Needham Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ZOO 435 Lecture - General Characteristics of Extant Birds
ZOO 435 Lecture - General Characteristics of Extant Birds Forelimbs are wings (in all birds); most can fly Feathers and leg scales (epidermal structures) No sweat glands Uropygial gland present in most Rudimentary pinna (fleshy ear) Skeleton fully ossified; air sacs in bones; strutting for strength Cervical vertebrae have saddle-shaped articular surface – very flexible Single occipital condyle (flexible) Jaws covered by beak (keratinized sheath) No teeth Well developed brain and nervous system Optic lobes and cerebellum very well-developed Excellent eyesight – can see color, UV, and polarized light o Golden Eagle can see a rabbit two miles away; 1500 feet for people Poor sense of taste and smell (with some exceptions) 12 pairs of cranial nerves (just like mammals) 4-chambered heart; Right aortic arch (IV) persists Reduced renal portal system (Blood from the posterior part of the body flows into the renal portal veins, which pass into the caudal vena cava. The renal portal system is found only in fishes, amphibians, reptiles and birds. Thus, mammals have no renal portal system. All that remains in mammals is the azygous vein, which is an unpaired vein that drains most of the intercostal space on both sides of the mammalian thorax.) Nucleated red blood cells Crop – diverticulum of the esophagus (allows ingestion of food which can be stored until a safe place is found for digestion) Proventriculus – distal portion of the stomach (closer to mouth); initiates digestion; Ventriculus (gizzard) – proximal portion of the stomach (farther from mouth); muscular walls to grind and crush, often aided by sand or gravel Air sacs among viscera and in skeleton Voice box = syrinx; located at proximal end of trachea, at junction with bronchi Cloaca; no bladder; semi-solid urine; nitrogenous waste = uric acid Female with only left ovary and oviduct (exceptions, e.g. -
Reproduction Methods
1336 Chapter 43 | Animal Reproduction and Development fertilization. Seahorses, like the one shown in Figure 43.1, provide an example of the latter. Following a mating dance, the female lays eggs in the male seahorse’s abdominal brood pouch where they are fertilized. The eggs hatch and the offspring develop in the pouch for several weeks. 43.1 | Reproduction Methods By the end of this section, you will be able to do the following: • Describe advantages and disadvantages of asexual and sexual reproduction • Discuss asexual reproduction methods • Discuss sexual reproduction methods Animals produce offspring through asexual and/or sexual reproduction. Both methods have advantages and disadvantages. Asexual reproduction produces offspring that are genetically identical to the parent because the offspring are all clones of the original parent. A single individual can produce offspring asexually and large numbers of offspring can be produced quickly. In a stable or predictable environment, asexual reproduction is an effective means of reproduction because all the offspring will be adapted to that environment. In an unstable or unpredictable environment asexually-reproducing species may be at a disadvantage because all the offspring are genetically identical and may not have the genetic variation to survive in new or different conditions. On the other hand, the rapid rates of asexual reproduction may allow for a speedy response to environmental changes if individuals have mutations. An additional advantage of asexual reproduction is that colonization of new habitats may be easier when an individual does not need to find a mate to reproduce. During sexual reproduction the genetic material of two individuals is combined to produce genetically diverse offspring that differ from their parents. -
Sex-Specific Spawning Behavior and Its Consequences in an External Fertilizer
