Sexual Reproduction in Animals and Plants Sexual Reproduction in Animals and Plants

Total Page:16

File Type:pdf, Size:1020Kb

Sexual Reproduction in Animals and Plants Sexual Reproduction in Animals and Plants Hitoshi Sawada Naokazu Inoue Megumi Iwano Editors Sexual Reproduction in Animals and Plants Sexual Reproduction in Animals and Plants Hitoshi Sawada • Naokazu Inoue Megumi Iwano Editors Sexual Reproduction in Animals and Plants Editors Hitoshi Sawada, Ph.D. Naokazu Inoue, Ph.D. Director and Professor Associate Professor Sugashima Marine Biological Laboratory Department of Cell Science Graduate School of Science Institute of Biomedical Sciences Nagoya University School of Medicine 429-63 Sugashima, Toba Fukushima Medical University Mie 517-0004, Japan 1 Hikarigaoka, Fukushima Fukushima 960-1295, Japan Megumi Iwano, Ph.D. Assistant Professor Graduate School of Biological Sciences Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192, Japan ISBN 978-4-431-54588-0 ISBN 978-4-431-54589-7 (eBook) DOI 10.1007/978-4-431-54589-7 Springer Tokyo Heidelberg New York Dordrecht London Library of Congress Control Number: 2013955610 © The Editor(s) (if applicable) and the Author(s) 2014 . The book is published with open access at SpringerLink.com Open Access. This book is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. All commercial rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for commercial use must always be obtained from Springer. Permissions for commercial use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Pref ace The International Symposium on the Mechanisms of Sexual Reproduction in Animals and Plants was held in Nagoya, Japan, as a joint meeting of the second Allo-authentication Meeting and the fi fth International Symposium on the Molecular and Cell Biology of Egg- and Embryo-Coats (MCBEEC), November 12–16, 2012. This was the fi rst international meeting where many plant and animal reproductive biologists gathered and discussed their recent progress. Approximately 160 participants met in Nagoya from all over the world, and most of the oral presenters and several poster presenters contributed as authors of this book of proceedings. Although there are several books covering plant self- incompatibility and double-fertilization systems as well as animal fertilization, until now there has been no book covering recent progress in almost all fi elds of plant and animal fertilization. This meeting was organized as part of the research project entitled “Elucidating common mechanisms of allogeneic authentication: mechanisms of sexual reproduc- tion shared by animals and plants” supported by a Grant-in-aid for Scientifi c Research on Innovative Areas from MEXT, Japan. This project was established because self-sterile mechanisms in primitive chordates (ascidians) were found to be very similar to the self-incompatibility system in fl owering plants and also because GCS1, a sperm-side factor responsible for gamete fusion, exists not only in plants but also in unicellular organisms and animals. These discoveries led us to speculate that there must be many other common mechanisms or molecules involved in sexual reproduction of animals and plants. We believe that to stimulate discussion in this innovative area, it is very important to summarize our current understanding of the mechanism of sexual reproduction. We hope that this book will be useful for many scientists, particularly those in the fi eld of sexual reproduction—which we tenta- tively call “allo-authentication”—and in intercellular communications. Toba, Japan Hitoshi Sawada Fukushima, Japan Naokazu Inoue Ikoma, Japan Megumi Iwano v a, oto, , Yuki , Yuki ozuka, Igawa, Sutovsky, Sutovsky, iku Shiba, , Hidenori Bayyinatul isato Yokoe, isato Yokoe, Ravi Palanivelu, November 12–16, 2012, Nagoya Garden Palace, Nagoya, Japan Nagoya, Japan 12–16, 2012, Nagoya Garden Palace, November [Joint Meeting of the 2nd Allo-authentication and 5th Egg-Coat (MCBEEC)], [Joint Jurrien Dean, Masaru Okabe, Hitoshi Sawada, Alberto Darszon, Stefanie Sprunck, Noni Franklin-Tong, Emily Indriolo, Teh-hui Kao, Teh-hui Emily Indriolo, Alberto