A Biological Switching Valve Evolved in the Female of a Sex-Role Reversed
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nuisance Insects and Climate Change
www.defra.gov.uk Nuisance Insects and Climate Change March 2009 Department for Environment, Food and Rural Affairs Nobel House 17 Smith Square London SW1P 3JR Tel: 020 7238 6000 Website: www.defra.gov.uk © Queen's Printer and Controller of HMSO 2007 This publication is value added. If you wish to re-use this material, please apply for a Click-Use Licence for value added material at http://www.opsi.gov.uk/click-use/value-added-licence- information/index.htm. Alternatively applications can be sent to Office of Public Sector Information, Information Policy Team, St Clements House, 2-16 Colegate, Norwich NR3 1BQ; Fax: +44 (0)1603 723000; email: [email protected] Information about this publication and further copies are available from: Local Environment Protection Defra Nobel House Area 2A 17 Smith Square London SW1P 3JR Email: [email protected] This document is also available on the Defra website and has been prepared by Centre of Ecology and Hydrology. Published by the Department for Environment, Food and Rural Affairs 2 An Investigation into the Potential for New and Existing Species of Insect with the Potential to Cause Statutory Nuisance to Occur in the UK as a Result of Current and Predicted Climate Change Roy, H.E.1, Beckmann, B.C.1, Comont, R.F.1, Hails, R.S.1, Harrington, R.2, Medlock, J.3, Purse, B.1, Shortall, C.R.2 1Centre for Ecology and Hydrology, 2Rothamsted Research, 3Health Protection Agency March 2009 3 Contents Summary 5 1.0 Background 6 1.1 Consortium to perform the work 7 1.2 Objectives 7 2.0 -
(Phthiraptera: Ischnocera), with an Overview of the Geographical Distribution of Chewing Lice Parasitizing Chicken
European Journal of Taxonomy 685: 1–36 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.685 www.europeanjournaloftaxonomy.eu 2020 · Gustafsson D.R. & Zou F. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:151B5FE7-614C-459C-8632-F8AC8E248F72 Gallancyra gen. nov. (Phthiraptera: Ischnocera), with an overview of the geographical distribution of chewing lice parasitizing chicken Daniel R. GUSTAFSSON 1,* & Fasheng ZOU 2 1 Institute of Applied Biological Resources, Xingang West Road 105, Haizhu District, Guangzhou, 510260, Guangdong, China. 2 Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong, China. * Corresponding author: [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:8D918E7D-07D5-49F4-A8D2-85682F00200C 2 urn:lsid:zoobank.org:author:A0E4F4A7-CF40-4524-AAAE-60D0AD845479 Abstract. The geographical range of the typically host-specific species of chewing lice (Phthiraptera) is often assumed to be similar to that of their hosts. We tested this assumption by reviewing the published records of twelve species of chewing lice parasitizing wild and domestic chicken, one of few bird species that occurs globally. We found that of the twelve species reviewed, eight appear to occur throughout the range of the host. This includes all the species considered to be native to wild chicken, except Oxylipeurus dentatus (Sugimoto, 1934). This species has only been reported from the native range of wild chicken in Southeast Asia and from parts of Central America and the Caribbean, where the host is introduced. -
Torix Rickettsia Are Widespread in Arthropods and Reflect a Neglected Symbiosis
GigaScience, 10, 2021, 1–19 doi: 10.1093/gigascience/giab021 RESEARCH RESEARCH Torix Rickettsia are widespread in arthropods and Downloaded from https://academic.oup.com/gigascience/article/10/3/giab021/6187866 by guest on 05 August 2021 reflect a neglected symbiosis Jack Pilgrim 1,*, Panupong Thongprem 1, Helen R. Davison 1, Stefanos Siozios 1, Matthew Baylis1,2, Evgeny V. Zakharov3, Sujeevan Ratnasingham 3, Jeremy R. deWaard3, Craig R. Macadam4,M. Alex Smith5 and Gregory D. D. Hurst 1 1Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK; 2Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK; 3Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada; 4Buglife – The Invertebrate Conservation Trust, Balallan House, 24 Allan Park, Stirling FK8 2QG, UK and 5Department of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario N1G 2W1, Canada ∗Correspondence address. Jack Pilgrim, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK. E-mail: [email protected] http://orcid.org/0000-0002-2941-1482 Abstract Background: Rickettsia are intracellular bacteria best known as the causative agents of human and animal diseases. Although these medically important Rickettsia are often transmitted via haematophagous arthropods, other Rickettsia, such as those in the Torix group, appear to reside exclusively in invertebrates and protists with no secondary vertebrate host. Importantly, little is known about the diversity or host range of Torix group Rickettsia. -
