9,10,11 and Jia Qian Wu1,2 1The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA 2Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA 3Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., 64710, Mexico 4Department of Life Sciences, National Cheng Kung University, Tainan City, 70101, Taiwan 5Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA 6Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA 7Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA 8Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA 9Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA 10Neurological Research Institute at Texas’ Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA 11Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA https://doi.org/10.1523/ENEURO.0288-18.2019 Received: 19 July 2018 Revised: 16 January 2019 Accepted: 12 February 2019 Published: 7 March 2019 J.Q.W. and B.D. designed research; J.Q.W., R.C.-D.D., C.-Y.W., and B.D. wrote the paper; R.C.-D.D. and C.- Y.W. performed research; R.C.-D.D. analyzed data; H.Z. and B.D. contributed unpublished reagents/analytic tools. Funding: http://doi.org/10.13039/100000002HHS | National Institutes of Health (NIH) R01 NS088353 1RF1AG054111 R01NS071153 Funding: The Staman Ogilvie Fund-Memorial Hermann Foundation Funding: Mission Connect Funding: http://doi.org/10.13039/100000890National Multiple Sclerosis Society (National MS Society) RG-1501-02756 Authors declare no competing financial interests. Correspondence should be addressed to Benjamin Deneen, [email protected] or Jia Qian Wu, [email protected] Cite as: eNeuro 2019; 10.1523/ENEURO.0288-18.2019 Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process. Copyright © 2019 Cuevas- et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. 1 Brain region-specific gene signatures revealed by distinct astrocyte 2 subpopulations unveil links to glioma and neurodegenerative diseases 3 4 Abbreviated Title: Astrocyte signatures linked to glioma and diseases 5 6 Raquel Cuevas-Diaz Duran1-3, Chih-Yen Wang4, Hui Zheng5-7, Benjamin Deneen8-11*, and 7 Jia Qian Wu1,2* 8 9 1 The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The 10 University of Texas Health Science Center at Houston, Houston, TX 77030, USA 11 2 Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of 12 Molecular Medicine, Houston, TX 77030, USA 13 3 Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones 14 Prieto 3000, Monterrey, N.L., 64710, Mexico 15 4 Department of Life Sciences, National Cheng Kung University, Tainan City, 70101, 16 Taiwan 17 5 Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA 18 6 Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, 19 USA 20 7 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 21 77030, USA 22 8 Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, 23 USA 24 9 Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA 25 10 Neurological Research Institute at Texas’ Children’s Hospital, Baylor College of 26 Medicine, Houston, TX 77030, USA 27 11 Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, 28 USA 29 30 Author contributions 31 JQW and BD designed research. RCDD and CYW performed research. RCDD analyzed 32 data. HZ and BD contributed reagents/materials. RCDD, CYW, BD, and JQW participated 33 in writing the manuscript. All authors have read and approved the final manuscript. 1 34 35 Corresponding authors 36 * To whom correspondence should be addressed. Tel: +1 (713) 500-3421; Fax: +1 (713) 37 500-2424; Email: [email protected] 38 39 Number of 40 Figures: 6 41 Tables: 4 42 Multimedia: 0 43 Extended Data Figures: 11 44 Extended Data Tables: 5 45 46 Number of words in 47 Abstract: 206 48 Significance Statement: 64 49 Introduction: 748 50 Discussion: 2067 51 52 Acknowledgements 53 The authors would like to thank Shun-Fen Tzeng for supporting Chih-Yen and 54 Ms. Mary Ann Cushman for editing the manuscript. 55 56 Conflicts of Interest 57 Authors declare no competing financial interests. 58 59 Funding sources 60 JQW and RCDD were supported by grants from the National Institutes of Health R01 61 NS088353; The Staman Ogilvie Fund-Memorial Hermann Foundation; Mission Connect, a 62 program of the TIRR Foundation. BD was supported by grants from the National Institutes 63 of Health 1RF1AG054111 and R01NS071153; National MS Society RG-1501-02756. 64 2 65 Abstract 66 Currently, there are no effective treatments for glioma or for neurodegenerative diseases 67 due, in part, to our limited understanding of the pathophysiology and cellular heterogeneity 68 of these diseases. Mounting evidence suggests that astrocytes play an active role in the 69 pathogenesis of these diseases by contributing to a diverse range of pathophysiological 70 states. In a previous study, five molecularly distinct astrocyte subpopulations from three 71 different brain regions were identified. To further delineate the underlying diversity of 72 these populations, we obtained mouse brain region-specific gene signatures for both 73 protein-coding and long non-coding RNA (lncRNA) and found that these astrocyte 74 subpopulations are endowed with unique molecular signatures across diverse brain regions. 