Darszon, Stefanie Sprunck, Noni Franklin-Tong, Jurrien Dean, Masaru Okabe, Hitoshi Sawada, First Row (From Peter Miriam Sutovsky, Strünker, in Animals and PlantsTimo Gerton, Luca Jovine, Harvey Florman, Symposium on the Mechanisms of Sexual Reproduction International Kenji Murata, George Gary Cherr, Left Yamato, Katsuyuki to Right) Kentaro K. Shimizu, Tetsuya Higashiyama, Hideo Mohri, Douglas Chandler Higashiyama, Hideo Mohri, Douglas Chandler Tetsuya Kentaro K. Shimizu, Second Row M Takahashi, Tomoe Saito, Ling Han, Takako Sasakura, Makoto Hirai, Yasunori Kenji Miyado, Hisayoshi Nozaki, Hiroyuki Sekimoto, Shiroshita Ayumi Yoshida, Abiko, Chihiro Ono, Kaoru Asano, Motoko Igarashi, Xintian Lao, Megumi Iwano, Kanae Ito, Mafumi Hiroko Takeshige, Miho Watanabe, Jiao Shi, Sheng Zhong, Jingjing Liu, Naoko Hirano, Rinako Miyabayashi Jiao Shi, Sheng Zhong, Jingjing Liu, Naoko Hirano, Rinako Miyabayashi Watanabe, Miho Takeshige, Third Row Tomoko Hattori, Midori Matsumoto, Eerdundagula Ebchuqin, Yoko Koyano, Tomoko Entani, Chihiro Sato, Estelle Garenaux, Tetsuyuki Chizuru Ito, Maako Makino Toshimori, Motonori Hoshi, Hanae Nodono, Kazuo Inaba, Luigia Santella, Kiyotaka Fourth Row Mohri, Keiichiro Ky Tatsuma Mori, Hiroki Okumura, Masatoshi Mita, Shigeyuki Kawano, Toshiyuki Masahiro Suzuki, Yonezawa, Naoto Hamamura, Kog Yuki Clark, Motomura, Gang Fu, Gary F. Taizo Okamoto, Takashi Akihiro Nakamura, Katsuyuki Kakeda, Kenshou Furuta, Yamada Noritaka Hirohashi, Lixy Fifth Row Harada, Masato Uchiyama, Yuichirou Takezawa, Youki Takayama, Araki, Hideaki Fukushima, Masao Ueki, Jun Kanazawa, Naoya Takeru Akiko Konishi Kato, Taku Muchtaromah, Retno Susilowati, Masako Mino, Jumpei Dake, Sixth Ijiri, Ken-ichi Sato Row Takashi Yamatoya, Baba, Kenji Tadashi Fujihara, Masahito Ikawa, Yoshitaka Satouh, Haruhiko Miyata, Yuhkoh Yamam Matsuda, Shunsuke Nishio, Naokazu Inoue, Masaya Morita, Shun Ohki, Gen Hiyama, Kazunori Tsukasa Tsutsui, Hiroki Takeuchi, Hirata Takuma Shinsaku Suetsugu, Shigemasa Hirada, Kei Otuska, Hitoshi Sugiyama, Masaaki Morisawa, Khaled Machaca, Yasuhiro Iwao, Akihiko Watanabe, Hideo Kubo, Tomohiro Sasanami, Ken Kitajim Tomohiro Hideo Kubo, Watanabe, Akihiko Iwao, Yasuhiro Hitoshi Sugiyama, Masaaki Morisawa, Khaled Machaca, Contents Part I Sperm Attraction, Activation, and Acrosome Reaction 1 Sperm Chemotaxis: The First Authentication Events Between Conspecifi c Gametes Before Fertilization ............................. 3 Manabu Yoshida 2 Respiratory CO2 Mediates Sperm Chemotaxis in Squids ................... 13 Noritaka Hirohashi, Yoko Iwata, Warwick H.H. Sauer, and Yasutaka Kakiuchi 3 Specifi c Mechanism of Sperm Storage in Avian Oviducts .................. 23 Mei Matsuzaki, Gen Hiyama, Shusei Mizushima, Kogiku Shiba, Kazuo Inaba, and Tomohiro Sasanami 4 Allurin: Exploring the Activity of a Frog Sperm Chemoattractant in Mammals ............................................................... 31 Lindsey Burnett, Hitoshi Sugiyama, Catherine Washburn, Allan Bieber, and Douglas E. Chandler 5 Structure, Function, and Phylogenetic Consideration of Calaxin ........................................................................ 49 Kazuo Inaba, Katsutoshi Mizuno, and Kogiku Shiba 6 Cl− Channels and Transporters in Sperm Physiology ......................... 59 C.L. Treviño, G. Orta, D. Figueiras-Fierro, J.L. De la Vega-Beltran, G. Ferreira, E. Balderas, O. José, and A. Darszon 7 Equatorin-Related Subcellular and Molecular Events During Sperm Priming for Fertilization in Mice ................................. 85 Chizuru Ito, Kenji Yamatoya, and Kiyotaka Toshimori ix x Contents 8 Acrosome Reaction-Mediated Motility Initiation That Is Critical for the Internal Fertilization of Urodele Amphibians ........................................................................... 97 Eriko Takayama-Watanabe, Tomoe Takahashi, Misato Yokoe, and Akihiko Watanabe 9 Analysis of the Mechanism That Brings Protein Disulfi de Isomerase-P5 to Inhibit Oxidative Refolding of Lysozyme ................. 105 Miho Miyakawa, Shuntaro Shigihara, Gosuke Zukeran, Tetsutaro Tomioka, Tasuku Yoshino, and Kuniko Akama Part II Gametogenesis, Gamete Recognition, Activation, and Evolution 10 Effect of Relaxin-Like Gonad-Stimulating Substance on Gamete Shedding and 1-Methyladenine Production in Starfi sh Ovaries ................................................................................... 115 Masatoshi Mita, Yuki Takeshige, and Masaru Nakamura 11 Incapacity of 1-Methyladenine Production to Relaxin-Like Gonad-Stimulating Substance in Ca2+-Free Seawater-Treated Starfi sh Ovarian Follicle
