Reproductive Cycle and Growth of the Sand Dollar Scaphechinus Griseus

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Cycle and Growth of the Sand Dollar Scaphechinus Griseus Fisheries Science (2019) 85:465–474 https://doi.org/10.1007/s12562-019-01297-0 ORIGINAL ARTICLE Biology Reproductive cycle and growth of the sand dollar Scaphechinus griseus inhabiting Japanese surf clam Pseudocardium sachalinense fshing grounds in Tomakomai, southwest Hokkaido, Japan Izumi Sakurai1 · Honami Abe1 · Takashi Ogata2 Received: 1 September 2018 / Accepted: 30 January 2019 / Published online: 13 February 2019 © Japanese Society of Fisheries Science 2019 Abstract Bioturbation by the sand dollar Scaphechinus griseus is suspected to inhibit the recruitment of Pseudocardium sachalinense, a commercially important bivalve. This study aimed to develop a standard method for the extermination of the sand dollar by examining its reproductive cycle, relationships between age and growth, and population structure in Tomakomai, southwest Hokkaido, Japan. Histological observations of the gonads indicated that the sand dollar has one spawning season per year, in June–August. Seasonal changes in the appearance of a dark band around the interambulacral plate suggested that the annual ring primarily forms in June–July, with the frst ring forming at 1 year of age. Analysis of ftness by growth models showed that the Gompertz curve was better matched to the data than the von Bertalanfy and logistic curves; growth is fast until 1.6 years of age, then slows. The population density was 190–257 individuals/m2, and average test diameters were 39.0–40.9 mm. Three-year-olds comprised the highest percentage of the population; no individuals of 8 years of age or older were detected. In conclusion, to reduce the density of sand dollars efciently and to prevent their reproduction, individuals with a test diameter of over 30 mm should be exterminated before the spawning season. Keywords Age determination · Population structure · Recruitment · Fitness · Gompertz curve · Extermination Introduction (Takamaru 1984; Hayashi 1988; Sakurai et al. 1991), predation by moon shells and sea stars (Hayashi et al. 1962; Takamaru The Japanese surf clam Pseudocardium sachalinense fshery 1984), and, possibly, exclusion due to interspecifc competition had an annual catch of 651–741 tons from 2010 to 2016 in (Hayashi et al. 1962). There remains controversy over whether Tomakomai, southwest Hokkaido, Japan. Production of this bioturbation caused by the burrowing and feeding actions of clam during this period was the highest recorded in Japan the sand dollar Scaphechinus griseus, the habitat of which since 2000. However, the abundance of this clam has exhib- overlaps with that of P. sachalinense, infuences the survival ited a continuous decline in Tomakomai since 2008, due to of juvenile clams (Hayashi et al. 1963; Sakurai et al. 2003). a decline in recruitment. The sand dollar S. griseus is an irregular deposit-feeding Factors contributing to this decline include fuctuation in echinoid that belongs to the family Scutellidae. This species recruitment, changes to fertility and subsequent larval supply is widely distributed on the upper subtidal sandy bottom of (Hayashi et al. 1967; Sakurai and Nakao 1996), the dislodge- the coast of northern Japan, including the regions of Hok- ment of juvenile clams due to wave action and tidal currents kaido, Sakhalin, and Kurile Islands (Utinomi 1960; Drozdov and Vinnikova 2010). Sand dollars form dense beds over a period of several decades (Chia 1969; Merrill and Hobson * Izumi Sakurai [email protected] 1970; Birkeland and Chia 1971; Parks 1973; Niesen 1977), and these beds have been detected along several parts of the 1 School of Biological Science, Tokai University, Sapporo, coast of Hokkaido (Hayashi et al. 1962; Takamaru 1983; Hokkaido 005-8601, Japan Sakurai et al. 1991, 2001, 2003). Several studies have shown 2 Hokkaido Aquaculture Promotion Corporation, Sapporo, that bioturbation by sand dollars infuences the structure of Hokkaido 003-0874, Japan Vol.:(0123456789)1 3 466 Fisheries Science (2019) 85:465–474 meiobenthic and microphytobenthic communities (Findley ° ° 140 E 145 E N and White 1983; Creed and Coull 1984; Reidenauer 1989; 45°N Okhotsk Sea Li et al. 2013; Brustolin et al. 2016). In particular, adult S. The Sea of mirabilis individuals are able to kill newly settled juveniles Japan by their bioturbation activity (Takeda 2008). Furthermore, a Pacific Ocean 42°N prawn fshery operation using bottom trawling was adversely Tomakomai Tomakomai afected by large numbers of S. mirabilis entrapped in the net due to a huge outbreak of the sand dollar in Fukuoka and Tomakomai River → Motomachi ← Koitoi River Ehime prefectures (Matsuda et al. 2008). Ariake Whether bioturbation by S. griseus is causing fuctuations in the number of newly settled P. sachalinense remains sub- Tomakomai West Port 5m ject to debate; however, clam fshermen in Hokkaido