A New Genus and Species of Asiocoleidae (Coleoptera) From
ISRAEL JOURNAL OF ENTOMOLOGY, Vol. 50 (2), pp. 1–9 (21 July 2020) This contribution is published to honor Prof. Vladimir Chikatunov, a scientist, a colleague and a friend, on the occasion of his 80th birthday. The first finding of an asiocoleid beetle (Coleoptera: Asiocoleidae) in the Upper Permian Belmont Insect Beds, Australia, with descriptions of a new genus and species Aleksandr G. Ponomarenko1, Evgeny V. Yan1, Olesya D. Strelnikova1 & Robert G. Beattie2 1A.A. Borissiak Palaeontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia. E-mail: [email protected], [email protected], [email protected] 2The Australian Museum, 1 William Street, Sydney, New South Wales, 2010 Australia. E-mail: [email protected], [email protected] ABSTRACT A new genus and species of Archostematan beetles, Gondvanocoleus chikatunovi n. gen. & sp., is described from an isolated elytron from the Upper Permian Belmont locality in Australia. Gondvanocoleus n. gen. differs from other members of the family Asiocoleidae in having only one row of cells in the middle part of the elytral field 3 and in having unorganized cells not forming rows near the elytral apex. Further relationships of the new genus with other asiocoleids are discussed. The fossil record of the Asiocoleidae is briefly overviewed. KEYWORDS: Coleoptera, Archostemata, Asiocoleidae, beetles, new genus, new species, Permian, Lopingian, Australia, Gondwana, fossil record. РЕЗЮМЕ Новый род и вид жуков-архостемат, Gondvanocoleus chikatunovi n. gen. & sp., описаны по изолированному надкрылью из верхнепермского мес то нахождения Бельмонт в Австралии. Gondvanocoleus n. gen. отличается от остальных родов семейства Asiocoleidae присутствием только одного ряда ячей в средней части предшовного поля и не организованных в ряды ячей в апикальной части надкрылья. -
Molecular Systematics of the Suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’)
Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2006? 2006 146? •••• zoj_207.fm Original Article MOLECULAR SYSTEMATICS OF THE SUBORDER TROGIOMORPHA K. YOSHIZAWA ET AL. Zoological Journal of the Linnean Society, 2006, 146, ••–••. With 3 figures Molecular systematics of the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) KAZUNORI YOSHIZAWA1*, CHARLES LIENHARD2 and KEVIN P. JOHNSON3 1Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan 2Natural History Museum, c.p. 6434, CH-1211, Geneva 6, Switzerland 3Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820, USA Received March 2005; accepted for publication July 2005 Phylogenetic relationships among extant families in the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) 1 were inferred from partial sequences of the nuclear 18S rRNA and Histone 3 and mitochondrial 16S rRNA genes. Analyses of these data produced trees that largely supported the traditional classification; however, monophyly of the infraorder Psocathropetae (= Psyllipsocidae + Prionoglarididae) was not recovered. Instead, the family Psyllipso- cidae was recovered as the sister taxon to the infraorder Atropetae (= Lepidopsocidae + Trogiidae + Psoquillidae), and the Prionoglarididae was recovered as sister to all other families in the suborder. Character states previously used to diagnose Psocathropetae are shown to be plesiomorphic. The sister group relationship between Psyllipso- -
The Nestling Diet of Svalbard Snow Buntings Identified by DNA Metabarcoding
Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology The nestling diet of Svalbard snow buntings identified by DNA metabarcoding — Christian Stolz BIO-3950 Master thesis in Biology, Northern Populations and Ecosystems, May 2019 Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology The nestling diet of Svalbard snow buntings identified by DNA metabarcoding Christian Stolz, UiT The Arctic University of Norway, Tromsø, Norway and The University Centre in Svalbard (UNIS), Longyearbyen, Norway BIO-3950 Master Thesis in Biology, Northern Populations and Ecosystems, May 2018 Supervisors: Frode Fossøy, Norwegian Institute for Nature Research (NINA), Trondheim, Norway Øystein Varpe, The University Centre in Svalbard (UNIS), Longyearbyen, Norway Rolf Anker Ims, UiT The Arctic University of Norway, Tromsø, Norway