Geology and Biology of North Atlantic Deep-Sea Cores

Total Page:16

File Type:pdf, Size:1020Kb

Geology and Biology of North Atlantic Deep-Sea Cores If :you do not need this publication after it has served your purpose, please return it to the Geological Surve:y, using the official mailing label at the end II UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGY AND BIOLOGY OF NORTH ATLANTIC DEEP-SEA CORES Part 5. MOLLUSCA Part 6. ECHINODERMATA Part 7. MISCELLANEOUS FOSSILS AND SIGNIFICANCE OF FAUNAL DISTRIBUTION GEOLOGICAL SURVEY PROFESSIONAL PAPER 196-D UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director Professional Paper 196-D GEOLOGY AND BIOLOGY OF NORTH ATLANTIC DEEP-SEA CORES BETWEEN NEWFOUNDLAND AND IRELAND PART 5. MOLLUSCA By HARALD A. REHDER PART 6. ECHINODERMATA By AusTIN H. CLARK PART 7. MISCELLANEOUS FOSSILS AND SIGNIFICANCE OF FAUNAL DISTRIBUTION By LLOYD G. HENBEST UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1942 For sale by the Supel"intendent of Documents, Washington, D. C. - ---- Price 30 cents CONTENTS Page .Page Outline of the complete report _______________________ _ v- Association of the species on the present ocean Summary of the complete ~eport _____________________ _ VI bottom---------------~---------------------- 116 Foreword, by C. S. Piggot_ _________________________ _ "1 Relation of species to distance below top of core ___ _ 117 General introduction, by W. H. Bradley ______________ _ XIII Part. 7. Miscellaneous fossils and significance of faunal Significance of the investigation _________________ _ XIII distribution, by Lloyd (}. HenbesL _________ _ 119 Location of the core stations ____________________ _ XIV Introduction __________________________________ _ 119 Personnel and composition of the report __________ _ XIV Methods of preparation and study _______________ _ 119' Methods of sampling and examination ____________ _ XIV Notes on the groups of fossils ___________________ . 120 Part 5. Mollusca, by Harald A. Rehder ______________ _ 107 Barnacles _________________________________ _ 120 Introduction __________________________________ _ 107 Brachiopoda ______________________________ _ 120 Description of species __________________________ _ 107 Bryozoa __________________________________ _ 120 Pelecypoda _______________________________ _ 107 Diatomaceae ______________________________ _ 121 ctastropoda _______________________________ _ 108 Echinodermata ____________________________ _ 121 Archaeogastropoda ________________ ~----- 108 Foraminifera ______________________________ _ 121 Pteropoda ____________________________ _ 108 Otoliths __________________________________ _ 122 Miscellaneous pelecypods and gastropods _____ _ 108 Ostracoda _________________________________ _ 122 Significance of Mollusca ________________________ _ 108 Pteropoda ________________________________ _ 122 Part 6. Echinodermata, by Austin H. Clark ___________ _ 111 Radiolaria ________________________________ _ 123 Introduction __________________________________ _ 111 Shell-boring organism _______- _______________ _ ·123 Species represented in the cores __________________ _ 111 Siliceous sponge spicules ____________________ _ 123 Annotated list of species ________________________ _ 111 Miscellaneous _____________________________ _ 123 Occurrence of species by cores ___________________ _ 115 Use of fossils as indicators of depth ______________ _ 124 Relative frequency of the species ____________ _ 115 Significance of distribution relative to hypotheses of Distribution of species by cores ______________ _ 116 extreme changes in ocean leveL _______________ _ 125 Bathymetric anomalies ________ ~ ________________ _ 116 Index------------------------------------~-------- XVII ILLUSTRATIONS Page PLATE 1. Bathymetric chart of a part of the North Atlantic Ocean showing the location of the core stations______________ xv 2. Longitudinal sections of the air-dried cores_______________________________________________________________ xv 20. Chart showing the distribution of the species of echinoderms in the cores____________________________________ 114 21. Chart showing the distribution and relative abundance of the miscellaneous organisms in the cores______________ 122 22-23. Miscellaneous fossils from the North Atlantic deep-sea cores____________________________________________ 131-133 FIGURE 1. Profile across the North Atlantic Ocean bottom along the line of the