Recommended publications
  • Evolutionary Trajectories Explain the Diversified Evolution of Isogamy And
    Evolutionary trajectories explain the diversified evolution of isogamy and anisogamy in marine green algae Tatsuya Togashia,b,c,1, John L. Barteltc,d, Jin Yoshimuraa,e,f, Kei-ichi Tainakae, and Paul Alan Coxc aMarine Biosystems Research Center, Chiba University, Kamogawa 299-5502, Japan; bPrecursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan; cInstitute for Ethnomedicine, Jackson Hole, WY 83001; dEvolutionary Programming, San Clemente, CA 92673; eDepartment of Systems Engineering, Shizuoka University, Hamamatsu 432-8561, Japan; and fDepartment of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210 Edited by Geoff A. Parker, University of Liverpool, Liverpool, United Kingdom, and accepted by the Editorial Board July 12, 2012 (received for review March 1, 2012) The evolution of anisogamy (the production of gametes of dif- (11) suggested that the “gamete size model” (Parker, Baker, and ferent size) is the first step in the establishment of sexual dimorphism, Smith’s model) is the most applicable to fungi (11). However, and it is a fundamental phenomenon underlying sexual selection. none of these models successfully account for the evolution of It is believed that anisogamy originated from isogamy (production all known forms of isogamy and anisogamy in extant marine of gametes of equal size), which is considered by most theorists to green algae (12). be the ancestral condition. Although nearly all plant and animal Marine green algae are characterized by a variety of mating species are anisogamous, extant species of marine green algae systems linked to their habitats (Fig.
    [Show full text]
  • Ascidian Cannibalism Correlates with Larval Behavior and Adult Distribution
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1988 Elsevier Ltd. The final published version of this manuscript is available at http://www.sciencedirect.com/science/journal/00220981 and may be cited as: Young, C. M. (1988). Ascidian cannibalism correlates with larval behavior and adult distribution. Journal of Experimental Marine Biology and Ecology, 117(1), 9-26. doi:10.1016/0022-0981(88)90068-8 J. Exp. Mar. Bioi. £Col., 1988, Vol. 117, pp. 9-26 9 Elsevier JEM 01042 Ascidian cannibalism correlates with larval behavior and adult distribution Craig M. Young Department ofLarval Ecology. Harbor Branch Oceanographic Institution, Fort Pierce, Florida. U.S.A. (Received 24 March 1987; revision received 9 December 1987; accepted 22 December 1987) Abstract: In the San Juan Islands, Washington, solitary ascidians .that occur in dense monospecific aggregations demonstrate gregarious settlement as larvae, whereas species that occur as isolated individuals do not. All gregarious species reject their own eggs and larvae as food, but nongregarious species consume conspecific eggs and larvae. Moreover, the rejection mechanism is species-specific in some cases. Correla­ tion analysis suggests that species specificity of the rejection response has a basis in siphon diameter, egg density, and larval size, but not in number of oral tentacles, or tentacle branching. One strongly cannibalistic species, Corella inflata Huntsman, avoids consuming its own eggs and newly released tadpoles by a unique brooding mechanism that involves floating eggs, negative geotaxis after hatching, and adult orientation. Key words: Ascidian; Cannibalism; Distribution; Larva; Settlement behavior INTRODUCTION Many sessile marine invertebrates, including filter-feeders such as mussels, oysters, barnacles and ascidians, occur in discrete, dense aggregations.
