1 GLOSSARY for the ECHINOIDEA the Echinoidea, Similar to Other

Total Page:16

File Type:pdf, Size:1020Kb

1 GLOSSARY for the ECHINOIDEA the Echinoidea, Similar to Other March 2011 Christina Ball Royal BC Museum Phil Lambert GLOSSARY FOR THE ECHINOIDEA The Echinoidea, similar to other echinoderm groups, have an ancient lineage dating back approximately 500 million years and includes the sea urchins, sand dollars and heart urchins. Today this globally distributed group comprises approximately 1000 species (Pearse et al. 2007). Nine species are known to occur in British Columbia (Lambert and Boutillier in press). Echinoids are found exclusively in the marine environment from the intertidal down into deep water and can be found on rocky, sandy or muddy substrates (Brusca and Brusca 1990). The echinoids have a variety of body shapes ranging from disc-like sand dollars to pyramidal deepwater species. While their morphology of the echinoids varies, the group shares several other characteristics. The echinoids have mutable collagenous tissue and a water vascular system. They also have a hard endoskeleton, called a test, that is made up of interlocking plates formed from fused ossicles. They have spines and pincher- like pedicellariae that attach to the outer surface of the test and a complex jaw structure called an Aristotle’s Lantern (Lambert and Austin 2007). There is also considerable colour variation within the Echinoidea. While colour can be a useful method for identifying otherwise similar species it is important to recognize that colour is a subjective trait. There can also be considerable colour variation within a species. Like all echinoderms the echinoids posses a unique tissue type called mutable collagenous tissue. This tissue can change rapidly, in less then a second to several minutes, from a rigid to a flaccid state. The change in physical state, from hard to soft or vice versa is not the result of muscle activation. Rather it is the result of chemical changes to the passive mechanical properties of the tissue itself. The current consensus is that in essence, mutable collagenous tissue is made up of discrete collagen fibrils that are organized into bundles (Wilkie 2002). Substances released by the juxtaligamental cells change the cohesion between the bundles causing the tissue to either harden or soften (Wilkie 2002). These changes are under the control of the nervous system. The water vascular system is a complex network of canals and reservoirs that uses hydraulic pressure and muscular action to operate the podia (Brusca and Brusca 1990). In echinoids the podia, or tube feet, are primarily used for locomotion, attachment and gas exchange (Brusca and Brusca 1990; Lambert and Austin 2007). The water vascular system opens to the surrounding sea water via a plate called the madreporite. The echinoids have a fairly obvious madreporite on the aboral surface. In all types of echinoid the hard test is formed from a series of interlocking plates that are themselves formed from fused calcareous ossicles. The two types of plates, ambulacral and interambulacral, run in longitudinal rows from the mouth to the anus. Rows of ambulacral plates alternate with rows of interambulacral plates. The ambulacral plates have small holes (pores) through which the tube feet extend (Brusca and Brusca 1990; Lambert and Austin 2007). The pores occur in pairs and the number and arrangement of the pore pairs is important for identifying specimens (figure 1). 1 March 2011 Christina Ball Royal BC Museum Phil Lambert On the outside of the test are tubercles to which the spines attach. At the center of the tubercle is a ball-like mamelon that is the articulation point for the spine. Mamelons may be either perforate (i.e. have a small hole in the middle) or not. The neck of the mamelon is either straight or undercut (Lambert and Austin 2007). A parapet surrounds the mamelon and can be either crenulated (i.e. wavy like a crown) or smooth and flat. Muscles surrounding each mamelon attach the spine to the test and control its movements. Both the tubercles and spines can be useful when identifying specimens. In cross section the spines are made up of a series of wedges (figure 1), the number of which is characteristic of a particular species. a b Figure 1. The arrangement of pore pairs in Strongylocentrotus franciscanus (a), and a cross section of a primary spine of S. fragilis showing the spine wedges (b. The echinoids also have pedicellariae, which attach to small tubercles on the outer surface of the test (Lambert and Austin 2007). The pedicellariae are used in defense, to clean debris off the surface of the test and to capture prey (Brusca and Brusca 1990; Lambert and Austin 2007). Pedicellariae are pincher- or jaw-like structures on flexible stalks (figure 2). There are three types of pedicellariae (ophicephalous, tridentate and globiferous, figure 2) and any given species might have two or more types. Within the different types of pedicellariae the shape of the three-part jaw and stalk can vary (Lambert and Austin 2007). The shape of the pedicellariae and its stalk can be important identifying features for some echinoids. Figure 2. Three types of echinoid pedicellariae: ophicephalous from Strongylocentrotus droebachiensis (a), tridentate from S. droebachiensis (b), tridentate from S. franciscanus (c), and globiferous from S. droebachiensis (d). Parts of a pedicellaria (e). 