Sea Urchins of the Genus Gracilechinus Fell & Pawson, 1966

Total Page:16

File Type:pdf, Size:1020Kb

Sea Urchins of the Genus Gracilechinus Fell & Pawson, 1966 This article was downloaded by: [Kirill Minin] On: 02 October 2014, At: 07:19 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Marine Biology Research Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/smar20 Sea urchins of the genus Gracilechinus Fell & Pawson, 1966 from the Pacific Ocean: Morphology and evolutionary history Kirill V. Minina, Nikolay B. Petrovb & Irina P. Vladychenskayab a P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia b A. N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia Published online: 29 Sep 2014. Click for updates To cite this article: Kirill V. Minin, Nikolay B. Petrov & Irina P. Vladychenskaya (2014): Sea urchins of the genus Gracilechinus Fell & Pawson, 1966 from the Pacific Ocean: Morphology and evolutionary history, Marine Biology Research, DOI: 10.1080/17451000.2014.928413 To link to this article: http://dx.doi.org/10.1080/17451000.2014.928413 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http:// www.tandfonline.com/page/terms-and-conditions Marine Biology Research, 2014 http://dx.doi.org/10.1080/17451000.2014.928413 ORIGINAL ARTICLE Sea urchins of the genus Gracilechinus Fell & Pawson, 1966 from the Pacific Ocean: Morphology and evolutionary history KIRILL V. MININ1*, NIKOLAY B. PETROV2 & IRINA P. VLADYCHENSKAYA2 1P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia, and 2A. N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia Abstract Gracilechinus is a widely distributed genus of regular echinoids with a centre of species diversity in the North Atlantic (five of 10 species). Only three species of this genus are known from the Pacific Ocean: Gracilechinus multidentatus, G. euryporus and G. lucidus. The first two species were previously assigned to the genus Echinus, which differs from Gracilechinus in ambulacral tuberculation. According to our data, all three Pacific species possess ambulacral tuberculation characteristic of the genus Gracilechinus and differ from each other in the structure of the valves of tridentate pedicellariae and primary spines. Assignment of these three species to the genus Gracilechinus is also confirmed by phylogenetic analysis of the 657 bp fragment of the COI gene. The COI tree provides evidence for the validity of the genera Gracilechinus and Echinus and agrees in general with morphological data. Among species of Gracilechinus, two lineages are distinguished on the COI tree, differing in the shape of the tridentate pedicellariae valves. One lineage comprises only the North Atlantic species Gracilechinus alexandri, the other one includes the North Atlantic, South Atlantic and Pacific species. The genus Gracilechinus apparently originated in the North Atlantic and only representatives of the second lineage have penetrated the South Atlantic and the Pacific. Key words: Biogeographic history, COI, Echinus, Gracilechinus, Pacific, phylogeny Introduction other species of this genus, E. elegans Düben & Koren, 1844, E. alexandri Danielssen & Koren, Gracilechinus and Echinus are very closely related 1883, E. affinis Mortensen, 1903, E. atlanticus genera of sea urchins belonging to the family Echinidae. According to Mortensen (1943), the Mortensen, 1903, E. stenoporus Mortensen, 1942, genus Echinus included 17 species. Fell & Pawson and E. lucidus Döderlein, 1885, were transferred (1966) split Echinus and founded the new genus, to Gracilechinus (Smith & Kroh 2011; Kroh & Gracilechinus, to accommodate the species Echinus Hansson 2013). Downloaded by [Kirill Minin] at 07:19 02 October 2014 acutus Lamarck, 1816 and E. gracilis A. Agassiz, The assignment of E. multidentatus and E. eur- 1869. The new genus comprised species with a yporus H. L. Clark, 1912 to Echinus still remains primary tubercle on each ambulacral plate. Other questionable. Both for E. multidentatus (McKnight species were retained in the genus Echinus, charac- 1967) and E. euryporus (Clark 1925; Mortensen terized by having a primary tubercle on every second 1943) it was