have 0 1km carried out maintenance of the fshing grounds by extermi- 10m nating the sand dollar. However, a standard method to ensure the efective extermination of the sand dollar is required, in Fig. 1 Location of the survey area of the coast of Tomakomai, south- particular with regard to how many should be exterminated west Hokkaido, Japan. Shaded rectangle indicates the sampling area and in what season. At present, only haphazard extermina- for gonad observation and growth analysis of Scaphechinus griseus. Open square represents the sampling area that contained stations tion is carried out, in which sand dollars are landed at the (Stns) 1–5 for analyzing the density and age structure of the popula- same time as clams during fshing. Therefore, it is necessary tion. Open circle indicates the position of an embedded water tem- to examine the mechanisms of the formation and mainte- perature data logger nance of the S. griseus population, as well as establishing the population density that afects newly settled juvenile clams. Observation of the gonadal developmental process At present, the life history traits of the sand dollar, includ- ing growth and reproduction, are not known, and even the After the samples were rinsed with tap water and the water density of the population in Tomakomai has not been clari- was wiped off, the test diameter (i.e., the length of the fed. Therefore, this study examined the annual reproduc- antero-posterior axis across the peristome) was measured tive cycle, relationship between age and growth, population ± 0.01 mm using a digital vernier caliper (N20; Mitsutoyo, density, and age structure of S. griseus in Tomakomai, Japan. Kawasaki, Japan). The total weight (TW) of the specimens was measured to ±0.01 g by an electronic balance (GH252; A & D, Tokyo). Five gonads were then extracted using Materials and methods tweezers after removing the skeletal plates of the aboral side. It was extremely difcult to remove only the gonads Study site and sampling method completely because the gonads develop to cover the gut and bury the gap of the peripheral calcite buttress system and the diverticular pouches. Therefore, the gonads and gut Sand dollar S. griseus individuals that had a test diameter were removed together (GW) and were weighed together to greater than 30 mm were collected at 5- to 7-m depth of ±0.01 g on the electronic balance after washing the gut con- Ariake in Tomakomai, Hokkaido (42°37′N, 141°36′E; tents with tap water. The gonad index (= GW / TW × 100) Fig. 1), which is the same area where S. griseus individuals was then calculated. A small piece of approximately 5 mm are primarily distributed (Sakurai et al. 1991). Samples were cube was cut of the central part of the weighed gonad and collected from December 2016 to November 2017 using a dehydrated. After normal parafn embedding, serial sections hydraulic jet dredge (width, 1.2 m; mesh size of net bag, were prepared at 6-µm thickness and stained with Mayer’s 90 mm; spacing of teeth, 36 mm; angle of tooth, 60°) that was hematoxylin and eosin. Then, histological observation of the towed parallel to shore for a distance of 50–100 m. Thirty development process of the gonads was carried out under individuals were randomly selected every month as speci- a biological microscope (×400; CH30; Olympus, Tokyo). mens for gonadal observation and growth analysis, respec- tively. These individuals were preserved in 10% bufered for- Analysis of age and growth malin in the feld. In addition, 43 juvenile sand dollars were collected with a Smith-McIntyre grab sampler (i.e., not by Seasonal changes to the growth of the skeletal plate of echi- dredging; sampling area, 0.05 m2; sampling depth, approxi- noids often result in changes to the light and dark bands on mately 10 cm) at 5-m depth in the same area in May 2017 and the plate due to diferent growth rates between the warm September 2017. These individuals were used for the growth and cold seasons (Birkeland and Chia 1971; Pearse and analysis after preserving them in 5% bufered formalin. 1 3 Fisheries Science (2019) 85:465–474 467 Pearse 1975; Brykov and Parasyna 1978; Kang et al. 2007). the outer edge of the interambulacral plate by using samples In particular, the dark band has been previously used for age with three rings. The age of the frst ring was estimated by determination because it is present in many echinoids as an the relationship between the test diameter and the number annual ring that is formed when the growth rate decreases. of the rings of S. griseus with a test diameter of < 20 mm By observing the plate of S. griseus under a biological that were collected in May 2017 and September 2017. We microscope before starting this study, it was confrmed that then determined the age (t) of the sand dollars based on a lighter zone is present in the center of the plate, with dark the spawning season, which was clarifed by observing the and light bands of similar shape forming alternately outside gonads.