2 March 2011 Christina Ball Royal BC Museum Phil Lambert The mouth is located on the side of the test facing the substrate. The anus is located opposite the mouth in the urchins, but shifted posteriorly in the sand dollars and heart urchins (Pearse et al. 2007). The area surrounding the anus is termed the periproct. All of the Echinoidea have a complex jaw structure called an Aristotle’s Lantern. It is shaped like an old fashioned lantern and is made up of five teeth, muscles and levers. The ends of the teeth protrude from the mouth (Brusca and Brusca 1990; Lambert and Austin 2007; Pearse et al. 2007). The echinoids use these teeth to cut up food, rasp algae off of rocks, and to build burrows. a b c Figure 3. Morphology of a typical sand dollar (a), heart urchin (b), and sea urchin (c). Most of the echinoids have two separate, though outwardly indistinct, sexes (Brusca and Brusca 1990; Lambert and Austin 2007). The regular echinoids have five gonads each leading into its own gonoduct. The irregular echinoids (e.g. sand dollars and heart urchins) have four gonads and a corresponding number of gonoducts (Brusca and Brusca 1990). Each gonoduct leads to a gonopore (opening) on the genital plate. The genital plates are located on the aboral surface near the anus (Lambert and Austin 2007). Eggs and sperm are released from the gonads and exit through the gonopores into the water where the sperm fertilize the eggs (Brusca and Brusca 1990; Lambert and Austin 2007). While in the water column the embryo develops into a bilaterally symmetrical larva. After 4-6 weeks the larva undergoes metamorphosis into a tiny juvenile urchin and settles onto suitable habitat (Lambert and Austin 2007). As an 3 March 2011 Christina Ball Royal BC Museum Phil Lambert alternative strategy a few echinoids carry and brood their young between their spines (Brusca and Brusca 1990). The Echinoidea inhabit a range of trophic niches. Most urchins are omnivorous grazers and scavengers that scrape algae and encrusting animals off hard surfaces. For example the familiar Purple Urchin consumes kelp and algae as well as encrusting animals and detritus (Lambert and Austin 2007). Some species use their teeth to build burrows in hard substrates. The animals scrape algae off the sides of the burrow or catch algae that drifts into the burrow (Brusca and Brusca 1990). Most of the irregular echinoids are detritivores. Some irregular urchins burrow into soft sediment and feed on organic particles. These species usually use their tube feet to search the sediment for food particles that they then pass to their mouths (Durham et al. 1980; Lambert and Austin 2007). Sand dollars are characterized by a highly modified Aristotle’s Lantern with non-protractible teeth (Lambert and Austin 2007). Most sand dollars are detritivores and particulate feeders that pick-up food particles from the substrate and pass them with their tube feet to the mouth (Telford and Mooi 1996). While most sand dollars are detritivores and particulate feeders, a few suspension feeders exist. For example Dendraster excentricus, a common sand dollar in BC, catches diatoms and other small food particles with its tube feet and then passes the food to the mouth (Francisco and Herka 2010). It can also use its pedicellariae to catch tiny swimming crustaceans (Brusca and Brusca 1990). In calmer waters this species is usually found with the anterior portion of the body buried in the substrate and the rest of the body protruding out of the substrate at an angle. In rougher waters the species tend to lie flat on the ground (Durham et al. 1980; Francisco and Herka 2010). In turn echinoids are predated upon by sea otters, crows, gulls, large fish, sea stars and large crabs (Lambert and Austin 2007; Snellen et al. 2007). Humans are among the most effective predators of sea urchins and can dramatically decrease their populations (Pfister and Bradbury 1996; Lambert and Austin 2007). Some small animals are parasites on urchins. For example parasitic copepods use their mouthparts to pierce the skin and suck out body fluids (Lambert and Austin 2007). Other animals, such as tube worms, scale worms, ostracods and small shrimp often hiding among the spines of urchins. The echinoids exhibit some interesting behaviour. Many urchins use their tube feet to hold small stones, shells and other objects on top of themselves. The exact reason for this behaviour is uncertain, but it is thought that it could confer several benefits (Lambert and Austin 2007).