    [Show full text]
  • ZOO 435 Lecture - General Characteristics of Extant Birds
    ZOO 435 Lecture - General Characteristics of Extant Birds Forelimbs are wings (in all birds); most can fly Feathers and leg scales (epidermal structures) No sweat glands Uropygial gland present in most Rudimentary pinna (fleshy ear) Skeleton fully ossified; air sacs in bones; strutting for strength Cervical vertebrae have saddle-shaped articular surface – very flexible Single occipital condyle (flexible) Jaws covered by beak (keratinized sheath) No teeth Well developed brain and nervous system Optic lobes and cerebellum very well-developed Excellent eyesight – can see color, UV, and polarized light o Golden Eagle can see a rabbit two miles away; 1500 feet for people Poor sense of taste and smell (with some exceptions) 12 pairs of cranial nerves (just like mammals) 4-chambered heart; Right aortic arch (IV) persists Reduced renal portal system (Blood from the posterior part of the body flows into the renal portal veins, which pass into the caudal vena cava. The renal portal system is found only in fishes, amphibians, reptiles and birds. Thus, mammals have no renal portal system. All that remains in mammals is the azygous vein, which is an unpaired vein that drains most of the intercostal space on both sides of the mammalian thorax.) Nucleated red blood cells Crop – diverticulum of the esophagus (allows ingestion of food which can be stored until a safe place is found for digestion) Proventriculus – distal portion of the stomach (closer to mouth); initiates digestion; Ventriculus (gizzard) – proximal portion of the stomach (farther from mouth); muscular walls to grind and crush, often aided by sand or gravel Air sacs among viscera and in skeleton Voice box = syrinx; located at proximal end of trachea, at junction with bronchi Cloaca; no bladder; semi-solid urine; nitrogenous waste = uric acid Female with only left ovary and oviduct (exceptions, e.g.
    [Show full text]
  • Reproduction Methods
    1336 Chapter 43 | Animal Reproduction and Development fertilization. Seahorses, like the one shown in Figure 43.1, provide an example of the latter. Following a mating dance, the female lays eggs in the male seahorse’s abdominal brood pouch where they are fertilized. The eggs hatch and the offspring develop in the pouch for several weeks. 43.1 | Reproduction Methods By the end of this section, you will be able to do the following: • Describe advantages and disadvantages of asexual and sexual reproduction • Discuss asexual reproduction methods • Discuss sexual reproduction methods Animals produce offspring through asexual and/or sexual reproduction. Both methods have advantages and disadvantages. Asexual reproduction produces offspring that are genetically identical to the parent because the offspring are all clones of the original parent. A single individual can produce offspring asexually and large numbers of offspring can be produced quickly. In a stable or predictable environment, asexual reproduction is an effective means of reproduction because all the offspring will be adapted to that environment. In an unstable or unpredictable environment asexually-reproducing species may be at a disadvantage because all the offspring are genetically identical and may not have the genetic variation to survive in new or different conditions. On the other hand, the rapid rates of asexual reproduction may allow for a speedy response to environmental changes if individuals have mutations. An additional advantage of asexual reproduction is that colonization of new habitats may be easier when an individual does not need to find a mate to reproduce. During sexual reproduction the genetic material of two individuals is combined to produce genetically diverse offspring that differ from their parents.