numbered core stations___________________ xrv TABLES TABLE 1. Geographic location, length of cores, and depth of the water from which they were taken______________________ XIV 19. Distribution of fragments of Ophiocten sericeum in the cores________________________________________________ 112 20. Distribution of fragments of Echinus affinis in the cores ___________________ ,_______________________________ 112 21. Distribution of fragments of Plexechinus hirsutus in the cores______________________________________________ 113 22. Distribution of fragments of Urechinus naresianus inthe cores_____________________________________________ 113 23. Distribution of fragments of Pourtalesia miranda in the cores______________________________________________ 114 24. Distribution of fragments of Aeropsis rostrata in the cores_________________________________________________ 114 25. Distribution of fragments of Aceste bellidifera in the cores__________________________________________________ 115 26. Distribution of fragments of Hemiaster expergitus in the cores _____________________________________________ .. 115 27. Distribution of the echinoderm species represented in the cores_____________________________________________ 116 28. Number of samples containing echinoderm remains and number of species represented_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 116 29. Relation of echinoderm species to distance below the top of the core_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 117 III OUTLINE OF THE COMPLETE REPORT Foreword, by C. S. Piggot. Gener~l introduction, by W. H. Bradley. PART 1. Lithology and geologic interpretations, by M. N. Bramlette and W. H. Bradley. 2. Foraminifera, by Joseph A. Cushman and Lloyd G. Henbest. 3. Diatomaceae, by Kenneth E. Lohman. 4. Ostracoda, by Willis L. Tressler. 5. Mollusca, by Harald A. Rehder. 6. Echinodermata, by Austin H. Clark. 7. Miscellaneous fossils and significance of faunal distribution, by Lloyd G. Henbest. 8. Organic matter content, by Parker D. Trask, H. Whitman Patnode, Jesse LeRoy Stimson, and John R. Gay. 9. Selenium content and chemical analyses, by Glen Edgington and H. G. Byers. v -.- .. ~ ~-· ·, ;r,; SUMMARY OF THE REPORT ln May and June 1936 Dr. C. S. Piggot of the Geophysical zone has been identified. Other glacial marine deposits are Laboratory, Carnegie Institution of Washington, took a series recognizable but their correlation is less certain. of 11 deep-sea cores in the North Atlantic Ocean between the Three interpretations are offered as possible explanations of N ewfounqland bankf! and the banks off the Irish coast. These the four glacial marine zones. The first is that each glacial cores were taken from the Western Union Telegraph Co.'s cable marine zone represents a distinct glacial stage of the Pleistocene ship Lord Kehin with the explosive type of sounding device and that each zone of foraminiferal marl separating two glacial which Dr. Piggot designed. In the· fall of that year he invited a marine zones represents an interglacial stage. This inte~preta­ group of geologists of the United States Geological Survpy to tion seems least probable of the three. The second interpretation study the cores and prepare a report. Biologists of the United is that the upper two glacial marine zones and the intervening States National Museum, the University of Buffalo, and chem­ sediment may correspond to the bipartite Wisconsin stage, ists of the United States Department of Agriculture cooperated whereas the lower two represent distinct glacial stages of the in the investigation and contributed to the report. Pleistocene separated from each other and from the zone repre­ The westernmost core of the series (No. 3) was taken in the senting the Wisconsin stage by sediments that represent inter­ blue mud zone, but all the others were taken in parts of the ocean glacial epochs no greater in length than postglacial time. This where the bottom is blanketed with globigerina ooze. The interpretation seems to imply too short a time for most of the shortest cores are No. 8, taken on the mid-Atlantic ridge in 1,280 Pleistocene epoch. The third interpretation, which is favored meters of wat.er, and No. 11, taken where the c01e bit struck by the authors, is that each of the four glacial marine zones volcanic rock. The cores range in length from 0.34 to 2.93 represents only a substage of the Wisconsin stage. This implies meters and average 2.35 meters. They were taken at depths that the North Atlantic at approximately 50° north latitude for ranging from 1,280 to 4,820 meters. comparatively long periods of time alternately contained an Lithology and geologic interpretaticns.