vol. 165, no. 6 the american naturalist june 2005 Sex-Specific Spawning Behavior and Its Consequences in an External Fertilizer Don R. Levitan* Department of Biological Science, Florida State University, a very simple way—the timing of gamete release (Levitan Tallahassee, Florida 32306-1100 1998b). This allows for an investigation of how mating behavior can influence mating success without the com- Submitted October 29, 2004; Accepted February 11, 2005; Electronically published April 4, 2005 plications imposed by variation in adult morphological features, interactions within the female reproductive sys- tem, or post-mating (or pollination) investments that can all influence paternal and maternal success (Arnqvist and Rowe 1995; Havens and Delph 1996; Eberhard 1998). It abstract: Identifying the target of sexual selection in externally also provides an avenue for exploring how the evolution fertilizing taxa has been problematic because species in these taxa often lack sexual dimorphism. However, these species often show sex of sexual dimorphism in adult traits may be related to the differences in spawning behavior; males spawn before females. I in- evolutionary transition to internal fertilization. vestigated the consequences of spawning order and time intervals One of the most striking patterns among animals and between male and female spawning in two field experiments. The in particular invertebrate taxa is that, generally, species first involved releasing one female sea urchin’s eggs and one or two that copulate or pseudocopulate exhibit sexual dimor- males’ sperm in discrete puffs from syringes; the second involved phism whereas species that broadcast gametes do not inducing males to spawn at different intervals in situ within a pop- ulation of spawning females. -
Reproductive Ecology & Sexual Selection
Reproductive Ecology & Sexual Selection REPRODUCTIVE ECOLOGY REPRODUCTION & SEXUAL SELECTION • Asexual • Sexual – Attraction, Courtship, and Mating – Fertilization – Production of Young The Evolutionary Enigma of Benefits of Asex Sexual Reproduction • Sexual reproduction produces fewer reproductive offspring than asexual reproduction, a so-called reproductive handicap 1. Eliminate problem to locate, court, & retain suitable mate. Asexual reproduction Sexual reproduction Generation 1 2. Doubles population growth rate. Female Female 3. Avoid “cost of meiosis”: Generation 2 – genetic representation in later generations isn't reduced by half each time Male 4. Preserve gene pool adapted to local Generation 3 conditions. Generation 4 Figure 23.16 The Energetic Costs of Sexual Reproduction Benefits of Sex • Allocation of Resources 1. Reinforcement of social structure 2. Variability in face of changing environment. – why buy four lottery tickets w/ the same number on them? Relative benefits: Support from organisms both asexual in constant & sexual in changing environments – aphids have wingless female clones & winged male & female dispersers – ciliates conjugate if environment is deteriorating Heyer 1 Reproductive Ecology & Sexual Selection Simultaneous Hermaphrodites TWO SEXES • Advantageous if limited mobility and sperm dispersal and/or low population density • Guarantee that any member of your species encountered is the • Conjugation “right” sex • Self fertilization still provides some genetic variation – Ciliate protozoans with + & - mating -
Coral Reproduction
UNIT 5: CORAL REPRODUCTION CORAL REEF ECOLOGY CURRICULUM This unit is part of the Coral Reef Ecology Curriculum that was developed by the Education Department of the Khaled bin Sultan Living Oceans Foundation. It has been designed for secondary school students, but can be adapted for other uses. The entire curriculum can be found online at lof.org/CoralReefCurriculum. Author and Design/Layout: Amy Heemsoth, Director of Education Editorial assistance provided by: Andrew Bruckner, Ken Marks, Melinda Campbell, Alexandra Dempsey, and Liz Rauer Thompson Illustrations by: Amy Heemsoth Cover Photo: ©Michele Westmorland/iLCP ©2014 Khaled bin Sultan Living Oceans Foundation. All rights reserved. Unless otherwise noted, photos are property of the Khaled bin Sultan Living Oceans Foundation. The Khaled bin Sultan Living Oceans Foundation and authors disclaim any liability for injury or damage related to the use of this curriculum. These materials may be reproduced for education purposes. When using any of the materials from this curriculum, please include the following attribution: Khaled bin Sultan Living Oceans Foundation Coral Reef Ecology Curriculum www.lof.org The Khaled bin Sultan Living Oceans Foundation (KSLOF) was incorporated in California as a 501(c)(3), public benefit, Private Operating Foundation in September 2000. The Living Oceans Foundation is dedicated to providing science-based solutions to protect and restore ocean health through research, outreach, and education. The educational goals of the Khaled bin Sultan Living Oceans Foundation -
