SICB 2010 Annual Meeting Abstracts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2018-07-01 Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Pacheco, Yelena Marlese, "Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea" (2018). Theses and Dissertations. 7444. https://scholarsarchive.byu.edu/etd/7444 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael F. Whiting, Chair Sven Bradler Seth M. Bybee Steven D. Leavitt Department of Biology Brigham Young University Copyright © 2018 Yelena Marlese Pacheco All Rights Reserved ABSTRACT Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Department of Biology, BYU Master of Science Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs. -
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Hemigrammus Bleheri
Bioinspir. Biomim. 16 (2020) 016002 https://doi.org/10.1088/1748-3190/abb521 PAPER Burst-and-coast swimming is not always energetically RECEIVED 2April2020 bene!cial in !sh (Hemigrammus bleheri) REVISED 9August2020 1, 2,3 4,5 ACCEPTED FOR PUBLICATION Intesaaf Ashraf ∗ ,SamVanWassenbergh and Siddhartha Verma 3September2020 1 Laboratoire de Physique et Mecanique des Milieux Heterogenes (PMMH), CNRS UMR 7636, ESPCI Paris, Universite Paris Diderot, PUBLISHED Paris, France 3November2020 2 Laboratory of Functional Morphology, University of Antwerp, Belgium 3 Departement Adaptations du Vivant, UMR 7179, C.N.R.S/M.N.H.N., Paris, France 4 Department of Ocean and Mechanical engineering, Florida Atlantic University, Boca Raton, FL 33431, United States of America 5 Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, United States of America ∗ Author to whom any correspondence should be addressed. E-mail: [email protected] Keywords: fish swimming, intermittent locomotion, burst and coast swimming, flow sensing, energy efficiency Supplementary material for this article is available online Abstract Burst-and-coast swimming is an intermittent mode of locomotion used by various fish species. The intermittent gait has been associated with certainadvantagessuchasstabilizingthevisualfield, improved sensing ability, and reduced energy expenditure. We investigate burst-coast swimming in rummy nose tetra fish (Hemigrammus bleheri)usingacombinationofexperimentaldataand numerical simulations. The experiments were performed in a shallow water channel where the tetra fish swam against an imposed inflow. High speed video recordings of the fish were digitized to extract the undulatory kinematics at various swimming speeds. The kinematics data were then used in Navier–Stokes simulations to prescribe the undulatory motion for three-dimensional geometrical models of the fish. -
Marc Slattery University of Mississippi Department of Pharmacognosy School of Pharmacy Oxford, MS 38677-1848 (662) 915-1053 [email protected]
Marc Slattery University of Mississippi Department of Pharmacognosy School of Pharmacy Oxford, MS 38677-1848 (662) 915-1053 [email protected] EDUCATION: Ph.D. Biological Sciences. University of Alabama at Birmingham (1994); Doctoral Dissertation: A comparative study of population structure and chemical defenses in the soft corals Alcyonium paessleri May, Clavularia frankliniana Roule, and Gersemia antarctica Kukenthal in McMurdo Sound, Antarctica. M.A. Marine Biology. San Jose State University at the Moss Landing Marine Laboratories (1987); Masters Thesis: Settlement and metamorphosis of red abalone (Haliotis rufescens) larvae: A critical examination of mucus, diatoms, and γ-aminobutyric acid (GABA) as inductive substrates. B.S. Biology. Loyola Marymount University (1981); Senior Thesis: The ecology of sympatric species of octopuses (Octopus fitchi and O. diguetti) at Coloraditos, Baja Ca. RESEARCH INTERESTS: Chemical defenses/natural products chemistry of marine & freshwater invertebrates, and microbes. Evolutionary ecology, and ecophysiological adaptations of organisms in aquatic communities; including coral reef, cave, sea grass, kelp forest, and polar ecosystems. Chemical signals in reproductive biology and larval ecology/recruitment, and their applications to aquaculture and biomedical sciences. Cnidarian, Sponge, Molluscan, and Echinoderm biology/ecology, population structure, symbioses and photobiological adaptations. Marine microbe competition and culture. Environmental toxicology. EMPLOYMENT: Professor of Pharmacognosy and -
Phylogenetic Relationships of the Neon Tetras Paracheirodon Spp