-In about 20 representa­ abundance of drift ice and then was quite, or nearly free of ice, tive samples from each core the percentages of calcium carbonate, while on land a continental ice sheet persisted, though it alter­ clay and silt, and sand were determined and plotted, and the nately waned and grew. relative abundance of Foraminifera, coccoliths,· a11d diatoms was In the four cores in which the postglacial sediments are estimated. Material between these guide samples was examined thickest the pelagic Foraminifera, according
Recommended publications
  • Marc Slattery University of Mississippi Department of Pharmacognosy School of Pharmacy Oxford, MS 38677-1848 (662) 915-1053 [email protected]
    Marc Slattery University of Mississippi Department of Pharmacognosy School of Pharmacy Oxford, MS 38677-1848 (662) 915-1053 [email protected] EDUCATION: Ph.D. Biological Sciences. University of Alabama at Birmingham (1994); Doctoral Dissertation: A comparative study of population structure and chemical defenses in the soft corals Alcyonium paessleri May, Clavularia frankliniana Roule, and Gersemia antarctica Kukenthal in McMurdo Sound, Antarctica. M.A. Marine Biology. San Jose State University at the Moss Landing Marine Laboratories (1987); Masters Thesis: Settlement and metamorphosis of red abalone (Haliotis rufescens) larvae: A critical examination of mucus, diatoms, and γ-aminobutyric acid (GABA) as inductive substrates. B.S. Biology. Loyola Marymount University (1981); Senior Thesis: The ecology of sympatric species of octopuses (Octopus fitchi and O. diguetti) at Coloraditos, Baja Ca. RESEARCH INTERESTS: Chemical defenses/natural products chemistry of marine & freshwater invertebrates, and microbes. Evolutionary ecology, and ecophysiological adaptations of organisms in aquatic communities; including coral reef, cave, sea grass, kelp forest, and polar ecosystems. Chemical signals in reproductive biology and larval ecology/recruitment, and their applications to aquaculture and biomedical sciences. Cnidarian, Sponge, Molluscan, and Echinoderm biology/ecology, population structure, symbioses and photobiological adaptations. Marine microbe competition and culture. Environmental toxicology. EMPLOYMENT: Professor of Pharmacognosy and
    [Show full text]
  • Echinodermata: Echinoidea) and Other New Records from the Early Paleocene Bruderndorf Formation in Austria 309-325
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2004 Band/Volume: 106A Autor(en)/Author(s): Kroh Andreas Artikel/Article: Cottreaucorys kollmanni n. sp. (Echinodermata: Echinoidea) and other new records from the Early Paleocene Bruderndorf Formation in Austria 309-325 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 106 A 309–325 Wien, November 2004 Cottreaucorys kollmanni n. sp. (Echinodermata: Echinoidea) and other new records from the Early Paleocene Bruderndorf Formation in Austria By Andreas KROH1 (With 3 textfigures and 2 plates) Manuscript submitted on 8 March 2004, the revised manuscript on 6 May 2004 Zusammenfassung Diese Arbeit stellt eine Ergänzung zur Revision der Echinidenfauna des Oberen Danium der Bruderndorf- Formation (Waschberg Zone, nordöstliches Österreich; siehe KROH 2001) dar. Cottreaucorys kollmanni n. sp., eine neuer Vertreter der Aeropsidae, einer Gruppe von seltenen Tiefwasser-Spatangiden, wird be- schrieben. Weiters konnten die Arten Procassidulus cf. elongatus und Galeaster bertrandi erstmals aus Österreich nachgewiesen werden. Zusätzlich wird neues, besser erhaltenes Material von Adelopneustes montainvillensis und Linthia houzeaui abgebildet, Arten die ursprünglich anhand von relativ schlecht er- haltenem Material nachgewiesen wurden. Schlüsselwörter: Echinoidea, Echinodermata, Danium, Paläogen, Österreich, Cottreaucorys kollmanni n. sp. Abstract This paper concerns additional new records of echinoids from the Late Danian Bruderndorf Formation out- cropping in the Waschberg Zone in North-eastern Austria. Cottreaucorys kollmanni n.sp. is established for a new small aeropsid, a group of rare deep-water spatangoids. Furthermore, the species Procassidulus cf. elongatus and Galeaster bertrandi are recorded for the first time from Austria.