Evolution of the Two Sexes Under Internal Fertilization and Alternative Evolutionary Pathways
vol. 193, no. 5 the american naturalist may 2019 Evolution of the Two Sexes under Internal Fertilization and Alternative Evolutionary Pathways Jussi Lehtonen1,* and Geoff A. Parker2 1. School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, 2006 New South Wales, Australia; and Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052 New South Wales, Australia; 2. Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Submitted September 8, 2018; Accepted November 30, 2018; Electronically published March 18, 2019 Online enhancements: supplemental material. abstract: ogy. It generates the two sexes, males and females, and sexual Transition from isogamy to anisogamy, hence males and fl females, leads to sexual selection, sexual conflict, sexual dimorphism, selection and sexual con ict develop from it (Darwin 1871; and sex roles. Gamete dynamics theory links biophysics of gamete Bateman 1948; Parker et al. 1972; Togashi and Cox 2011; limitation, gamete competition, and resource requirements for zygote Parker 2014; Lehtonen et al. 2016; Hanschen et al. 2018). survival and assumes broadcast spawning. It makes testable predic- The volvocine green algae are classically the group used to tions, but most comparative tests use volvocine algae, which feature study both the evolution of multicellularity (e.g., Kirk 2005; internal fertilization. We broaden this theory by comparing broadcast- Herron and Michod 2008) and transitions from isogamy to spawning predictions with two plausible internal-fertilization scenarios: gamete casting/brooding (one mating type retains gametes internally, anisogamy and oogamy (e.g., Knowlton 1974; Bell 1982; No- the other broadcasts them) and packet casting/brooding (one type re- zaki 1996; da Silva 2018; da Silva and Drysdale 2018; Han- tains gametes internally, the other broadcasts packets containing gametes, schen et al. -
A Biological Switching Valve Evolved in the Female of a Sex-Role Reversed
RESEARCH ARTICLE A biological switching valve evolved in the female of a sex-role reversed cave insect to receive multiple seminal packages Kazunori Yoshizawa1*, Yoshitaka Kamimura2, Charles Lienhard3, Rodrigo L Ferreira4, Alexander Blanke5,6 1Laboratory of Systematic Entomology, School of Agriculture, Hokkaido University, Sapporo, Japan; 2Department of Biology, Keio University, Yokohama, Japan; 3Natural History Museum of Geneva, Geneva, Switzerland; 4Biology Department, Federal University of Lavras, Lavras, Brazil; 5Institute for Zoology, University of Cologne, Zu¨ lpicher, Ko¨ ln; 6Medical and Biological Engineering Research Group, School of Engineering and Computer Science, University of Hull, Hull, United Kingdom Abstract We report a functional switching valve within the female genitalia of the Brazilian cave insect Neotrogla. The valve complex is composed of two plate-like sclerites, a closure element, and in-and-outflow canals. Females have a penis-like intromittent organ to coercively anchor males and obtain voluminous semen. The semen is packed in a capsule, whose formation is initiated by seminal injection. It is not only used for fertilization but also consumed by the female as nutrition. The valve complex has two slots for insemination so that Neotrogla can continue mating while the first slot is occupied. In conjunction with the female penis, this switching valve is a morphological novelty enabling females to compete for seminal gifts in their nutrient-poor cave habitats through long copulation times and multiple seminal injections. The evolution of this switching valve may *For correspondence: have been a prerequisite for the reversal of the intromittent organ in Neotrogla. [email protected] DOI: https://doi.org/10.7554/eLife.39563.001 Competing interests: The authors declare that no competing interests exist. -
REPRODUCTIVE MECHANISM of UNISEXUAL and BISEXUAL STRAINS of the VIVIPAROUS FISH Poeciliopsisl