Recommended publications
  • 1 Hidden Genetic History of the Japanese Sand Dollar Peronella (Echinoidea
    *Revised Manuscript (unmarked) 1 Hidden genetic history of the Japanese sand dollar Peronella (Echinoidea: 2 Laganidae) revealed by nuclear intron sequences 3 4 Megumi Endo1, Mamiko Hirose2*, Masanao Honda1, Hiroyuki Koga1, Yoshiaki 5 Morino1, Masato Kiyomoto2 and Hiroshi Wada1 6 7 8 1 Faculty of Life and Environmental Sciences, University of Tsukuba 9 2 Tateyama Marine Biological Station, Ochanomizu University 10 * Present address: School of Marine Science and Technology, Tokai University 11 12 Author for correspondence: H. Wada 13 Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 14 305-8572 Japan 15 E-mail: [email protected] 16 Tel & Fax +81-29-853-4671 17 ORCiD: 0000-0002-9594-3647 18 19 20 1 21 Abstract 22 The marine environment around Japan experienced significant changes during 23 the Cenozoic Era. In this study, we report findings suggesting that this dynamic 24 history left behind traces in the genome of the Japanese sand dollar species 25 Peronella japonica and P. rubra. Although mitochondrial Cytochrome C Oxidase I 26 sequences did not indicate fragmentation of the current local populations of P. 27 japonica around Japan, two different types of intron sequence were found in the 28 Alx1 locus. We inferred that past fragmentation of the populations account for the 29 presence of two types of nuclear sequences as alleles in the Alx1 intron of P. 30 japonica. It is likely that the split populations have intermixed in recent times; 31 hence, we did not detect polymorphisms in the sequences reflecting the current 32 localization of the species. In addition, we found two allelic sequences of theAlx1 33 intron in the sister species P.
    [Show full text]
  • Variation in Growth Pattern in the Sand Dollar, Echinarachnius Parma, (Lamarck)
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Summer 1964 VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK) PRASERT LOHAVANIJAYA University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation LOHAVANIJAYA, PRASERT, "VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK)" (1964). Doctoral Dissertations. 2339. https://scholars.unh.edu/dissertation/2339 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been 65-950 microfilmed exactly as received LOHAVANIJAYA, Prasert, 1935- VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHJNARACHNIUS PARMA, (LAMARCK). University of New Hampshire, Ph.D., 1964 Zoology University Microfilms, Inc., Ann Arbor, Michigan VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, EC’HINARACHNIUS PARMA, (LAMARCK) BY PRASERT LOHAVANUAYA B. Sc. , (Honors), Chulalongkorn University, 1959 M.S., University of New Hampshire, 1961 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Zoology June, 1964 This thesis has been examined and approved. May 2 2, 1 964. Date An Abstract of VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK) This study deals with Echinarachnius parma, the common sand dollar of the New England coast. Some problems concerning taxonomy and classification of this species are considered.
    [Show full text]
  • A Phylogenomic Resolution of the Sea Urchin Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/430595; this version posted September 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A phylogenomic resolution of the sea urchin tree of life Nicolás Mongiardino Koch ([email protected]) – Corresponding author Department of Geology and Geophysics, Yale University, New Haven CT, USA Simon E. Coppard ([email protected]) Department of Biology, Hamilton College, Clinton NY, USA. Smithsonian Tropical Research Institute, Balboa, Panama. Harilaos A. Lessios ([email protected]) Smithsonian Tropical Research Institute, Balboa, Panama. Derek E. G. Briggs ([email protected]) Department of Geology and Geophysics, Yale University, New Haven CT, USA. Peabody Museum of Natural History, Yale University, New Haven CT, USA. Rich Mooi ([email protected]) Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco CA, USA. Greg W. Rouse ([email protected]) Scripps Institution of Oceanography, UC San Diego, La Jolla CA, USA. bioRxiv preprint doi: https://doi.org/10.1101/430595; this version posted September 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Background: Echinoidea is a clade of marine animals including sea urchins, heart urchins, sand dollars and sea biscuits.