    [Show full text]
  • The Phylogenetic Position and Taxonomic Status of Sterechinus Bernasconiae Larrain, 1975 (Echinodermata, Echinoidea), an Enigmatic Chilean Sea Urchin
    Polar Biol DOI 10.1007/s00300-015-1689-9 ORIGINAL PAPER The phylogenetic position and taxonomic status of Sterechinus bernasconiae Larrain, 1975 (Echinodermata, Echinoidea), an enigmatic Chilean sea urchin 1 2,3 1 4 Thomas Sauce`de • Angie Dı´az • Benjamin Pierrat • Javier Sellanes • 1 5 3 Bruno David • Jean-Pierre Fe´ral • Elie Poulin Received: 17 September 2014 / Revised: 28 March 2015 / Accepted: 31 March 2015 Ó Springer-Verlag Berlin Heidelberg 2015 Abstract Sterechinus is a very common echinoid genus subclade and a subclade composed of other Sterechinus in benthic communities of the Southern Ocean. It is widely species. The three nominal species Sterechinus antarcticus, distributed across the Antarctic and South Atlantic Oceans Sterechinus diadema, and Sterechinus agassizi cluster to- and has been the most frequently collected and intensively gether and cannot be distinguished. The species Ster- studied Antarctic echinoid. Despite the abundant literature echinus dentifer is weakly differentiated from these three devoted to Sterechinus, few studies have questioned the nominal species. The elucidation of phylogenetic rela- systematics of the genus. Sterechinus bernasconiae is the tionships between G. multidentatus and species of Ster- only species of Sterechinus reported from the Pacific echinus also allows for clarification of respective Ocean and is only known from the few specimens of the biogeographic distributions and emphasizes the putative original material. Based on new material collected during role played by biotic exclusion in the spatial distribution of the oceanographic cruise INSPIRE on board the R/V species. Melville, the taxonomy and phylogenetic position of the species are revised. Molecular and morphological analyses Keywords Sterechinus bernasconiae Gracilechinus Á show that S.
    [Show full text]
  • RESEARCH REPORT 2OO9-2O1O DIVISION of HEALTH SCIENCES Research Report 2OO9-2O1O DIVISION of HEALTH SCIENCES
    RESEARCH REPORT 2OO9-2O1O DIVISION OF HEALTH SCIENCES RESEARCH REPORT 2OO9-2O1O DIVISION OF HEALTH SCIENCES Cover photo: Divisional winners of some of New Zealand’s most prestigious science awards in 2009 and 2010. From left to right: Professor Frank Griffin, Department of Microbiology and Immunology, 2010 Pickering Medal, Royal Society of New Zealand, Professor Warren Tate, Department of Biochemistry, 2010 Rutherford Medal, Royal Society of New Zealand, Professor Allan Herbison, Department of Physiology, 2009 Liley Medal, HRC. Professor Richie Poulton, Dunedin Multidisciplinary Health and Development Research Unit, 2010 Dame Joan Metge Medal, Royal Society of New Zealand, Absent: Professor Stephen Robertson, Department of Women’s and Children’s Health. 2010 Liley Medal, HRC. Division of HEALTH sCiEnCEs 1 FROM THE PRO-VICE-CHANCELLOR Tënä koutou kätoa. It is a great pleasure to present this report of the research activities of the Division of Health Sciences at the University of Otago for 2009-2010. The Division has an enviable reputation for research excellence and innovation and the achievements reported here reflect this. Our research helps to save lives and reduce suffering, and addresses health inequalities in New Zealand and around the world. The Division has had another two very successful years, as measured by the award of competitive research grants, by publications in highly esteemed journals, and by awards for distinction in research. Our researchers secured over $136 million in external research grants in 2009 and 2010 – a considerable achievement in what has become an increasingly competitive funding environment. The number of research outputs has continued to increase annually with many articles appearing in the world’s most prestigious journals.