Recommended publications
  • Adhesion in Echinoderms
    Adhesion in echinoderms PATRICK FLAMMANG* Laboratoire de Biologie marine, Universite' de Mons-Hainaut, Mons, Belgium Final manuscript acceptance: August 1995 KEYWORDS: Adhesive properties, podia, larvae, Cuvierian tubules, Echinodermata. CONTENTS 1 Introduction 2 The podia 2.1 Diversity 2.2 Basic structure and function 2.3 Adhesivity 3 Other attachment mechanisms of echinoderms 3.1 Larval and postlarval adhesive structures 3.2 Cuvierian tubules 4 Comparison with other marine invertebrates 5 Conclusions and prospects Acknowledgements References 1 INTRODUCTION Marine organisms have developed a wide range of mechanisms allowing them to attach to or manipulate a substratum (Nachtigall 1974). Among 1 these mechanisms, one can distinguish between mechanical attachments (e.g. hooks or suckers) and chemical attachments (with adhesive sub- stances). The phylum Echinodermata is quite exceptional in that all its species, *Senior research assistant, National Fund for Scientific Research, Belgium. I whatever their life style, use attachment mechanisms. These mechanisms allow some of them to move, others to feed, and others to burrow in par- ticulate substrata. In echinoderms, adhesivity is usually the function of specialized structures, the podia or tube-feet. These podia are the exter- nal appendages of the arnbulacral system and are also probably the most advanced hydraulic structures in the animal kingdom. 2 THE PODIA From their presumed origin as simple respiratory evaginations of the am- bulacral system (Nichols 1962), podia have diversified into the wide range of specialized structures found in extant echinoderms. This mor- phological diversity of form reflects the variety of functions that podia perform (Lawrence 1987). Indeed, they take part in locomotion, burrow- ing, feeding, sensory perception and respiration.
    [Show full text]
  • Fertilization Selection on Egg and Jelly-Coat Size in the Sand Dollar Dendraster Excentricus
    Evolution, 55(12), 2001, pp. 2479±2483 FERTILIZATION SELECTION ON EGG AND JELLY-COAT SIZE IN THE SAND DOLLAR DENDRASTER EXCENTRICUS DON R. LEVITAN1,2 AND STACEY D. IRVINE2 1Department of Biological Science, Florida State University, Tallahassee, Florida 32306-1100 2Bam®eld Marine Station, Bam®eld, British Columbia VOR 1B0, Canada Abstract. Organisms with external fertilization are often sperm limited, and in echinoids, larger eggs have a higher probability of fertilization than smaller eggs. This difference is thought to be a result of the more frequent sperm- egg collisions experienced by larger targets. Here we report how two components of egg target size, the egg cell and jelly coat, contributed to fertilization success in a selection experiment. We used a cross-sectional analysis of correlated characters to estimate the selection gradients on egg and jelly-coat size in ®ve replicate male pairs of the sand dollar Dendraster excentricus. Results indicated that eggs with larger cells and jelly coats were preferentially fertilized under sperm limitation in the laboratory. The selection gradients were an average of 922% steeper for egg than for jelly- coat size. The standardized selection gradients for egg and jelly-coat size were similar. Our results suggest that fertilization selection can act on both egg-cell and jelly-coat size but that an increase in egg-cell volume is much more likely to increase fertilization success than an equal change in jelly-coat volume. The strengths of the selection gradients were inversely related to the correlation of egg traits across replicate egg clutches. This result suggests the importance of replication in studies of selection of correlated characters.