REPRODUCTIVE MECHANISM OF UNISEXUAL AND BISEXUAL STRAINS OF THE VIVIPAROUS FISH POECILIOPSISl R. JACK SCHULTZ Museum of Zoology, The University of Michigan Received September 12, 1960 The fishes of the order Cyprinodonti one or two uneven rows that follow the formes have evolved a variety of systems heart-shaped curvature of the lips and the of sex-determination, some of which are outer row of teeth. The second type of unique among vertebrate animals. One dentition is characteristic of an aberrant such anomalous condition was recently re strain of "F" females which are designated ported by Miller and Schultz (1959) in the as "Fx." The inner teeth of this strain viviparous genus Poeciliopsis Regan, where consist of a fine sandpaper-like patch on in certain strains gave birth to only female either side of the midline. No other con offspring. Poeciliopsis comprises approxi sistent morphological differences have been mately 16 species that range from southern found between the two strains, yet repro Arizona to Colombia, with at least two ductively they are radically different. Mat endemics in the Atlantic drainage of the ings of "F" females having normal denti Isthmus of Tehuantepec (fig. 1). Western tion to "F" males result in young of both Mexico harbors the largest number of sexes, but the "Fx " females with aberrant species. dentition mated to the same male produce This study deals principally with two only female progeny. species of Poecdiopsis tentatively assigned The same aberrant dental character was to the species group Leptorhaphis Regan later found in samples of strain "c." In (Miller, 1960). -
Reproduction and Sex in Invertebrates - Alan N
REPRODUCTION AND DEVELOPMENT BIOLOGY - Reproduction and Sex in Invertebrates - Alan N. Hodgson REPRODUCTION AND SEX IN INVERTEBRATES Alan N. Hodgson Department of Zoology & Entomology, Rhodes University, Grahamstown 6140, South Africa Keywords: Asexual reproduction, copulation, courtship, fertilization, genitalia, gonochorism, hermaphroditism, iteroparity, mate guarding, parthenogenesis, paternity assurance, semelparity, sexual conflict, spermatophores, spermatozoa Contents 1. Introduction 2. Asexual reproduction 3. Sexual reproduction 3.1. Sexuality 3.2. Environment of Fertilization 3.2.1. Broadcast Spawning and External Fertilization 3.2.2 Spermcast Mating 3.2.3. Internal Fertilization 3.2.4. Sperm Heteromorphism and Paraspermatozoa. 3.3. Copulatory Organs, Copulation and Sperm Transfer 4. Mating behaviors of internal fertilizers: pre- and postcopulatory behaviors, selection and sexual conflict. 5. Frequency of Reproduction (Iteroparity and Semelparity) Glossary Bibliography Biographical Sketch Summary Whilst asexual reproduction is common in many invertebrate taxa, and the sole means of producing the next generation in some, sexual reproduction is the predominant reproductive method. In the majority of sexually reproducing species the sexes are separate (gonochoristic), however, hermaphroditism occurs in many phyla and some are exclusively so. Sexual reproduction requires that haploid gametes are brought together and in speciesUNESCO that inhabit aquatic environm – entsEOLSS this can occur either outside the body of the parents (external -
43.2 Fertilization.Pdf
Chapter 43 | Animal Reproduction and Development 1339 Figure 43.5 Many snails are hermaphrodites. When two individuals mate, they can produce up to one hundred eggs each. (credit: Assaf Shtilman) Sex Determination Mammalian sex determination is determined genetically by the presence of X and Y chromosomes. Individuals homozygous for X (XX) are female and heterozygous individuals (XY) are male. The presence of a Y chromosome causes the development of male characteristics and its absence results in female characteristics. The XY system is also found in some insects and plants. Avian sex determination is dependent on the presence of Z and W chromosomes. Homozygous for Z (ZZ) results in a male and heterozygous (ZW) results in a female. The W appears to be essential in determining the sex of the individual, similar to the Y chromosome in mammals. Some fish, crustaceans, insects (such as butterflies and moths), and reptiles use this system. The sex of some species is not determined by genetics but by some aspect of the environment. Sex determination in some crocodiles and turtles, for example, is often dependent on the temperature during critical periods of egg development. This is referred to as environmental sex determination, or more specifically as temperature-dependent sex determination. In many turtles, cooler temperatures during egg incubation produce males and warm temperatures produce females. In some crocodiles, moderate temperatures produce males and both warm and cool temperatures produce females. In some species, sex is both genetic- and temperature- dependent. Individuals of some species change their sex during their lives, alternating between male and female. -