    [Show full text]
  • Phylogenomic Analyses of Echinoid Diversification Prompt a Re
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.19.453013; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phylogenomic analyses of echinoid diversification prompt a re- 2 evaluation of their fossil record 3 Short title: Phylogeny and diversification of sea urchins 4 5 Nicolás Mongiardino Koch1,2*, Jeffrey R Thompson3,4, Avery S Hatch2, Marina F McCowin2, A 6 Frances Armstrong5, Simon E Coppard6, Felipe Aguilera7, Omri Bronstein8,9, Andreas Kroh10, Rich 7 Mooi5, Greg W Rouse2 8 9 1 Department of Earth & Planetary Sciences, Yale University, New Haven CT, USA. 2 Scripps Institution of 10 Oceanography, University of California San Diego, La Jolla CA, USA. 3 Department of Earth Sciences, 11 Natural History Museum, Cromwell Road, SW7 5BD London, UK. 4 University College London Center for 12 Life’s Origins and Evolution, London, UK. 5 Department of Invertebrate Zoology and Geology, California 13 Academy of Sciences, San Francisco CA, USA. 6 Bader International Study Centre, Queen's University, 14 Herstmonceux Castle, East Sussex, UK. 7 Departamento de Bioquímica y Biología Molecular, Facultad de 15 Ciencias Biológicas, Universidad de Concepción, Concepción, Chile. 8 School of Zoology, Faculty of Life 16 Sciences, Tel Aviv University, Tel Aviv, Israel. 9 Steinhardt Museum of Natural History, Tel-Aviv, Israel. 10 17 Department of Geology and Palaeontology, Natural History Museum Vienna, Vienna, Austria 18 * Corresponding author.
    [Show full text]
  • Facultative Planktotrophy in the Tropical Echinoid
    J. Exp. Mar. Biol. Ecol., 1986, Vol. 95, pp. 183-202 183 Elsevier JEM 622 FACULTATIVE PLANKTOTROPHY IN THE TROPICAL ECHINOID CLYPEASTER ROSACEUS (Linnaeus) AND A COMPARISON WITH OBLIGATE PLANKTOTROPHY IN CLYPEASTER SUBDEPRESSUS (Gray) (CLYPEASTEROIDA : ECHINOIDEA) RICHARD B. EMLET’ Department of Zoology and Friday Harbor Laboratories, University of Washington. Seattle, WA 98195. U.S.A. (Received 15 July 1985; revision received 10 October 1985; accepted 30 October 1985) Abstract: Larval development to metamorphosis and early juvenile growth and survivorship were examined in Clypeaster subdepressus (Gray) and C. rosaceus (Linnaeus). C. subdepressus has an obligatorily planktotro- phic larva that metamorphoses alter 16 to 28 days at 27 “C. The larva of C. rosaceus can, but need not feed prior to metamorphosis, which occurs after 5 to 7 days at 27 “C. Feeding by larvae of C. rosaceus does not change the time to metamorphosis but does increase size at metamorphosis, early juvenile growth and may increase juvenile survivorship relative to unfed larvae. Size at metamorphosis increases in larvae of C. rosaceus that feed for several days after they are competent to metamorphose, but there may be a limit to this increase because the condition of the rudiment degenerates after a period of time. The development of C. rosaceus may represent a transition between planktotrophy and lecithotrophy. This intermediate state has advantages for the juvenile stage that are not included in the trade of fecundity against risk to offspring usually considered in life history discussions of developmental mode of marine invertebrates. Key words: Echinodermata; planktotrophy; larvae; pluteus; juveniles; metamorphosis; Cfypeaster rosaceus; Clypeaster subdepressus INTB0DUCT10N Most marine invertebrates with planktonic larvae produce numerous small eggs that develop into planktotrophic larvae or produce fewer large eggs that become lecithotro- phic larvae.