75 Additional gene set and single-sample enrichment analyses revealed that gene signatures of 76 different subpopulations are differentially correlated with glioma tumors that harbor distinct 77 genomic alterations. To the best of our knowledge, this is the first study that links 78 transcriptional profiles of astrocyte subpopulations with glioma genomic mutations. 79 Furthermore, our results demonstrated that subpopulations of astrocytes in select brain 80 regions are associated with specific neurodegenerative diseases. Overall, the present study 81 provides a new perspective for understanding the pathophysiology of glioma and 82 neurodegenerative diseases and highlights the potential contributions of diverse astrocyte 83 populations to normal, malignant, and degenerative brain functions. 84 85 Significance Statement 86 Mounting evidence suggests that astrocytes play an active role in disease 87 pathogenesis by contributing to a diverse range of pathophysiological states. The present 88 study identifies new layers of astrocyte diversity and new correlations between distinct 3 89 astrocyte subpopulations and disease states. Understanding the heterogeneity of astrocytes 90 in different physiological conditions and diseases will provide new avenues for improved 91 diagnostics and therapeutics targeting specific astrocyte subpopulations. 92 93 Introduction 94 Astrocytes make up about 40% of all cells in the human brain (Herculano-Houzel, 2014; 95 Zhang et al., 2016) and play essential roles in brain function by controlling extracellular 96 neurotransmitter and potassium ion levels, regulating the blood-brain-barrier, and 97 promoting synapse formation and function (Barres, 2008). Previously, astrocytes were 98 thought to be a homogeneous population of cells that tile the CNS and support neuronal 99 survival. However, recent genome-wide gene expression studies have shown that astrocytes 100 are highly heterogeneous (Cahoy et al., 2008; Doyle et al., 2008; Yeh et al., 2009). A recent 101 study demonstrated astrocyte heterogeneity in the brain by comparing gene expression 102 profiles of FACS-sorted Aldh1l1-GFP+ subpopulations and identified five astrocyte 103 subpopulations (A-E) across three brain regions (olfactory bulb, cortex, and brain stem). 104 Moreover, these astrocyte subpopulations exhibited functional differences related to 105 proliferation, migration, and synapse formation. (Lin et al., 2017). 106 Functional heterogeneity of astrocytes has been described under both normal 107 physiological conditions and diverse disease states (Denis-Donini et al., 1984; Hill et al., 108 1996; Grass et al., 2004; White et al., 2010; Morel et al., 2017). During disease progression, 109 astrocyte populations respond to pathological conditions through a transformation called 110 reactive astrogliosis. Morphological and gene expression differences have been
Recommended publications
  • Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
    animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest.
    [Show full text]
  • Common MFRP Sequence Variants Are Not Associated with Moderate to High Hyperopia, Isolated Microphthalmia, and High Myopia
    Molecular Vision 2008; 14:387-393 <http://www.molvis.org/molvis/v14/a47> © 2008 Molecular Vision Received 12 December 2007 | Accepted 6 February 2008 | Published 4 March 2008 Common MFRP sequence variants are not associated with moderate to high hyperopia, isolated microphthalmia, and high myopia Ravikanth Metlapally,1,2 Yi-Ju Li,2 Khanh-Nhat Tran-Viet,2 Anuradha Bulusu,2 Tristan R. White,2 Jaclyn Ellis, 2 Daniel Kao,2 Terri L. Young1,2 1Duke University Eye Center, Durham, NC; 2Duke University Center for Human Genetics, Durham, NC Purpose: The membrane-type frizzled-related protein (MFRP) gene is selectively expressed in the retinal pigment epithelium and ciliary body, and mutations of this gene cause nanophthalmos. The MFRP gene may not be essential for retinal function but has been hypothesized to play a role in ocular axial length regulation. The involvement of the MFRP gene in moderate to high hyperopic, isolated microphthalmic/anophthalmic, and high myopic patients was tested in two phases: a mutation screening/sequence variant discovery phase and a genetic association study phase. Methods: Eleven hyperopic, ten microphthalmic/anophthalmic, and seven non-syndromic high-grade myopic patients of varying ages and 11 control subjects participated in the mutation screening phase. Sixteen primer pairs were designed to amplify the 13 exons of the MFRP gene including intron/exon boundaries. Polymerase chain reactions were performed, and amplified products were sequenced using standard techniques. Normal and affected individual DNA sequences were compared alongside the known reference sequence (UCSC genome browser) for the MFRP gene. The genetic association study included 146 multiplex non-syndromic high-grade myopia families.