    [Show full text]
  • Large-Scale Distribution Analysis of Antarctic Echinoids Using Ecological Niche Modelling
    Vol. 463: 215–230, 2012 MARINE ECOLOGY PROGRESS SERIES Published August 30 doi: 10.3354/meps09842 Mar Ecol Prog Ser Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling Benjamin Pierrat1,*, Thomas Saucède1, Rémi Laffont1, Chantal De Ridder2, Alain Festeau1, Bruno David1 1Biogéosciences, UMR CNRS 6282, Université de Bourgogne, 21000 Dijon, France 2Laboratoire de Biologie Marine (CP 160/15), Université Libre de Bruxelles, 1050 Brussels, Belgium ABSTRACT: Understanding the factors that determine the distribution of taxa at various spatial scales is a crucial challenge in the context of global climate change. This holds particularly true for polar marine biota that are composed of both highly adapted and vulnerable faunas. We analysed the distribution of 2 Antarctic echinoid species, Sterechinus antarcticus and S. neumayeri, at the scale of the entire Southern Ocean using 2 niche modelling procedures. The performance of distribution models was tested with regard to the known ecology of the species. The respective contributions of environmental parameters are discussed along with the putative roles played by biotic interactions and biogeographic processes. Depth was the parameter that contributed most to both distribution models, whereas sea ice coverage and sea surface temperature had significant contributions for S. neumayeri only. Suitability maps of the 2 species were mostly similar, with a few notable differences. The Campbell Plateau and Tasmania were predicted as suitable areas for S. antarcticus only, while S. neumayeri was restricted to the south of the Ant arctic Polar Front. However, numerous sampling data attest that S. antarcticus is absent from the Campbell Plateau and from Tasmania. Different hypotheses are formulated to explain the mismatch between observed and modelled distribution data.
    [Show full text]
  • Terra Nova Bay, Ross Sea
    MEASURE 14 - ANNEX Management Plan for Antarctic Specially Protected Area No 161 TERRA NOVA BAY, ROSS SEA 1. Description values to be protected A coastal marine area encompassing 29.4km2 between Adélie Cove and Tethys Bay, Terra Nova Bay, is proposed as an Antarctic Specially Protected Area (ASPA) by Italy on the grounds that it is an important littoral area for well-established and long-term scientific investigations. The Area is confined to a narrow strip of waters extending approximately 9.4km in length immediately to the south of the Mario Zucchelli Station (MZS) and up to a maximum of 7km from the shore. No marine resource harvesting has been, is currently, or is planned to be, conducted within the Area, nor in the immediate surrounding vicinity. The site typically remains ice-free in summer, which is rare for coastal areas in the Ross Sea region, making it an ideal and accessible site for research into the near-shore benthic communities of the region. Extensive marine ecological research has been carried out at Terra Nova Bay since 1986/87, contributing substantially to our understanding of these communities which had not previously been well-described. High diversity at both species and community levels make this Area of high ecological and scientific value. Studies have revealed a complex array of species assemblages, often co-existing in mosaics (Cattaneo-Vietti, 1991; Sarà et al., 1992; Cattaneo-Vietti et al., 1997; 2000b; 2000c; Gambi et al., 1997; Cantone et al., 2000). There exist assemblages with high species richness and complex functioning, such as the sponge and anthozoan communities, alongside loosely structured, low diversity assemblages.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Immune Response of the Antarctic Sea Urchin Sterechinus Neumayeri: Cellular, Molecular and Physiological Approach