    [Show full text]
  • Fiorio Pla Gkika2019 Rev Nohighlights
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Research Information System University of Turin Ca2+ channels toolkit in Neuroendocrine tumors Alessandra Fiorio Pla1, 2, 3* and Dimitra Gkika2, 3 1 Department of Life Science and Systems Biology, University of Torino, Turin, Italy. 2 Université de Lille, Inserm U1003, PHYCEL laboratory and Villeneuve d’Ascq, France. 3 Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d’Ascq, France. Short Title: Ca2+ channels in Neuroendocrine tumors *Corresponding Author Alessandra Fiorio Pla Department of Life Science and Systems Biology University/Hospital Via Accademia Albertina 13 Torino, 10123, Italy Tel: +390116704660 E-mail: [email protected] Keywords: Neuroendocrine tumors, Ca2+ signals, ion channels. Abstract Neuroendocrine tumors (NET) constitute an heterogenous group of malignancies with various clinical presentations and growth rates but all rising from neuroendocrine cells located all over the body. NET present a relatively low frequency disease being mostly represented by gastroenteropancreatic (GEP) and bronchopulmonary tumors (pNET); on the other hand an increasing frequency and prevalence has been associated to NET. Beside the great effort of the latest years, management of NET is still a critical unmet point due to the lack in the knowledge of the biology of the disease, lack of adequate biomarkers, late presentation, the relative insensitivity of imaging modalities and a paucity of predictably 1 effective treatment options. In this context Ca2+ signals, being pivotal molecular devices in sensing and integrating signals from the microenvironment, are emerging to be particularly relevant in cancer, where they mediate interactions between tumor cells and the tumor microenvironment to drive different aspects of neoplastic progression (e.g.
    [Show full text]
  • Revisión Del Género Lolliguncula Steenstrup, 1881 (Cephalopoda: Loliginidae) Frente a La Costa Del Pacífico De América Del Sur
    Rev. peru. biol. 20(2): 129 - 136 (Diciembre 2013) the genus LOLLIGUNCULA off the Pacific Coast of South America FACULTAD DE CIENCIAS BIOLÓGICAS UNMSM ISSN-L 1561-0837 TRABAJOS ORIGINALES Revision of the genus Lolliguncula Steenstrup, 1881 (Cephalopoda: Loliginidae) off the Pacific Coast of South America Revisión del género Lolliguncula Steenstrup, 1881 (Cephalopoda: Loliginidae) frente a la costa del Pacífico de América del Sur Franz Cardoso1 and Frederick G. Hochberg2 1 Laboratorio de Biología y Sistemática de Invertebrados Marinos, Facultad de Ciencias Biológicas, Universidad Na- Abstract cional Mayor de San Marcos, Apdo. 11-0058, Lima 11, Perú. In the present paper the species from the genus Lolliguncula Steentrup, 1881 (Cephalopo- 2 Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa da: Loliginidae) in Southeastern Pacific Ocean are reviewed. The presence of Lolliguncula Barbara, California 93105-2936, USA. (Lolliguncula) panamensis Berry, 1911, Lolliguncula (Loliolopsis) diomedeae Hoyle, 1911 and Email Franz Cardoso: [email protected] Lolliguncula (Lolliguncula) argus Brakoniecki and Roper, 1985 are confirmed from Mexican waters to Perú and the species Lolliguncula (Lolliguncula) argus collected during a cruise of the R/V Anton Bruun from 1966 off the coast of South America is recorded for the first time in Peruvian waters. A key to identification of Pacific species is given. We report a diagnostic feature with taxonomic remarks of these species. Updated information on the distribution, biology, and fisheries of each species also is discussed. Keywords: Lolliguncula; taxonomy; distribution; biology; Southeastern Pacific. Resumen En el presente trabajo las especies del género Lolliguncula Steentrup, 1881 (Cephalopoda: Loliginidae) en el Océano Pacífico Sudeste son revisados.
    [Show full text]
  • Potassium Channels in Peripheral Pain Pathways: Expression, Function and Therapeutic Potential
    Send Orders for Reprints to [email protected] Current Neuropharmacology, 2013, 11, 621-640 621 Potassium Channels in Peripheral Pain Pathways: Expression, Function and Therapeutic Potential Xiaona Du1,* and Nikita Gamper1,2,* 1Department of Pharmacology, Hebei Medical University, Shijiazhuang, China; 2Faculty of Biological Sciences, University of Leeds, Leeds, UK Abstract: Electrical excitation of peripheral somatosensory nerves is a first step in generation of most pain signals in mammalian nervous system. Such excitation is controlled by an intricate set of ion channels that are coordinated to produce a degree of excitation that is proportional to the strength of the external stimulation. However, in many disease states this coordination is disrupted resulting in deregulated peripheral excitability which, in turn, may underpin pathological pain states (i.e. migraine, neuralgia, neuropathic and inflammatory pains). One of the major groups of ion channels that are essential for controlling neuronal excitability is potassium channel family and, hereby, the focus of this review is on the K+ channels in peripheral pain pathways. The aim of the review is threefold. First, we will discuss current evidence for the expression and functional role of various K+ channels in peripheral nociceptive fibres. Second, we will consider a hypothesis suggesting that reduced functional activity of K+ channels within peripheral nociceptive pathways is a general feature of many types of pain. Third, we will evaluate the perspectives of pharmacological enhancement of K+ channels in nociceptive pathways as a strategy for new analgesic drug design. + + Keywords: K channel/ M channel/ two-pore K channel/ KATP channel/ Dorsal root ganglion/ Pain/ Nociception. INTRODUCTION TRPV1 [4] while strong mechanical stimulation activates mechanosensitive channels which can be Piezo2 [5].