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • The Genetic and Clinical Landscape of Nanophthalmos in an Australian
    medRxiv preprint doi: https://doi.org/10.1101/19013599; this version posted December 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license . 1 The genetic and clinical landscape of nanophthalmos in an Australian cohort 2 3 Running title: Genetics of nanophthalmos in Australia 4 5 Owen M Siggs1, Mona S Awadalla1, Emmanuelle Souzeau1, Sandra E Staffieri2,3,4, Lisa S Kearns2, Kate 6 Laurie1, Abraham Kuot1, Ayub Qassim1, Thomas L Edwards2, Michael A Coote2, Erica Mancel5, Mark J 7 Walland6, Joanne Dondey7, Anna Galanopoulous8, Robert J Casson8, Richard A Mills1, Daniel G 8 MacArthur9,10, Jonathan B Ruddle2,3,4, Kathryn P Burdon1,11, Jamie E Craig1 9 10 1Department of Ophthalmology, Flinders University, Adelaide, Australia 11 2Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia 12 3Department of Ophthalmology, University of Melbourne, Melbourne, Australia 13 4Department of Ophthalmology, Royal Children’s Hospital, Melbourne, Australia 14 5Centre Hospitalier Territorial de Nouvelle-Calédonie, Noumea, New Caledonia 15 6Glaucoma Investigation and Research Unit, Royal Victorian Eye and Ear Hospital, Melbourne, Australia 16 7Royal Victorian Eye and Ear Hospital, Melbourne, Australia 17 8Discipline of Ophthalmology & Visual Sciences, University of Adelaide, Adelaide, Australia 18 9Program in Medical and Population
    [Show full text]
  • C-Type Lectins and Human Epithelial Membrane Protein1: Are They New Proteins in Keratin Disorders?
    Open Journal of Genetics, 2013, 3, 262-269 OJGen http://dx.doi.org/10.4236/ojgen.2013.34029 Published Online December 2013 (http://www.scirp.org/journal/ojgen/) C-type lectins and human epithelial membrane protein1: Are they new proteins in keratin disorders? Nilüfer Karadeniz1*, Thomas Liehr2, Kristin Mrasek2, Ibrahim Aşık3, Zuleyha Aşık4, Nadezda Kosyakova2, Hasmik Mkrtchyan2 1Medical Genetics of Zubeyde Hanım Maternity Hospital, Ankara, Turkey 2Jena University Hospital, Institute of Human Genetics, Kollegiengasse, Jena, Germany 3Department of Anaesthesiology and Intensive Care, Faculty of Medicine, University of Ankara, Ankara, Turkey 4Dermatology of Dr Sami Ulus Children’s Hospital, Ankara, Turkey Email: *[email protected] Received 16 August 2013; revised 26 September 2013; accepted 25 October 2013 Copyright © 2013 Nilüfer Karadeniz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Congenita Tarda (PCT). Although PC is well docu- mented both clinically and genetically, there are only few Here we report a family with a clinical spectrum of reports for PCT, and its genetic basis is still obscure Pachyonychia Congenita Tarda (PCT) encompassing [1,2]. two generations via a balanced chromosomal trans- Pachyonychia Congenita Tarda (PCT) is characterized location between 4q26 and 12p12.3. We discuss the by nail changes appearing during the second or third effects of chromosomal translocations on gene ex- decades of life. More than 10 cases of PCT, both familial pression through involved breakpoints and structural and sporadic, have been reported in the literature since it gene abnormalities detected by array CGH.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • The Sole Lsm Complex in Cyanidioschyzon Merolae Associates with Pre-Mrna Splicing and Mrna Degradation Factors
    Downloaded from rnajournal.cshlp.org on May 17, 2017 - Published by Cold Spring Harbor Laboratory Press The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors KIRSTEN A. REIMER,1,9 MARTHA R. STARK,1 LISBETH-CAROLINA AGUILAR,2 SIERRA R. STARK,1 ROBERT D. BURKE,3 JACK MOORE,4 RICHARD P. FAHLMAN,4,5 CALVIN K. YIP,6 HARUKO KUROIWA,7 MARLENE OEFFINGER,2,8 and STEPHEN D. RADER1 1Department of Chemistry, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada 2Laboratory of RNP Biochemistry, Institut de Recherches Cliniques de Montréal (IRCM), Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada 3Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada 4Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada 5Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada 6Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada 7Kuroiwa