    [Show full text]
  • Download Complete Work
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Warén, Anders, and M. R. Crossland, 1991. Revision of Hypermastus Pilsbry, 1899 and Turveria Berry, 1956 (Gastropoda: Prosobranchia: Eulimidae), two genera parasitic on sand dollars. Records of the Australian Museum 43(1): 85–112. [22 March 1991]. doi:10.3853/j.0067-1975.43.1991.42 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1991) Vo!. 43: 85-112. ISSN 0067-1975 85 Revision of Hypermastus Pilsbry, 1899 and Turveria Berry, 1956 (Gastropoda: Prosobranchia: Eulimidae), Two Genera Parasitic on Sand Dollars ANDERS W AREN 1 & MICHAEL R. CROSSLAND 2 ISwedish Museum of Natural History, Box 50007, S-10405 Stockholm, Sweden 2Department of Marine Biology, School of Biological Sciences, lames Cook University, Townsville, Qld 4811, Australia ABSTRACT. Nine new eulimid gastropods belonging to the genera Hypermastus Pilsbry, 1899 and Turveria Berry, 1956 are described. Fifteen more eulimids, previously mainly classified in Eulima Risso, 1826 and without known hosts are transfered to Hypermastus based on shell characters. The species with known hosts are parasitic exclusively on clypeasteroid sea urchins (sand dollars) and parasitise the hosts by penetrating the test with their proboscis and ingesting fluid from the vascular system or the gonads of the host. The snails live on their hosts for periods of a few days and dwell in the sediment most of the time.
    [Show full text]
  • Checklist of the Echinoderms of British Columbia (April 2007) by Philip
    Checklist of the Echinoderms of British Columbia (April 2007) by Philip Lambert, Curator Emeritus of Invertebrates Royal British Columbia Museum [email protected] This checklist is based on the information contained in three echinoderm books on Sea Stars, Sea Cucumbers and Brittle Stars (Lambert 1997, 2000; and Lambert and Austin 2007) as well as on unpublished data from the collections of the Royal BC Museum and from Dr. Bill Austin. Many references in the primary literature were consulted for distribution, and the classifications are based in part on the Treatise on Invertebrate Paleontology (Moore 1966); Austin (1985); crinoid monograph by A.H. Clark (1907 to 1967); asteroids by Fisher (1911 to 1930) and Smith Paterson and Lafay (1995) for ophiuroids. This is a work in progress as we process the deep water collections that Fisheries and Oceans Canada has collected over the last 6 years. Several new species have been recorded for BC and more are expected. Species in bold occur in less than 200 metres in BC. The stated depth range refers to the entire geographic range of the species. Species not yet recorded in BC but occurring nearby to the north and south of BC have been included in the list with *. CLASS CRINOIDEA (7 species in BC) Sea Lilies and Feather Stars Depth (metres) Order Hyocrinida Family Hyocrinidae 1. Ptilocrinus pinnatus A.H. Clark, 1907 Five-Armed Sea Lily 2904 Order Bourgueticrinida Family Bathycrinidae 2. Bathycrinus pacificus A.H. Clark, 1907 Ten-armed Abyssal Sea Lily 1655 Order Comatulida Family Pentametrocrinidae 3. Pentametrocrinus cf. varians (P.H.
    [Show full text]
  • Risk and Resilience: Variations in Magnesium in Echinoid Skeletal Calcite
    Vol. 561: 1–16, 2016 MARINE ECOLOGY PROGRESS SERIES Published December 15 doi: 10.3354/meps11908 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Risk and resilience: variations in magnesium in echinoid skeletal calcite Abigail M. Smith1,*, Dana E. Clark1,4, Miles D. Lamare1, David J. Winter2,5, Maria Byrne3 1Department of Marine Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand 2Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand 3University of Sydney, New South Wales 2006, Australia 4Present address: Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand 5Present address: Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand ABSTRACT: Echinoids have high-magnesium (Mg) calcite endoskeletons that may be vulnerable to CO2- driven ocean acidification. Amalgamated data for echinoid species from a range of environments and life-history stages allowed characterization of the factors controlling Mg content in their skeletons. Pub- lished measurements of Mg in calcite (N = 261), sup- plemented by new X-ray diffractometry data (N = 382), produced a database including 8 orders, 23 families and 73 species (~7% of the ~1000 known extant spe- cies), spanning latitudes 77° S to 72° N, and including 9 skeletal elements or life stages. Mean (± SD) skeletal carbonate mineralogy in the Echinoidea is 7.5 ± 3.23 Magnesian calcite skeletons of the New Zealand endemic wt% MgCO3 in calcite (range: 1.5−16.4 wt%, N = 643). sea urchin Evechinus choloroticus may be vulnerable to Variation in Mg within individuals was small (SD = ocean acidification. 0.4−0.9 wt% MgCO3).