    [Show full text]
  • Developmental Effects of Predator Cues on Dendraster Excentricus Larvae
    Running head: Developmental Effects of Predator Cues on Dendraster excentricus Larvae Developmental Effects of Predator Cues on Dendraster excentricus Larvae: The Effects of Pugettia producta Effluent and Crustacean Dominant Plankton Effluent Claudia Mateo University of Washington Friday Harbor Laboratories Developmental Effects of Predator Cues on Dendraster excentricus Larvae Mateo 1 Abstract Previous findings supporting increased cloning in Dendraster excentricus (D. excentricus) larvae as a response to predator cues, in particular fish slime. Such findings report a “visual predator hypothesis”, suggesting that the larvae clone in order to become smaller and thereby avoid visual predators and possibly even non-visual predators. The experiment reported here builds upon earlier findings by studying the exposure of D. excentricus larvae to a kelp crab effluent (using Pugettia producta) and a crustacean dominant plankton effluent. Individual larvae were exposed to one of three treatments: the kelp crab effluent, plankton effluent, or filtered sea water, for approximately 66 hours. After this period, number of clones, number of larval arms, and the rudiment stage of each larvae was determined. Linear modeling showed significant results when comparing the kelp crab treatment to the control for cloning (p=0.024) and rudiment stage (p= 0.032); they also displayed significant differences for larval arm stage when comparing both the kelp crab effluent treatment (p= <0.001) and plankton effluent treatment (p= <0.001) to the control. These findings may support the visual predator theory, depending on whether D. excentricus larvae are able to differentiate predator cues, and, if so, to what specificity. Developmental Effects of Predator Cues on Dendraster excentricus Larvae Mateo 2 Introduction Dendraster excentricus (D.
    [Show full text]
  • SCAMIT Newsletter Vol. 22 No. 6 2003 October
    October, 2003 SCAMIT Newsletter Vol. 22, No. 6 SUBJECT: B’03 Polychaetes continued - Polycirrus spp, Magelonidae, Lumbrineridae, and Glycera americana/ G. pacifica/G. nana. GUEST SPEAKER: none DATE: 12 Jaunuary 2004 TIME: 9:30 a.m. to 3:30 p. m. LOCATION: LACMNH - Worm Lab SWITCHED AT BIRTH The reader may notice that although this is only the October newsletter, the minutes from the November meeting are included. This is not proof positive that time travel is possible, but reflects the mysterious translocation of minutes from the September meeting to a foster home in Detroit. Since the November minutes were typed and ready to go, rather than delay yet another newsletter during this time of frantic “catching up”, your secretary made the decision to go with what was available. Let me assure everyone that the September minutes will be included in next month’s newsletter. Megan Lilly (CSD) NOVEMBER MINUTES The October SCAMIT meeting on Piromis sp A fide Harris 1985 miscellaneous polychaete issues was cancelled Anterior dorsal view. Image by R. Rowe due to the wildfire situation in Southern City of San Diego California. It has been rescheduled for January ITP Regional 2701 rep. 1, 24July00, depth 264 ft. The SCAMIT Newsletter is not deemed to be a valid publication for formal taxonomic purposes. October, 2003 SCAMIT Newsletter Vol. 22, No. 6 12th. The scheduled topics remain: 1) made to accommodate all expected Polycirrus spp, 2) Magelonidae, 3) participants. If you don’t have his contact Lumbrineridae, and 4) Glycera americana/G. information, RSVP to Secretary Megan Lilly at pacifica/G.
    [Show full text]
  • X-Ray Microct Study of Pyramids of the Sea Urchin Lytechinus Variegatus
    Journal of Structural Biology Journal of Structural Biology 141 (2003) 9–21 www.elsevier.com/locate/yjsbi X-ray microCT study of pyramids of the sea urchin Lytechinus variegatus S.R. Stock,a,* S. Nagaraja,b J. Barss,c T. Dahl,c and A. Veisc a Institute for Bioengineering and Nanoscience in Advanced Medicine, Northwestern University, 303 E. Chicago Avenue, Tarry 16-717, Chicago, IL 60611-3008, USA b School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA c Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA Received 19 June 2002, and in revised form 23 September 2002 Abstract This paper reports results of a novel approach, X-ray microCT, for quantifying stereom structures applied to ossicles of the sea urchin Lytechinus variegatus. MicroCT, a high resolution variant of medical CT (computed tomography), allows noninvasive mapping of microstructure in 3-D with spatial resolution approaching that of optical microscopy. An intact pyramid (two demi- pyramids, tooth epiphyses, and one tooth) was reconstructed with 17 lm isotropic voxels (volume elements); two individual demipyramids and a pair of epiphyses were studied with 9–13 lm isotropic voxels. The cross-sectional maps of a linear attenuation coefficient produced by the reconstruction algorithm showed that the structure of the ossicles was quite heterogeneous on the scale of tens to hundreds of micrometers. Variations in magnesium content and in minor elemental constitutents could not account for the observed heterogeneities. Spatial resolution was insufficient to resolve the individual elements of the stereom, but the observed values of the linear attenuation coefficient (for the 26 keV effective X-ray energy, a maximum of 7.4 cmÀ1 and a minimum of 2cmÀ1 away from obvious voids) could be interpreted in terms of fractions of voxels occupied by mineral (high magnesium calcite).