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342480576 Phylogenetic relationships of the neon tetras Paracheirodon spp. (Characiformes: Characidae: Stethaprioninae), including comments on Petitella georgiae and Hemigrammus bleheri Article in Neotropical Ichthyology · June 2020 DOI: 10.1590/1982-0224-2019-0109 CITATIONS READS 0 149 5 authors, including: Pedro Senna Bittencourt Valeria Nogueira Machado Instituto Nacional de Pesquisas da Amazônia Federal University of Amazonas 9 PUBLICATIONS 20 CITATIONS 66 PUBLICATIONS 62 CITATIONS SEE PROFILE SEE PROFILE Tomas Hrbek Izeni Pires Farias Federal University of Amazonas Federal University of Amazonas 389 PUBLICATIONS 3,110 CITATIONS 321 PUBLICATIONS 3,819 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Conservation of the Amazonian Marmosets View project Macroecology of the marmoset monkeys from south America View project All content following this page was uploaded by Pedro Senna Bittencourt on 03 July 2020. The user has requested enhancement of the downloaded file. Neotropical Ichthyology Original article https://doi.org/10.1590/1982-0224-2019-0109 Phylogenetic relationships of the neon tetras Paracheirodon spp. (Characiformes: Characidae: Stethaprioninae), including comments on Petitella georgiae and Hemigrammus bleheri Correspondence: 1 1 Pedro Senna Bittencourt Pedro Senna Bittencourt , Valéria Nogueira Machado , 2 1 1 [email protected] Bruce Gavin Marshall , Tomas Hrbek and Izeni Pires Farias Neon tetras (Paracheirodon spp.) are three colorful characid species with a complicated taxonomic history, and relationships among the species are poorly known. Molecular data resolved the relationships among the three neon tetras, and strongly supported monophyly of the genus and its sister taxon relationship to Brittanichthys. -
Hemigrammus Rhodostomus), the Mechanisms Underlying Both the Coordination of Motion and the Propagation of Information in Their Schools
THTHESEESE`` En vue de l’obtention du DOCTORAT DE L’UNIVERSITE´ DE TOULOUSE D´elivr´e par : l’Universit´eToulouse 3 Paul Sabatier (UT3 Paul Sabatier) Cotutelle internationale University of Groningen Pr´esent´ee et soutenue le mardi 5 d´ecembre 2017 (05/12/2017) par : Valentin Lecheval Experimental analysis and modelling of the behavioural interactions underlying the coordination of collective motion and the propagation of information in fish schools JURY Nicolas Destainville Professeur Pr´esident du Jury Simon Verhulst Professeur MembreduJury Rineke Verbrugge Professeur MembreduJury Jose´ Halloy Professeur Rapporteur Christos C. Ioannou Docteur Rapporteur Colin J. Torney Docteur Rapporteur Ecole´ doctorale et sp´ecialit´e : SEVAB : Ecologie,´ biodiversit´eet ´evolution Unit´e de Recherche : Centre de Recherches sur la Cognition Animale (UMR 5169) Directeur(s) de Th`ese : Charlotte K. Hemelrijk et Guy Theraulaz Rapporteurs : Jos´eHalloy, Christos C. Ioannou et Colin J. Torney 2 Acknowledgements The research presented in this thesis is the result of a collective effort that has emerged from interactions between many individuals to whom I am extremely grateful. First, I would like to warmly thank Guy Theraulaz and Charlotte Hemelrijk. They have initiated a fruitful collaboration between two research teams in Toulouse and Groningen, that investigate moving animal groups with different approaches and methods. I am very pleased for having been part of this project during three years, under their demanding and enriching supervision. I would also like to thank Cl´ement Sire for all the work he dedicated to this thesis and for his inspired and illuminating assistance regarding analysis and modelling. Thank you to all members of the research teams involved in this work, that is staff, researchers, students and friends of the Centre de Recherches sur la Cognition Animale (in particular the CAB1 and IVEP2 teams) in Toulouse as well as the BPE3 and TRESˆ 4 teams in Groningen. -
The Phylogenetic Position and Taxonomic Status of Sterechinus Bernasconiae Larrain, 1975 (Echinodermata, Echinoidea), an Enigmatic Chilean Sea Urchin
Polar Biol DOI 10.1007/s00300-015-1689-9 ORIGINAL PAPER The phylogenetic position and taxonomic status of Sterechinus bernasconiae Larrain, 1975 (Echinodermata, Echinoidea), an enigmatic Chilean sea urchin 1 2,3 1 4 Thomas Sauce`de • Angie Dı´az • Benjamin Pierrat • Javier Sellanes • 1 5 3 Bruno David • Jean-Pierre Fe´ral • Elie Poulin Received: 17 September 2014 / Revised: 28 March 2015 / Accepted: 31 March 2015 Ó Springer-Verlag Berlin Heidelberg 2015 Abstract Sterechinus is a very common echinoid genus subclade and a subclade composed of other Sterechinus in benthic communities of the Southern Ocean. It is widely species. The three nominal species Sterechinus antarcticus, distributed across the Antarctic and South Atlantic Oceans Sterechinus diadema, and Sterechinus agassizi cluster to- and has been the most frequently collected and intensively gether and cannot be distinguished. The species Ster- studied Antarctic echinoid. Despite the abundant literature echinus dentifer is weakly differentiated from these three devoted to Sterechinus, few studies have questioned the nominal