    [Show full text]
  • Sex-Specific Spawning Behavior and Its Consequences in an External Fertilizer
    vol. 165, no. 6 the american naturalist june 2005 Sex-Specific Spawning Behavior and Its Consequences in an External Fertilizer Don R. Levitan* Department of Biological Science, Florida State University, a very simple way—the timing of gamete release (Levitan Tallahassee, Florida 32306-1100 1998b). This allows for an investigation of how mating behavior can influence mating success without the com- Submitted October 29, 2004; Accepted February 11, 2005; Electronically published April 4, 2005 plications imposed by variation in adult morphological features, interactions within the female reproductive sys- tem, or post-mating (or pollination) investments that can all influence paternal and maternal success (Arnqvist and Rowe 1995; Havens and Delph 1996; Eberhard 1998). It abstract: Identifying the target of sexual selection in externally also provides an avenue for exploring how the evolution fertilizing taxa has been problematic because species in these taxa often lack sexual dimorphism. However, these species often show sex of sexual dimorphism in adult traits may be related to the differences in spawning behavior; males spawn before females. I in- evolutionary transition to internal fertilization. vestigated the consequences of spawning order and time intervals One of the most striking patterns among animals and between male and female spawning in two field experiments. The in particular invertebrate taxa is that, generally, species first involved releasing one female sea urchin’s eggs and one or two that copulate or pseudocopulate exhibit sexual dimor- males’ sperm in discrete puffs from syringes; the second involved phism whereas species that broadcast gametes do not inducing males to spawn at different intervals in situ within a pop- ulation of spawning females.
    [Show full text]
  • The Chondrocyte Channelome: a Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2017 The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities Anthony J. Asmar Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Molecular Biology Commons, and the Physiology Commons Recommended Citation Asmar, Anthony J.. "The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities" (2017). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/pyha-7838 https://digitalcommons.odu.edu/biology_etds/19 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES by Anthony J. Asmar B.S. Biology May 2010, Virginia Polytechnic Institute M.S. Biology May 2013, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY BIOMEDICAL SCIENCES OLD DOMINION UNIVERSITY August 2017 Approved by: Christopher Osgood (Co-Director) Michael Stacey (Co-Director) Lesley Greene (Member) Andrei Pakhomov (Member) Jing He (Member) ABSTRACT THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES Anthony J. Asmar Old Dominion University, 2017 Co-Directors: Dr. Christopher Osgood Dr. Michael Stacey Costal cartilage is a type of rod-like hyaline cartilage connecting the ribs to the sternum.
    [Show full text]
  • Ascidiacea (Chordata: Tunicata) of Greece: an Updated Checklist
    Biodiversity Data Journal 4: e9273 doi: 10.3897/BDJ.4.e9273 Taxonomic Paper Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist Chryssanthi Antoniadou‡, Vasilis Gerovasileiou§§, Nicolas Bailly ‡ Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece § Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Chryssanthi Antoniadou ([email protected]) Academic editor: Christos Arvanitidis Received: 18 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Antoniadou C, Gerovasileiou V, Bailly N (2016) Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist. Biodiversity Data Journal 4: e9273. https://doi.org/10.3897/BDJ.4.e9273 Abstract Background The checklist of the ascidian fauna (Tunicata: Ascidiacea) of Greece was compiled within the framework of the Greek Taxon Information System (GTIS), an application of the LifeWatchGreece Research Infrastructure (ESFRI) aiming to produce a complete checklist of species recorded from Greece. This checklist was constructed by updating an existing one with the inclusion of recently published records. All the reported species from Greek waters were taxonomically revised and cross-checked with the Ascidiacea World Database. New information The updated checklist of the class Ascidiacea of Greece comprises 75 species, classified in 33 genera, 12 families, and 3 orders. In total, 8 species have been added to the previous species list (4 Aplousobranchia, 2 Phlebobranchia, and 2 Stolidobranchia). Aplousobranchia was the most speciose order, followed by Stolidobranchia. Most species belonged to the families Didemnidae, Polyclinidae, Pyuridae, Ascidiidae, and Styelidae; these 4 families comprise 76% of the Greek ascidian species richness. The present effort revealed the limited taxonomic research effort devoted to the ascidian fauna of Greece, © Antoniadou C et al.