    Immune response of the Antarctic sea urchin Sterechinus neumayeri: cellular, molecular and physiological approach Marcelo Gonzalez-Aravena1, Carolina Perez-Troncoso1, Rocio Urtubia1, Paola Branco2, José Roberto Machado Cunha da Silva 2, Luis Mercado5 , Julien De Lorgeril4, Jorn Bethke5 & Kurt Paschke3 1. Departamento Científico, Instituto Antártico Chileno, Chile; [email protected] 2. Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brasil; [email protected] 3. Laboratorio de Ecofisiología de Crustáceos, Instituto de Acuicultura, Universidad Austral de Chile, Chile; [email protected] 4. Ecology of coastal marine systems (Ecosym), UMR 5119 (UM 2-IFREMER-CNRS), Montpellier, France; [email protected] 5. Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Chile; [email protected] Received 31-V-2014. Corrected 10-X-2014. Accepted 21-XI-2014. Abstract: In the Antarctic marine environment, the water temperature is usually between 2 and - 1.9 °C. Consequently, some Antarctic species have lost the capacity to adapt to sudden changes in temperature. The study of the immune response in Antarctic sea urchin (Sterechinus neumayeri) could help us understand the future impacts of global warming on endemic animals in the Antarctic Peninsula. In this study, the Antarctic sea urchins were challenged with lipopolysaccharides and Vibrio alginolitycus. The cellular response was evaluated by the number of coelomocytes and phagocytosis. A significant increase was observed in red sphere cells and total coelomocytes in animals exposed to LPS. A significant rise in phagocytosis in animals stimulated by LPS was also evidenced. Moreover, the gene expression of three immune related genes was measured by qPCR, showing a rapid increase in their expression levels.
    [Show full text]
  • Benthic Field Guide 5.5.Indb
    Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates Invertebrates Benthic Moore Islands Kirrily and McDonald and Hibberd Ty Island Heard to Guide cation Identifi Field Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates A guide for scientifi c observers aboard fi shing vessels Little is known about the deep sea benthic invertebrate diversity in the territory of Heard Island and McDonald Islands (HIMI). In an initiative to help further our understanding, invertebrate surveys over the past seven years have now revealed more than 500 species, many of which are endemic. This is an essential reference guide to these species. Illustrated with hundreds of representative photographs, it includes brief narratives on the biology and ecology of the major taxonomic groups and characteristic features of common species. It is primarily aimed at scientifi c observers, and is intended to be used as both a training tool prior to deployment at-sea, and for use in making accurate identifi cations of invertebrate by catch when operating in the HIMI region. Many of the featured organisms are also found throughout the Indian sector of the Southern Ocean, the guide therefore having national appeal. Ty Hibberd and Kirrily Moore Australian Antarctic Division Fisheries Research and Development Corporation covers2.indd 113 11/8/09 2:55:44 PM Author: Hibberd, Ty. Title: Field identification guide to Heard Island and McDonald Islands benthic invertebrates : a guide for scientific observers aboard fishing vessels / Ty Hibberd, Kirrily Moore. Edition: 1st ed. ISBN: 9781876934156 (pbk.) Notes: Bibliography. Subjects: Benthic animals—Heard Island (Heard and McDonald Islands)--Identification.
    [Show full text]
  • Evolutionary Pathways Among Shallow and Deep-Sea Echinoids of the Genus Sterechinus in the Southern Ocean
    Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Angie Díaz, Jean-Pierre Féral, Bruno David, Thomas Saucède, Elie Poulin To cite this version: Angie Díaz, Jean-Pierre Féral, Bruno David, Thomas Saucède, Elie Poulin. Evolutionary path- ways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean.. Deep Sea Research Part II: Topical Studies in Oceanography, Elsevier, 2011, 58 (1-2), pp.205-211. 10.1016/j.dsr2.2010.10.012. hal-00567501 HAL Id: hal-00567501 https://hal.archives-ouvertes.fr/hal-00567501 Submitted on 3 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean A. Dı´az a,n, J.-P. Fe´ral b, B. David c, T. Saucede c, E. Poulin a a Instituto de Ecologı´a y Biodiversidad (IEB), Departamento de Ciencias Ecolo´gicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile b Universite´ de la Me´diterrane´e-CNRS, UMR 6540 DIMAR, COM-Station Marine d’Endoume, Marseille, France c Bioge´osciences, UMR CNRS 5561, Universite´ de Bourgogne, Dijon, France abstract Antarctica is structured by a narrow and deep continental shelf that sustains a remarkable number of benthic species.