species. The elucidation of phylogenetic rela- systematics of the genus. Sterechinus bernasconiae is the tionships between G. multidentatus and species of Ster- only species of Sterechinus reported from the Pacific echinus also allows for clarification of respective Ocean and is only known from the few specimens of the biogeographic distributions and emphasizes the putative original material. Based on new material collected during role played by biotic exclusion in the spatial distribution of the oceanographic cruise INSPIRE on board the R/V species. Melville, the taxonomy and phylogenetic position of the species are revised. Molecular and morphological analyses Keywords Sterechinus bernasconiae Gracilechinus Á show that S. -
Stick Insects (PDF 124KB)
Handle with care Stick insects Species: Indian stick insect (there are lots of others which could be listed but this is the most common) Scientific names: Carausius morosus Description The Indian stick insect is the most commonly available of all stick insect species. Indian stick insects are normally olive green, but brown and yellow-green colours occur too. Their twig and leaf-like appearance gives them good camouflage. An adult stick insect measures about 7.5cm after about five or six skin moults and will live for about a year. Life in the wild Stick insects live in tropical and semi tropical areas of the world. They are vegetarians and eat the leaves of plants, shrubs and trees. Privet and bramble leaves are favourites. In the wild they are usually eaten by birds, so stick insects tend to feed at night when birds are not around. Source of animals Stick insects can be bought from pet shops or specialist breeders. RSPCA animal centres also occasionally have stick insects needing new homes. Prior knowledge and preparation Before keeping stick insects, it is crucial that any potential keeper finds out about them and how to provide for them in captivity. Only then can an informed decision be made about whether s/he can provide the facilities, time, financial means and long-term commitment to look after them properly. Suitable accommodation, food and the necessary accessories should be bought and prepared before taking the animal home. Novice keepers should also take the time to talk to experienced stick insect keepers and professionals – such as a vet – for further advice. -
RESEARCH REPORT 2OO9-2O1O DIVISION of HEALTH SCIENCES Research Report 2OO9-2O1O DIVISION of HEALTH SCIENCES
RESEARCH REPORT 2OO9-2O1O DIVISION OF HEALTH SCIENCES RESEARCH REPORT 2OO9-2O1O DIVISION OF HEALTH SCIENCES Cover photo: Divisional winners of some of New Zealand’s most prestigious science awards in 2009 and 2010. From left to right: Professor Frank Griffin, Department of Microbiology and Immunology, 2010 Pickering Medal, Royal Society of New Zealand, Professor Warren Tate, Department of Biochemistry, 2010 Rutherford Medal, Royal Society of New Zealand, Professor Allan Herbison, Department of Physiology, 2009 Liley Medal, HRC. Professor Richie Poulton, Dunedin Multidisciplinary Health and Development Research Unit, 2010 Dame Joan Metge Medal, Royal Society of New Zealand, Absent: Professor Stephen Robertson, Department of Women’s and Children’s Health. 2010 Liley Medal, HRC. Division of HEALTH sCiEnCEs 1 FROM THE PRO-VICE-CHANCELLOR Tënä koutou kätoa. It is a great pleasure to present this report of the research activities of the Division of Health Sciences at the University of Otago for 2009-2010. The Division has an enviable reputation for research excellence and innovation and the achievements reported here reflect this. Our research helps to save lives and reduce suffering, and addresses health inequalities in New Zealand and around the world. The Division has had another two very successful years, as measured by the award of competitive research grants, by publications in highly esteemed journals, and by awards for distinction in research. Our researchers secured over $136 million in external research grants in 2009 and 2010 – a considerable achievement in what has become an increasingly competitive funding environment. The number of research outputs has continued to increase annually with many articles appearing in the world’s most prestigious journals. -
Mya Arenaria and Ensis Spp
UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks! Title Aspects of the biology of Mya arenaria and Ensis spp. (Mollusca; Bivalvia) in the Irish Sea and adjacent areas Author(s) Cross, Maud E. Publication date 2014 Original citation Cross, M.E. 2014. Aspects of the biology of Mya arenaria and Ensis spp. (Mollusca; Bivalvia) in the Irish Sea and adjacent areas. PhD Thesis, University College Cork. Type of publication Doctoral thesis Rights © 2014, Maud E. Cross http://creativecommons.org/licenses/by-nc-nd/3.0/ Embargo information No embargo required Item downloaded http://hdl.handle.net/10468/1723 from Downloaded on 2021-10-10T17:39:11Z Aspects of the biology of Mya arenaria and Ensis spp. (Mollusca; Bivalvia) in the Irish Sea and adjacent areas Maud Cross, BSc, MSc University College Cork, Ireland School of Biological, Earth & Environmental Sciences, Aquaculture and Fisheries Development Centre June, 2013 Head of School: Professor John O’Halloran Supervisors: Dr Sarah Culloty and Dr Ruth Ramsay Table of Contents Page Abstract: I Chapter 1: General introduction and outline of the thesis. 1 Chapter 2: Biology and reproduction of the softshell clam, Mya arenaria, in Ireland. 30 Chapter 3: The biology of the exploited razor clam, Ensis siliqua, in the Irish Sea. 57 Chapter 4: The health status of two clam species in the Irish Sea. 78 Chapter 5: Mya arenaria population genetics throughout its contemporary range. 96 Chapter 6: Genetic investigation to identify which Ensis species are present in the Irish Sea and adjacent areas 152 Chapter 7: Concluding Discussion 171 Acknowledgements: 190 Appendix I Appendix II Appendix III Declaration This thesis is the work of Maud Cross only, and has not been submitted for another degree, either at University College, Cork, or elsewhere. -
Ancient Rapid Radiations of Insects: Challenges for Phylogenetic Analysis
ANRV330-EN53-23 ARI 2 November 2007 18:40 Ancient Rapid Radiations of Insects: Challenges for Phylogenetic Analysis James B. Whitfield1 and Karl M. Kjer2 1Department of Entomology, University of Illinois, Urbana, Illinois 61821; email: jwhitfi[email protected] 2Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901; email: [email protected] Annu. Rev. Entomol. 2008. 53:449–72 Key Words First published online as a Review in Advance on diversification, molecular evolution, Palaeoptera, Orthopteroidea, September 17, 2007 fossils The Annual Review of Entomology is online at ento.annualreviews.org Abstract by UNIVERSITY OF ILLINOIS on 12/18/07. For personal use only. This article’s doi: Phylogenies of major groups of insects based on both morphological 10.1146/annurev.ento.53.103106.093304 and molecular data have sometimes been contentious, often lacking Copyright c 2008 by Annual Reviews. the data to distinguish between alternative views of relationships. Annu. Rev. Entomol. 2008.53:449-472. Downloaded from arjournals.annualreviews.org All rights reserved This paucity of data is often due to real biological and historical 0066-4170/08/0107-0449$20.00 causes, such as shortness of time spans between divergences for evo- lution to occur and long time spans after divergences for subsequent evolutionary changes to obscure the earlier ones. Another reason for difficulty in resolving some of the relationships using molecu- lar data is the limited spectrum of genes so far developed for phy- logeny estimation. For this latter issue, there is cause for current optimism owing to rapid increases in our knowledge of comparative genomics. -
Extreme Positive Allometry of Animal Adhesive Pads and the Size Limits of Adhesion-Based Climbing
Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing David Labontea,1, Christofer J. Clementeb, Alex Dittrichc, Chi-Yun Kuod, Alfred J. Crosbye, Duncan J. Irschickd, and Walter Federlea aDepartment of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom; bSchool of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia; cDepartment of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, United Kingdom; dBiology Department, University of Massachusetts Amherst, Amherst, MA 01003; and eDepartment of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003 Edited by David B. Wake, University of California, Berkeley, CA, and approved December 11, 2015 (received for review October 7, 2015) Organismal functions are size-dependent whenever body surfaces animals to climb smooth vertical or inverted surfaces, thereby supply body volumes. Larger organisms can develop strongly opening up new habitats. Adhesive pads have evolved multiple folded internal surfaces for enhanced diffusion, but in many cases times independently within arthropods, reptiles, amphibians, and areas cannot be folded so that their enlargement is constrained by mammals and show impressive performance: They are rapidly anatomy, presenting a problem for larger animals. Here, we study controllable, can be used repeatedly without any loss of perfor- the allometry of adhesive pad area in 225 climbing animal species, mance, and function on rough, dirty, and flooded surfaces (12). This covering more than seven orders of magnitude in weight. Across performance has inspired a considerable amount of work on tech- all taxa, adhesive pad area showed extreme positive allometry and nical adhesives that mimic these properties (13).