Initiative Research Unit, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan 8Département de Biochimie, Université de Montréal, Montréal, QC H2W 1R7, Canada ABSTRACT Proteins of the Sm and Sm-like (LSm) families, referred to collectively as (L)Sm proteins, are found in all three domains of life and are known to promote a variety of RNA processes such as base-pair formation, unwinding, RNA degradation, and RNA stabilization. In eukaryotes, (L)Sm proteins have been studied, inter alia, for their role in pre-mRNA splicing. In many organisms, the LSm proteins form two distinct complexes, one consisting of LSm1–7 that is involved in mRNA degradation in the cytoplasm, and the other consisting of LSm2–8 that binds spliceosomal U6 snRNA in the nucleus.
    [Show full text]
  • 3D Interactions with the Growth Hormone Locus in Cellular Signalling and Cancer-Related Pathways
    64 4 Journal of Molecular L Jain et al. 3D interactions with the GH locus 64:4 209–222 Endocrinology RESEARCH 3D interactions with the growth hormone locus in cellular signalling and cancer-related pathways Lekha Jain, Tayaza Fadason, William Schierding, Mark H Vickers, Justin M O’Sullivan and Jo K Perry Liggins Institute, University of Auckland, Auckland, New Zealand Correspondence should be addressed to J K Perry or J M O’Sullivan: [email protected] or [email protected] Abstract Growth hormone (GH) is a peptide hormone predominantly produced by the anterior Key Words pituitary and is essential for normal growth and metabolism. The GH locus contains f growth hormone locus five evolutionarily related genes under the control of an upstream locus control region f GH1 that coordinates tissue-specific expression of these genes. Compromised GH signalling f genome and genetic variation in these genes has been implicated in various disorders including f chromosome capture cancer. We hypothesised that regulatory regions within the GH locus coordinate f cancer expression of a gene network that extends the impact of the GH locus control region. We used the CoDeS3D algorithm to analyse 529 common single nucleotide polymorphisms (SNPs) across the GH locus. This algorithm identifies colocalised Hi-C and eQTL associations to determine which SNPs are associated with a change in gene expression at loci that physically interact within the nucleus. One hundred and eighty-one common SNPs were identified that interacted with 292 eGenes across 48 different tissues. One hundred and forty-five eGenes were regulated intrans .
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Research Article Mouse Model Resources for Vision Research
    Hindawi Publishing Corporation Journal of Ophthalmology Volume 2011, Article ID 391384, 12 pages doi:10.1155/2011/391384 Research Article Mouse Model Resources for Vision Research Jungyeon Won, Lan Ying Shi, Wanda Hicks, Jieping Wang, Ronald Hurd, Jurgen¨ K. Naggert, Bo Chang, and Patsy M. Nishina The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA Correspondence should be addressed to Patsy M. Nishina, [email protected] Received 1 July 2010; Accepted 21 September 2010 Academic Editor: Radha Ayyagari Copyright © 2011 Jungyeon Won et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The need for mouse models, with their well-developed genetics and similarity to human physiology and anatomy, is clear and their central role in furthering our understanding of human disease is readily apparent in the literature. Mice carrying mutations that alter developmental pathways or cellular function provide model systems for analyzing defects in comparable human disorders and for testing therapeutic strategies. Mutant mice also provide reproducible, experimental systems for elucidating pathways of normal development and function. Two programs, the Eye Mutant Resource and the Translational Vision Research Models, focused on providing such models to the vision research community are described herein. Over 100 mutant lines from the Eye Mutant Resource and 60 mutant lines from the Translational Vision Research Models have been developed. The ocular diseases of the mutant lines include a wide range of phenotypes, including cataracts, retinal dysplasia and degeneration, and abnormal blood vessel formation.