i Abstract Tundra arthropods have considerable ecological importance as a food source for several bird species that are reproducing in the Arctic. The actual arthropod taxa comprising the chick diet are however rarely known, complicating assessments of ecological interactions. In this study, I identified the nestling diet of Svalbard snow bunting (Plectrophenax nivalis) for the first time. Faecal samples of snow bunting chicks were collected in Adventdalen, Svalbard in the breeding season 2018 and analysed via DNA metabarcoding. Simultaneously, the availability of prey arthropods was measured via pitfall trapping. The occurrence of 32 identified prey taxa in the nestling diet changed according to varying abundances and emergence patterns within the tun- dra arthropod community: Snow buntings provisioned their offspring mainly with the most abundant prey items which were in the early season different Chironomidae (Diptera) taxa and Scathophaga furcata (Diptera: Scathophagidae), followed by Spilogona dorsata (Diptera: Mus- cidae). -
Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten. -
Appl. Entomol. Zool. 45(1): 89-100 (2010)
Appl. Entomol. Zool. 45 (1): 89–100 (2010) http://odokon.org/ Mini Review Psocid: A new risk for global food security and safety Muhammad Shoaib AHMEDANI,1,* Naz SHAGUFTA,2 Muhammad ASLAM1 and Sayyed Ali HUSSNAIN3 1 Department of Entomology, University of Arid Agriculture, Rawalpindi, Pakistan 2 Department of Agriculture, Ministry of Agriculture, Punjab, Pakistan 3 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK (Received 13 January 2009; Accepted 2 September 2009) Abstract Post-harvest losses caused by stored product pests are posing serious threats to global food security and safety. Among the storage pests, psocids were ignored in the past due to unavailability of the significant evidence regarding quantitative and qualitative losses caused by them. Their economic importance has been recognized by many re- searchers around the globe since the last few years. The published reports suggest that the pest be recognized as a new risk for global food security and safety. Psocids have been found infesting stored grains in the USA, Australia, UK, Brazil, Indonesia, China, India and Pakistan. About sixteen species of psocids have been identified and listed as pests of stored grains. Psocids generally prefer infested kernels having some fungal growth, but are capable of excavating the soft endosperm of damaged or cracked uninfected grains. Economic losses due to their feeding are directly pro- portional to the intensity of infestation and their population. The pest has also been reported to cause health problems in humans. Keeping the economic importance of psocids in view, their phylogeny, distribution, bio-ecology, manage- ment and pest status have been reviewed in this paper. -
André Nel Sixtieth Anniversary Festschrift
Palaeoentomology 002 (6): 534–555 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY PE Copyright © 2019 Magnolia Press Editorial ISSN 2624-2834 (online edition) https://doi.org/10.11646/palaeoentomology.2.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:25D35BD3-0C86-4BD6-B350-C98CA499A9B4 André Nel sixtieth anniversary Festschrift DANY AZAR1, 2, ROMAIN GARROUSTE3 & ANTONIO ARILLO4 1Lebanese University, Faculty of Sciences II, Department of Natural Sciences, P.O. Box: 26110217, Fanar, Matn, Lebanon. Email: [email protected] 2State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. 3Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France. 4Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain. FIGURE 1. Portrait of André Nel. During the last “International Congress on Fossil Insects, mainly by our esteemed Russian colleagues, and where Arthropods and Amber” held this year in the Dominican several of our members in the IPS contributed in edited volumes honoring some of our great scientists. Republic, we unanimously agreed—in the International This issue is a Festschrift to celebrate the 60th Palaeoentomological Society (IPS)—to honor our great birthday of Professor André Nel (from the ‘Muséum colleagues who have given us and the science (and still) national d’Histoire naturelle’, Paris) and constitutes significant knowledge on the evolution of fossil insects a tribute to him for his great ongoing, prolific and his and terrestrial arthropods over the years. -