    [Show full text]
  • DNA Variation and Symbiotic Associations in Phenotypically Diverse Sea Urchin Strongylocentrotus Intermedius
    DNA variation and symbiotic associations in phenotypically diverse sea urchin Strongylocentrotus intermedius Evgeniy S. Balakirev*†‡, Vladimir A. Pavlyuchkov§, and Francisco J. Ayala*‡ *Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525; †Institute of Marine Biology, Vladivostok 690041, Russia; and §Pacific Research Fisheries Centre (TINRO-Centre), Vladivostok, 690600 Russia Contributed by Francisco J. Ayala, August 20, 2008 (sent for review May 9, 2008) Strongylocentrotus intermedius (A. Agassiz, 1863) is an economically spines of the U form are relatively short; the length, as a rule, does important sea urchin inhabiting the northwest Pacific region of Asia. not exceed one third of the radius of the testa. The spines of the G The northern Primorye (Sea of Japan) populations of S. intermedius form are longer, reaching and frequently exceeding two thirds of the consist of two sympatric morphological forms, ‘‘usual’’ (U) and ‘‘gray’’ testa radius. The testa is significantly thicker in the U form than in (G). The two forms are significantly different in morphology and the G form. The morphological differences between the U and G preferred bathymetric distribution, the G form prevailing in deeper- forms of S. intermedius are stable and easily recognizable (Fig. 1), water settlements. We have analyzed the genetic composition of the and they are systematically reported for the northern Primorye S. intermedius forms using the nucleotide sequences of the mitochon- coast region (V.A.P., unpublished data). drial gene encoding the cytochrome c oxidase subunit I and the Little is known about the population genetics of S. intermedius; nuclear gene encoding bindin to evaluate the possibility of cryptic the available data are limited to allozyme polymorphisms (4–6).
    [Show full text]
  • Echinodermata: Echinoidea) and Other New Records from the Early Paleocene Bruderndorf Formation in Austria 309-325
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2004 Band/Volume: 106A Autor(en)/Author(s): Kroh Andreas Artikel/Article: Cottreaucorys kollmanni n. sp. (Echinodermata: Echinoidea) and other new records from the Early Paleocene Bruderndorf Formation in Austria 309-325 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 106 A 309–325 Wien, November 2004 Cottreaucorys kollmanni n. sp. (Echinodermata: Echinoidea) and other new records from the Early Paleocene Bruderndorf Formation in Austria By Andreas KROH1 (With 3 textfigures and 2 plates) Manuscript submitted on 8 March 2004, the revised manuscript on 6 May 2004 Zusammenfassung Diese Arbeit stellt eine Ergänzung zur Revision der Echinidenfauna des Oberen Danium der Bruderndorf- Formation (Waschberg Zone, nordöstliches Österreich; siehe KROH 2001) dar. Cottreaucorys kollmanni n. sp., eine neuer Vertreter der Aeropsidae, einer Gruppe von seltenen Tiefwasser-Spatangiden, wird be- schrieben. Weiters konnten die Arten Procassidulus cf. elongatus und Galeaster bertrandi erstmals aus Österreich nachgewiesen werden. Zusätzlich wird neues, besser erhaltenes Material von Adelopneustes montainvillensis und Linthia houzeaui abgebildet, Arten die ursprünglich anhand von relativ schlecht er- haltenem Material nachgewiesen wurden. Schlüsselwörter: Echinoidea, Echinodermata, Danium, Paläogen, Österreich, Cottreaucorys kollmanni n. sp. Abstract This paper concerns additional new records of echinoids from the Late Danian Bruderndorf Formation out- cropping in the Waschberg Zone in North-eastern Austria. Cottreaucorys kollmanni n.sp. is established for a new small aeropsid, a group of rare deep-water spatangoids. Furthermore, the species Procassidulus cf. elongatus and Galeaster bertrandi are recorded for the first time from Austria.