Reproductive System Further Information: Fish Reproduction and Spawn (Biology)
Reproductive system Further information: Fish reproduction and Spawn (biology) Organs: 1. Liver, 2. Gas bladder, 3. Roe, 4. Pyloric caeca, 5. Stomach, 6. Intestine Fish reproductive organs include testicles and ovaries. In most species, gonads are paired organs oF similar size, which can be partially or totally Fused.[52] There may also be a range oF secondary organs that increase reproductive Fitness. In terms oF spermatogonia distribution, the structure oF teleosts testes has two types: in the most common, spermatogonia occur all along the seminiFerous tubules, while in atherinomorph fish they are confined to the distal portion oF these structures. Fish can present cystic or semi- cystic spermatogenesis in relation to the release phase oF germ cells in cysts to the seminiFerous tubules lumen.[52] Fish ovaries may be oF three types: gymnovarian, secondary gymnovarian or cystovarian. In the First type, the oocytes are released directly into the coelomic cavity and then enter the ostium, then through the oviduct and are eliminated. Secondary gymnovarian ovaries shed ova into the coelom From which they go directly into the oviduct. In the third type, the oocytes are conveyed to the exterior through the oviduct.[53] Gymnovaries are the primitive condition Found in lungFish, sturgeon, and bowFin. Cystovaries characterize most teleosts, where the ovary lumen has continuity with the oviduct.[52] Secondary gymnovaries are Found in salmonids and a Few other teleosts. Oogonia development in teleosts Fish varies according to the group, and the determination oF oogenesis dynamics allows the understanding oF maturation and Fertilization processes. Changes in the nucleus, ooplasm, and the surrounding layers characterize the oocyte maturation process.[52] Postovulatory follicles are structures Formed aFter oocyte release; they do not have endocrine Function, present a wide irregular lumen, and are rapidly reabsorbed in a process involving the apoptosis oF Follicular cells. -
Female Penis, Male Vagina, and Their Correlated Evolution in a Cave Insect
Please cite this article in press as: Yoshizawa et al., Female Penis, Male Vagina, and Their Correlated Evolution in a Cave Insect, Cur- rent Biology (2014), http://dx.doi.org/10.1016/j.cub.2014.03.022 Current Biology 24, 1–5, May 5, 2014 ª2014 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2014.03.022 Report Female Penis, Male Vagina, and Their Correlated Evolution in a Cave Insect Kazunori Yoshizawa,1,* Rodrigo L. Ferreira,2 We observed coupling in all Neotrogla species and found that Yoshitaka Kamimura,3 and Charles Lienhard4 the gynosome acts as an intromittent organ to receive volumi- 1Systematic Entomology, School of Agriculture, Hokkaido nous spermatophores from the male. As in most related taxa, University, Sapporo 060-8589, Japan including those having well-developed male genitalia (Fig- 2Biology Department, Federal University of Lavras, ure 1C) [8], the male is positioned under the female during copu- 37200-000 Lavras, MG, Brazil lation (Figure 1A). The apical sclerotized part of the gynosome, 3Department of Biology, Keio University, Yokohama 223-8521, bearing the opening of the spermathecal duct, deeply pene- Japan trates the male (Figures 2, 3, S2, and S3), and its tip fits the open- 4Natural History Museum of the City of Geneva, CP 6434, ing of the seminal duct (Figures 2D and 3C). The membranous 1211 Geneva 6, Switzerland part inflates within the male genital chamber, and numerous spines on the membrane internally anchor the female to the male (Figures 2B, 2E, 3A, 3D, and S2). In this position, the Summary male sternum is gripped between the female paraprocts and inflated gynosome (Figures 2B and 2C).