    [Show full text]
  • Echinoderm Research and Diversity in Latin America Juan José Alvarado Francisco Alonso Solís-Marín Editors
    Echinoderm Research and Diversity in Latin America Juan José Alvarado Francisco Alonso Solís-Marín Editors Echinoderm Research and Diversity in Latin America 123 Editors Juan José Alvarado Francisco Alonso Solís-Marín Centro de Investigaciónes en Ciencias Instituto de Ciencias del Mar, y Limnologia del Mar y Limnologia Universidad Nacional Autónoma de México Universidad de Costa Rica México City San José Mexico Costa Rica ISBN 978-3-642-20050-2 ISBN 978-3-642-20051-9 (eBook) DOI 10.1007/978-3-642-20051-9 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2012941234 Ó Springer-Verlag Berlin Heidelberg 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
    [Show full text]
  • The Echinoderm Newsletter
    THE ECHINODERM NEWSLETTER Number 16. 1991. Editor: John Lawrence Department of 8iology University of South Florida Tampa, Florida 33620, U.S.A. Distributed by the Department of Invertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, D.C. 20560, U.S.A. (David Pawson) The newsletter contains information concerning meetings and conferences, publications of interest to echinoderm biologists, titles of theses on echinoderms, and research interests and addresses of echinoderm biologists. Individuals who desire to receive the newsletter should send their name and research interests to the editor. The newsletter is not intended to be a part of the scientific literature and should not be ctted, abstracted, or reprinted as a published document. 1 .. j Table of Contents Echinoderm specialists: names and address 1 Conferences 1991 European Colloquium on Echinoderms 26 1994 International Echinoderm Conference 27 Books in print .........•.........................••.................. 29 Recent articles ........•............................................. 39 Papers presented at conferences 70 Theses and dis sertat ions 98 Requests and informat ion . Inst itut iona 1 1 ibrarfes' requests 111 Newsletters: Beche-de-mer Information Bulleltin 111 COTS Comm. (Crown-of-thorns starfish) 114 Individual requests and information 114 Cadis-fly oviposition in asteroids 116 Pept ides in ech inoderms ;- 117 Mass mortality of asteroids in the north Pacific 118 Species of echinoderms available at marine stations . Japan 120 Banyuls,
    [Show full text]
  • A Phylogenomic Resolution of the Sea Urchin Tree of Life Nicolás Mongiardino Koch1* , Simon E
    Mongiardino Koch et al. BMC Evolutionary Biology (2018) 18:189 https://doi.org/10.1186/s12862-018-1300-4 RESEARCH ARTICLE Open Access A phylogenomic resolution of the sea urchin tree of life Nicolás Mongiardino Koch1* , Simon E. Coppard2,3, Harilaos A. Lessios3, Derek E. G. Briggs1,4, Rich Mooi5 and Greg W. Rouse6 Abstract Background: Echinoidea is a clade of marine animals including sea urchins, heart urchins, sand dollars and sea biscuits. Found in benthic habitats across all latitudes, echinoids are key components of marine communities such as coral reefs and kelp forests. A little over 1000 species inhabit the oceans today, a diversity that traces its roots back at least to the Permian. Although much effort has been devoted to elucidating the echinoid tree of life using a variety of morphological data, molecular attempts have relied on only a handful of genes. Both of these approaches have had limited success at resolving the deepest nodes of the tree, and their disagreement over the positions of a number of clades remains unresolved. Results: We performed de novo sequencing and assembly of 17 transcriptomes to complement available genomic resources of sea urchins and produce the first phylogenomic analysis of the clade. Multiple methods of probabilistic inference recovered identical topologies, with virtually all nodes showing maximum support. In contrast, the coalescent-based method ASTRAL-II resolved one node differently, a result apparently driven by gene tree error induced by evolutionary rate heterogeneity. Regardless of the method employed, our phylogenetic structure deviates from the currently accepted classification of echinoids, with neither Acroechinoidea (all euechinoids except echinothurioids), nor Clypeasteroida (sand dollars and sea biscuits) being monophyletic as currently defined.
    [Show full text]
  • Of Living and Fossil Echinoids 1924-1970
    Index of Living and Fossil Echinoids 1924-1970 PORTER M. KIER and MARY HURD LAWSON SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY NUMBER 34 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]