    [Show full text]
  • Absurdaster, a New Genus of Basal Atelostomate from the Early Cretaceous of Europe and Its Phylogenetic Positionq
    Cretaceous Research 48 (2014) 235e249 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Absurdaster, a new genus of basal atelostomate from the Early Cretaceous of Europe and its phylogenetic positionq Andreas Kroh a,*, Alexander Lukeneder a, Jaume Gallemí b a Naturhistorisches Museum Wien, Burgring 7, 1010 Vienna, Austria b Museu de Geologia-Museu de Ciències Naturals de Barcelona, Parc de la Ciutadella s/n, 08003 Barcelona, Spain article info abstract Article history: Field work in the Lower Cretaceous of the Dolomites (Italy) has resulted in the recovery of a new genus of Received 16 August 2013 ‘disasteroid’ echinoid, which successively was also discovered in slightly older strata in Northern Accepted in revised form 29 November 2013 Hungary. This new genus, Absurdaster, is characterized by its highly modified, disjunct apical disc in Available online which all genital plate except genital plate 2 are reduced or fused. The gonopores (which may be multiple) have shifted and pierce interambulacral plates. Anteriorly ambulacrum III is distinctly sunken Keywords: and forms a distinct frontal notch, while the posterior end is pointed and features a small sharply defined Echinoidea posterior face bearing the periproct. Basal atelostomates Hauterivian Two new species are established: Absurdaster puezensis sp. nov. from the Upper Hauterivian to Lower Berriasian Barremian Puez Formation of Northern Italy is characterized by its rudimentary ambulacral pores in the Dolomites paired ambulacra, high hexagonal ambulacral plates aborally and multiple gonopores in the most Italy adapical plates of interambulacral columns 1b and 4a. Absurdaster hungaricus sp. nov. from the Lower Hungary Hauterivian Bersek Marl Formation of Northern Hungary, in contrast, shows circumflexed ambulacral Echinoid fascioles pores, low ambulacral plates, a single gonopore each in the most adapical plates of interambulacral New taxa columns 1b and 4a and a flaring posterior end, with sharp margin and invaginated periproct.
    [Show full text]
  • Modèles De Distribution Et Changements Environnementaux : Application Aux Faunes D’Échinides De L’Océan Austral Et Écorégionalisation Salome Fabri-Ruiz
    Modèles de distribution et changements environnementaux : Application aux faunes d’échinides de l’océan Austral et écorégionalisation Salome Fabri-Ruiz To cite this version: Salome Fabri-Ruiz. Modèles de distribution et changements environnementaux : Application aux faunes d’échinides de l’océan Austral et écorégionalisation. Biodiversité et Ecologie. Université Bour- gogne Franche-Comté; Université libre de Bruxelles (1970-..), 2018. Français. NNT : 2018UBFCK070. tel-02063427 HAL Id: tel-02063427 https://tel.archives-ouvertes.fr/tel-02063427 Submitted on 11 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE BOURGOGNE FRANCHE-COMTÉ École Doctorale n°554 – Environnement Santé UNIVERSITÉ LIBRE DE BRUXELLES Faculté des Sciences THÈSE DE DOCTORAT EN SCIENCE DE LA VIE 2018 Salomé Fabri-Ruiz Modèles de distribution et changements environnementaux : Application aux faunes d’échinides de l’océan Austral et écorégionalisation Sous la direction de Thomas Saucède et de Bruno Danis 1 2 Modèles de distribution et changements environnementaux
    [Show full text]
  • Parks Victoria Technical Series No
    Deakin Research Online This is the published version: Barton, Jan, Pope, Adam and Howe, Steffan 2012, Marine protected areas of the Flinders and Twofold Shelf bioregions Parks Victoria, Melbourne, Vic. Available from Deakin Research Online: http://hdl.handle.net/10536/DRO/DU:30047221 Reproduced with the kind permission of the copyright owner. Copyright: 2012, Parks Victoria. Parks Victoria Technical Paper Series No. 79 Marine Natural Values Study (Vol 2) Marine Protected Areas of the Flinders and Twofold Shelf Bioregions Jan Barton, Adam Pope and Steffan Howe* School of Life & Environmental Sciences Deakin University *Parks Victoria August 2012 Parks Victoria Technical Series No. 79 Flinders and Twofold Shelf Bioregions Marine Natural Values Study EXECUTIVE SUMMARY Along Victoria’s coastline there are 30 Marine Protected Areas (MPAs) that have been established to protect the state’s significant marine environmental and cultural values. These MPAs include 13 Marine National Parks (MNPs), 11 Marine Sanctuaries (MSs), 3 Marine and Coastal Parks, 2 Marine Parks, and a Marine Reserve, and together these account for 11.7% of the Victorian marine environment. The highly protected Marine National Park System, which is made up of the MNPs and MSs, covers 5.3% of Victorian waters and was proclaimed in November 2002. This system has been designed to be representative of the diversity of Victoria’s marine environment and aims to conserve and protect ecological processes, habitats, and associated flora and fauna. The Marine National Park System is spread across Victoria’s five marine bioregions with multiple MNPs and MSs in each bioregion, with the exception of Flinders bioregion which has one MNP.