shown that they have a primary tubercle or third, or second and third ambulacral plate. on every ambulacral plate, which is the main McKnight (1967) transferred another Echinus spe- diagnostic feature of Gracilechinus. cies, Echinus multidentatus H. L. Clark, 1925, to the Gracilechinus has its centre of species diversity in genus Gracilechinus on the basis of the ambulacral the North Atlantic (five of eight species listed in tuberculation pattern of the type specimen and Smith & Kroh (2011) and Kroh (2012a)) with specimens from the Chatham Rise. Recently species occurring in a wide range of habitats and G. multidentatus was moved back to Echinus, but six depths from intertidal to the deep sea. According to *Corresponding author: Kirill V. Minin, P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky Prospekt, 36, Moscow 117997, Russia. E-mail: [email protected] Published in collaboration with the Institute of Marine Research, Norway (Accepted 9 May 2014) © 2014 Taylor & Francis 2 K. V. Minin et al. Smith and Kroh (2011) and Kroh (2012a), Graci- to the Pacific Ocean from 1958 to 1987. Echinoids lechinus is represented in the Pacific Ocean by the were collected from the Southeast Pacific by the RV single species, G. lucidus (Döderlein, 1885). Two Akademik Kurchatov and RV Professor Shtokman, Echinus species, E. multidentatus and E. euryporus, from the South Pacific by RV Dmitry Mendeleev, possibly belonging to Gracilechinus, also occur in the and from the Northwest Pacific by RV Vityaz and Pacific Ocean (Mortensen 1943; Clark 1912; RV Odissey (Table I). In total 103 specimens of McKnight 1967, 1968; Kroh 2012b, 2012d). The Gracilechinus were obtained from six stations. All morphology and distribution of these three Pacific specimens were preserved in 96% ethanol on board species remain poorly known. the ships and then stored in the collections at the P. A study of the biogeographic history of Gracilechi- P. Shirshov Institute of Oceanology. Spine muscles nus was performed by Tyler et al. (1995). These and tube feet of one specimen of Echinus euryporus authors considered species of Gracilechinus in the H. L. Clark, 1912 (RV Professor Shtokman, St. 1964; genus Echinus. It was assumed that Echinus has a EspStock1964) and two specimens of Gracilechinus North Atlantic origin and that colonization of the lucidus (Döderlein, 1885) (RV Vityaz, St. 3768; different regions of the Pacific occurred separately. ElucV3768-25 and ElucV3768-27) were used for One possible pathway passed through the South the DNA extraction. Specimens of E. multidentatus Atlantic, turning eastward towards the Southwest H. L. Clark, 1925 (RV Dmitry Mendeleev, St. 1268) Pacific. This route coincides with the flow of the were unsuitable for DNA extraction because of poor North Atlantic Deep Water (NADW) capable of preservation condition. transporting larvae from the North Atlantic to the South Atlantic and then to the Southwest and Northwest Pacific. Because the NADW does not Morphological examination enter the Southeast Pacific, two possible pathways of Spines and pedicellariae for examination were colonization of this region were proposed: from the removed from the test and placed in sodium hypo- West Atlantic through the Straits of Panama or chlorite solution (household bleach), then washed through the Drake Passage (Tyler et al. 1995). with water and studied under a binocular dissecting In the present paper, redescriptions of the three microscope. The ultrastructure of cleaned spines and Pacific species of Gracilechinus are given. Phylogen- pedicellariae was studied using scanning electron etic relationships between the Pacific and the microscopy (SEM). Spines, pedicellariae and soft Atlantic Gracilechinus species are discussed and a tissue were removed from the test with a hard brush biogeographic history of this genus is proposed to make the plating and tuberculation patterns visible. based on the molecular phylogenetic tree generated Character terminology of the test follows Morten- using a fragment of the mitochondrial COI
Recommended publications
  • (Echinoidea, Echinidae) (Belgium) by Joris Geys