    [Show full text]
  • Plant Kingdom Dpp. No.-03
    BIOLOGY Daily Practice Problems MEDICAL ENTRANCE - 2020 CLASS : XI TOPIC : PLANT KINGDOM DPP. NO.-03 SECTION - A Q.1 Identify A, B, C, D & E in given diagram. Answer : A. ________ A B. ________ C. ________ D. ________ B E. ________ C D E Q.2 Identify A, B & C in given diagram. Answer : A A. ________ B. ________ C. ________ B C Q.3 Identify A, B & C in given diagram. Answer : A. ________ B. ________ C. ________ A B C Q.4 (i) Identify A & B. (ii) Which stage show by part (1) & (2) Answer : A A. ________ B B. ________ (1) (2) Q.5 (i) Identify A & B in given diagram. (ii) What is syngamy. A Answer : A. ________ B. ________ (1) B (2) Q.6 Identify A, B & C in given diagram. Answer : B A. ________ B. ________ A C. ________ SECTION - B Q.7 The sporophytes bear sporangia that are subtended by leaf-like appendages called ________. Q.8 In majority of the pteridophytes all the spores are of similar kinds; such plants are called ________. Q.9 The cones bearing megasporophylls with ovules or ________ are called macrosporangiate or ________. Q.10 The nucellus is protected by envelopes and the composite structure is called an ________. Q.11 Unlike the gymnosperms where the ovules are naked, in the angiosperms or flowering plants, the pollen grains and ovules are developed in specialised structures called ________. Q.12 Within ovules are present highly reduced female gametophytes termed ________. Q.13 The dominant, photosynthetic phase in such plants is the free-living gametophyte.
    [Show full text]
  • Phylum Chordata Bateson, 1885
    Checklist of the Invertebrate Chordata and the Hemichordata of British Columbia (Tunicates and Acorn Worms) (August, 2009) by Aaron Baldwin, PhD Candidate School of Fisheries and Ocean Science University of Alaska, Fairbanks E-mail [email protected] The following checklist contains species in the chordate subphylum Tunicata and the acorn worms which have been listed as found in British Columbia. This list is certainly incomplete. The taxonomy follows that of the World Register of Marine Species (WoRMS database, www.marinespecies.org) and the Integrated Taxonomic Information System (ITIS, www.itis.gov). For several families and higher taxa I was unable to locate author's names so have left these blank. Common names are mainly from Lamb and Hanby (2005). Phylum Chordata Bateson, 1885 Subpylum Tunicata Class Ascidacea Nielsen, 1995 Order Entergona Suborder Aplousobranchia Family Cionidae Genus Ciona Fleming, 1822 Ciona savignyi Herdman, 1882 Family Clavelinidae Genus Clavelina Savigny, 1816 Clavelina huntsmani Van Name, 1931 Family Didemnidae Genus Didemnum Savigny, 1816 Didemnum carnulentum Ritter and Forsyth, 1917 Didenmum sp (Lamb and Hanby, 2005) INV Genus Diplosoma Macdonald, 1859 Diplosoma listerianum (Milne-Edwards, 1841) Genus Trididemnum delle Valle, 1881 Trididemnum alexi Lambert, 2005 Family Holozoidae Genus Distaplia delle Valle, 1881 Distaplia occidentalis Bancroft, 1899 Distaplia smithi Abbot and Trason, 1968 Family Polycitoridae Genus Cystodytes von Drasche, 1884 Cystodytes lobatus (Ritter, 1900) Genus Eudistoma Caullery, 1909
    [Show full text]