    [Show full text]
  • Biodiversidad De Los Equinodermos (Echinodermata) Del Mar Profundo Mexicano
    Biodiversidad de los equinodermos (Echinodermata) del mar profundo mexicano Francisco A. Solís-Marín,1 A. Laguarda-Figueras,1 A. Durán González,1 A.R. Vázquez-Bader,2 Adolfo Gracia2 Resumen Nuestro conocimiento de la diversidad del mar profundo en aguas mexicanas se limita a los escasos estudios existentes. El número de especies descritas es incipiente y los registros taxonómicos que existen provienen sobre todo de estudios realizados por ex- tranjeros y muy pocos por investigadores mexicanos, con los cuales es posible conjuntar algunas listas faunísticas. Es importante dar a conocer lo que se sabe hasta el momen- to sobre los equinodermos de las zonas profundas de México, información básica para diversos sectores en nuestro país, tales como los tomadores de decisiones y científicos interesados en el tema. México posee hasta el momento 643 especies de equinoder- mos reportadas en sus aguas territoriales, aproximadamente el 10% del total de las especies reportadas en todo el planeta (~7,000). Según los registros de la Colección Nacional de Equinodermos (ICML, UNAM), la Colección de Equinodermos del “Natural History Museum, Smithsonian Institution”, Washington, DC., EUA y la bibliografía revisa- 1 Colección Nacional de Equinodermos “Ma. E. Caso Muñoz”, Laboratorio de Sistemá- tica y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México (UNAM). Apdo. Post. 70-305, México, D. F. 04510, México. 2 Laboratorio de Ecología Pesquera de Crustáceos, Instituto de Ciencias del Mar y Lim- nología (ICML), (UNAM), Apdo. Postal 70-305, México D. F., 04510, México. 215 da, existen 348 especies de equinodermos que habitan las aguas profundas mexicanas (≥ 200 m) lo que corresponde al 54.4% del total de las especies reportadas para el país.
    [Show full text]
  • Geology and Biology of North Atlantic Deep-Sea Cores
    If :you do not need this publication after it has served your purpose, please return it to the Geological Surve:y, using the official mailing label at the end II UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGY AND BIOLOGY OF NORTH ATLANTIC DEEP-SEA CORES Part 5. MOLLUSCA Part 6. ECHINODERMATA Part 7. MISCELLANEOUS FOSSILS AND SIGNIFICANCE OF FAUNAL DISTRIBUTION GEOLOGICAL SURVEY PROFESSIONAL PAPER 196-D UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director Professional Paper 196-D GEOLOGY AND BIOLOGY OF NORTH ATLANTIC DEEP-SEA CORES BETWEEN NEWFOUNDLAND AND IRELAND PART 5. MOLLUSCA By HARALD A. REHDER PART 6. ECHINODERMATA By AusTIN H. CLARK PART 7. MISCELLANEOUS FOSSILS AND SIGNIFICANCE OF FAUNAL DISTRIBUTION By LLOYD G. HENBEST UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1942 For sale by the Supel"intendent of Documents, Washington, D. C. - ---- Price 30 cents CONTENTS Page .Page Outline of the complete report _______________________ _ v- Association of the species on the present ocean Summary of the complete ~eport _____________________ _ VI bottom---------------~---------------------- 116 Foreword, by C. S. Piggot_ _________________________ _ "1 Relation of species to distance below top of core ___ _ 117 General introduction, by W. H. Bradley ______________ _ XIII Part. 7. Miscellaneous fossils and significance of faunal Significance of the investigation _________________ _ XIII distribution, by Lloyd (}. HenbesL _________ _ 119 Location of the core stations ____________________ _ XIV Introduction __________________________________ _ 119 Personnel and composition of the report __________ _ XIV Methods of preparation and study _______________ _ 119' Methods of sampling and examination ____________ _ XIV Notes on the groups of fossils ___________________ .
    [Show full text]