Psocoptera: Liposcelididae, Trogiidae)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2015 Evaluation of Potential Attractants for Six Species of Stored- Product Psocids (Psocoptera: Liposcelididae, Trogiidae) John Diaz-Montano USDA-ARS, [email protected] James F. Campbell USDA-ARS, [email protected] Thomas W. Phillips Kansas State University, [email protected] James E. Throne USDA-ARS, Manhattan, KS, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Diaz-Montano, John; Campbell, James F.; Phillips, Thomas W.; and Throne, James E., "Evaluation of Potential Attractants for Six Species of Stored- Product Psocids (Psocoptera: Liposcelididae, Trogiidae)" (2015). Publications from USDA-ARS / UNL Faculty. 2048. https://digitalcommons.unl.edu/usdaarsfacpub/2048 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. STORED-PRODUCT Evaluation of Potential Attractants for Six Species of Stored- Product Psocids (Psocoptera: Liposcelididae, Trogiidae) 1,2 1 3 JOHN DIAZ-MONTANO, JAMES F. CAMPBELL, THOMAS W. PHILLIPS, AND JAMES E. THRONE1,4 J. Econ. Entomol. 108(3): 1398–1407 (2015); DOI: 10.1093/jee/tov028 ABSTRACT Psocids have emerged as worldwide pests of stored commodities during the past two decades, and are difficult to control with conventional management tactics such as chemical insecticides. -
Classical Biological Control of Nodding and Plumeless Thistles
Biological Control 21, 206–213 (2001) doi:10.1006/bcon.2001.0940, available online at http://www.idealibrary.com on Classical Biological Control of Nodding and Plumeless Thistles L. T. Kok Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0319 Received March 15, 2001; accepted March 20, 2001; published online May 22, 2001 group. Both thistles are winter annuals or biennials. Nodding (musk) thistle (Carduus thoermeri Wein- Seeds produced in summer form rosettes which over- mann in the Carduus nutans L. group) and plumeless winter. The rosettes resume development in spring, thistle (Carduus acanthoides L.) are introduced nox- followed by stem elongation and flowering. Nodding ious weeds of Eurasian origin. Both weeds are prob- thistle was first recorded in 1853 at Harrisburg, Penn- lematic in pastures, rangelands, and croplands and sylvania (Stuckey and Forsyth, 1971) and has been along state highways in many parts of the United reported in 40 of the 48 contiguous states (Frick, 1978). States. The success of both species of thistles is largely Plumeless thistle first appeared in 1878 at Camden, due to their prolific seed production, seed longevity, New Jersey and in Ohio (Batra, 1978) and is found in competitive ability, and lack of natural enemies. Clas- sical biological control of nodding thistle in Virginia 19 states (Frick, 1978). The two thistle species often has been achieved with three exotic thistle herbivores, occupy the same habitats in the northeast, such as Rhinocyllus conicus Froelich (Coleoptera: Curculion- overgrazed pastures and disturbed roadsides, some- idae), Trichosirocalus horridus (Panzer) (Coleoptera: times occurring in mixed stands (Batra, 1978). -
New Insects Feeding on Dinosaur Feathers in Mid-Cretaceous Amber
ARTICLE https://doi.org/10.1038/s41467-019-13516-4 OPEN New insects feeding on dinosaur feathers in mid-Cretaceous amber Taiping Gao 1*, Xiangchu Yin2, Chungkun Shih1,3, Alexandr P. Rasnitsyn4,5, Xing Xu6,7, Sha Chen1, Chen Wang8 & Dong Ren 1* Due to a lack of Mesozoic fossil records, the origins and early evolution of feather-feeding behaviors by insects are obscure. Here, we report ten nymph specimens of a new lineage of 1234567890():,; insect, Mesophthirus engeli gen et. sp. nov. within Mesophthiridae fam. nov. from the mid- Cretaceous (ca. 100 Mya) Myanmar (Burmese) amber. This new insect clade shows a series of ectoparasitic morphological characters such as tiny wingless body, head with strong chewing mouthparts, robust and short antennae having long setae, legs with only one single tarsal claw associated with two additional long setae, etc. Most significantly, these insects are preserved with partially damaged dinosaur feathers, the damage of which was probably made by these insects’ integument-feeding behaviors. This finding demonstrates that feather- feeding behaviors of insects originated at least in mid-Cretaceous, accompanying the radiation of feathered dinosaurs including early birds. 1 College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, 105 Xisanhuanbeilu Haidian District, 100048 Beijing, China. 2 Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, 810008 Xining, China. 3 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA. 4 A. A. Borissiak Palaeontological Institute, Russian Academy of Sciences, Moscow, Russia 117647. 5 Natural History Museum, Cromwell Road, London SW7 5BD, UK.