    [Show full text]
  • High-Antarctic Regular Sea Urchins – the Role of Depth and Feeding in Niche Separation
    Polar Biol (2003) 26: 99–104 DOI 10.1007/s00300-002-0453-0 ORIGINAL PAPER U. Jacob Æ S. Terpstra Æ T. Brey High-Antarctic regular sea urchins – the role of depth and feeding in niche separation Received: 14 October 2002 / Accepted: 19 October 2002 / Published online: 18 December 2002 Ó Springer-Verlag 2002 Abstract Regular sea urchins of the families Cidaridae dynamics. They have planktotrophic larvae and can at- and Echinidae are widespread and sympatrically occur- tain individual ages up to 70 years (Bosch et al. 1984; ring epibenthic species in Antarctic waters. Food pref- Brey 1991; Brey et al. 1995). The two species prefer erence and water depth distribution of the five most different, albeit overlapping, depth ranges. S. neumayeri abundant species (Ctenocidaris gigantea, C. spinosa, is restricted to shallow shelf regions, whereas S. ant- Notocidaris mortenseni, Sterechinus antarcticus, S. neu- arcticus prefers the deeper shelf and slope (Brey and mayeri) were analysed based on trawl and photograph Gutt 1991; David et al. 2000). Little is known about the samples. Both diet and water depth contribute to niche distribution of Antarctic cidaroids (e.g. David et al. separation among these species. All sea urchins consume 2000), and even less about their life history and popu- bryozoans and sediment, but echinids feed predomi- lation dynamics, except their obligate brood-protection nantly on diatoms in the fluff, when available. Cidarids habit. Nevertheless, they are among the most speciose do not consume diatoms, most likely owing to mor- echinoids in Antarctic waters (Mooi et al. 2000). Regular phological constraints; their typical food consists of echinoids are highly mobile.
    [Show full text]
  • Smithsonian at the Poles Contributions to International Polar Year Science
    A Selection from Smithsonian at the Poles Contributions to International Polar Year Science Igor Krupnik, Michael A. Lang, and Scott E. Miller Editors A Smithsonian Contribution to Knowledge WASHINGTON, D.C. 2009 This proceedings volume of the Smithsonian at the Poles symposium, sponsored by and convened at the Smithsonian Institution on 3–4 May 2007, is published as part of the International Polar Year 2007–2008, which is sponsored by the International Council for Science (ICSU) and the World Meteorological Organization (WMO). Published by Smithsonian Institution Scholarly Press P.O. Box 37012 MRC 957 Washington, D.C. 20013-7012 www.scholarlypress.si.edu Text and images in this publication may be protected by copyright and other restrictions or owned by individuals and entities other than, and in addition to, the Smithsonian Institution. Fair use of copyrighted material includes the use of protected materials for personal, educational, or noncommercial purposes. Users must cite author and source of content, must not alter or modify content, and must comply with all other terms or restrictions that may be applicable. Cover design: Piper F. Wallis Cover images: (top left) Wave-sculpted iceberg in Svalbard, Norway (Photo by Laurie M. Penland); (top right) Smithsonian Scientifi c Diving Offi cer Michael A. Lang prepares to exit from ice dive (Photo by Adam G. Marsh); (main) Kongsfjorden, Svalbard, Norway (Photo by Laurie M. Penland). Library of Congress Cataloging-in-Publication Data Smithsonian at the poles : contributions to International Polar Year science / Igor Krupnik, Michael A. Lang, and Scott E. Miller, editors. p. cm. ISBN 978-0-9788460-1-5 (pbk.
    [Show full text]