    [Show full text]
  • Brain Region-Specific Gene Signatures Revealed by Distinct Astrocyte Subpopulations Unveil Links to Glioma and Neurodegenerative
    New Research Disorders of the Nervous System Brain Region-Specific Gene Signatures Revealed by Distinct Astrocyte Subpopulations Unveil Links to Glioma and Neurodegenerative Diseases Raquel Cuevas-Diaz Duran,1,2,3 Chih-Yen Wang,4 Hui Zheng,5,6,7 Benjamin Deneen,8,9,10,11 and Jia Qian Wu1,2 https://doi.org/10.1523/ENEURO.0288-18.2019 1The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, 2Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, Texas 77030, 3Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey NL 64710, Mexico, 4Department of Life Sciences, National Cheng Kung University, Tainan City 70101, Taiwan, 5Huffington Center on Aging, 6Medical Scientist Training Program, 7Department of Molecular and Human Genetics, 8Center for Cell and Gene Therapy, 9Department of Neuroscience, 10Neurological Research Institute at Texas’ Children’s Hospital, and 11Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030 Abstract Currently, there are no effective treatments for glioma or for neurodegenerative diseases because of, in part, our limited understanding of the pathophysiology and cellular heterogeneity of these diseases. Mounting evidence suggests that astrocytes play an active role in the pathogenesis of these diseases by contributing to a diverse range of pathophysiological states. In a previous study, five molecularly distinct astrocyte subpopulations from three different brain regions were identified. To further delineate the underlying diversity of these populations, we obtained mouse brain region-specific gene signatures for both protein-coding and long non-coding RNA and found that these astrocyte subpopulations are endowed with unique molecular signatures across diverse brain regions.
    [Show full text]
  • Reprogramming of Lysosomal Gene Expression by Interleukin-4 and Stat6 Brignull Et Al
    Reprogramming of lysosomal gene expression by interleukin-4 and Stat6 Brignull et al. Brignull et al. BMC Genomics 2013, 14:853 http://www.biomedcentral.com/1471-2164/14/853 Brignull et al. BMC Genomics 2013, 14:853 http://www.biomedcentral.com/1471-2164/14/853 RESEARCH ARTICLE Open Access Reprogramming of lysosomal gene expression by interleukin-4 and Stat6 Louise M Brignull1†, Zsolt Czimmerer2†, Hafida Saidi1,3, Bence Daniel2, Izabel Villela4,5, Nathan W Bartlett6, Sebastian L Johnston6, Lisiane B Meira4, Laszlo Nagy2,7 and Axel Nohturfft1* Abstract Background: Lysosomes play important roles in multiple aspects of physiology, but the problem of how the transcription of lysosomal genes is coordinated remains incompletely understood. The goal of this study was to illuminate the physiological contexts in which lysosomal genes are coordinately regulated and to identify transcription factors involved in this control. Results: As transcription factors and their target genes are often co-regulated, we performed meta-analyses of array-based expression data to identify regulators whose mRNA profiles are highly correlated with those of a core set of lysosomal genes. Among the ~50 transcription factors that rank highest by this measure, 65% are involved in differentiation or development, and 22% have been implicated in interferon signaling. The most strongly correlated candidate was Stat6, a factor commonly activated by interleukin-4 (IL-4) or IL-13. Publicly available chromatin immunoprecipitation (ChIP) data from alternatively activated mouse macrophages show that lysosomal genes are overrepresented among Stat6-bound targets. Quantification of RNA from wild-type and Stat6-deficient cells indicates that Stat6 promotes the expression of over 100 lysosomal genes, including hydrolases, subunits of the vacuolar H+ ATPase and trafficking factors.
    [Show full text]