    Meded. Werkgr. Tert. Kwart. Geol. 26(1) 3-10 1 fig., 1 tab., 1 pi. Leiden, maart 1989 On the presence of Gracilechinus (Echinoidea, Echinidae) in the Late Miocene of the Antwerp area (Belgium) by Joris Geys University of Antwerp (RUCA), Antwerp, Belgium and Robert Marquet Antwerp, Belgium. Geys, J., & R. Marquet. On the presence of Gracilechinus (Echinoidea, in the of — Echinidae) Late Miocene the Antwerp area (Belgium). Meded. Werkgr. Tert. Kwart. Geol., 26(1): 00-00, 1 fig., 1 tab., 1 pi. Leiden, March 1989. Some well-preserved specimens of the regular echinoid Gracilechinus gracilis nysti (Cotteau, 1880) were collected in a temporary outcrop at Borgerhout-Antwerp, in sandstones reworked from the Deurne Sands (Late Miocene). The systematic status of this subspecies is discussed. The present state of knowledge of the Echinidae from the Neogene of the North Sea Basin is reviewed. Prof. Dr J. Geys, Dept. of Geology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium. Dr R. Marquet, Constitutiestraat 50, B-2008 Antwerp, Belgium, Contents — 3 Introduction, p. 4 Systematic palaeontology, p. 6 Discussion, p. Echinidae in the Neogene of the North Sea Basin—some considerations on 8 systematics, p. 10. References, p. INTRODUCTION extensive excavations the of E17-E18 indicated E3 Because of along western verge motorway (also as ‘Kleine and Ring’) at Borgerhout-Antwerp (Belgium), a remarkable outcrop of Neogene Quaternary beds accessible from The was March to November 1987. outcrop was situated between this motorway and the and extended from the the both ‘Singel’-road, ‘Stenenbrug’ to ‘Zurenborgbrug’, on sides 4 of the exit.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • X-Ray Microct Study of Pyramids of the Sea Urchin Lytechinus Variegatus
    Journal of Structural Biology Journal of Structural Biology 141 (2003) 9–21 www.elsevier.com/locate/yjsbi X-ray microCT study of pyramids of the sea urchin Lytechinus variegatus S.R. Stock,a,* S. Nagaraja,b J. Barss,c T. Dahl,c and A. Veisc a Institute for Bioengineering and Nanoscience in Advanced Medicine, Northwestern University, 303 E. Chicago Avenue, Tarry 16-717, Chicago, IL 60611-3008, USA b School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA c Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA Received 19 June 2002, and in revised form 23 September 2002 Abstract This paper reports results of a novel approach, X-ray microCT, for quantifying stereom structures applied to ossicles of the sea urchin Lytechinus variegatus. MicroCT, a high resolution variant of medical CT (computed tomography), allows noninvasive mapping of microstructure in 3-D with spatial resolution approaching that of optical microscopy. An intact pyramid (two demi- pyramids, tooth epiphyses, and one tooth) was reconstructed with 17 lm isotropic voxels (volume elements); two individual demipyramids and a pair of epiphyses were studied with 9–13 lm isotropic voxels. The cross-sectional maps of a linear attenuation coefficient produced by the reconstruction algorithm showed that the structure of the ossicles was quite heterogeneous on the scale of tens to hundreds of micrometers. Variations in magnesium content and in minor elemental constitutents could not account for the observed heterogeneities. Spatial resolution was insufficient to resolve the individual elements of the stereom, but the observed values of the linear attenuation coefficient (for the 26 keV effective X-ray energy, a maximum of 7.4 cmÀ1 and a minimum of 2cmÀ1 away from obvious voids) could be interpreted in terms of fractions of voxels occupied by mineral (high magnesium calcite).
    [Show full text]
  • DNA Variation and Symbiotic Associations in Phenotypically Diverse Sea Urchin Strongylocentrotus Intermedius
    DNA variation and symbiotic associations in phenotypically diverse sea urchin Strongylocentrotus intermedius Evgeniy S. Balakirev*†‡, Vladimir A. Pavlyuchkov§, and Francisco J. Ayala*‡ *Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525; †Institute of Marine Biology, Vladivostok 690041, Russia; and §Pacific Research Fisheries Centre (TINRO-Centre), Vladivostok, 690600 Russia Contributed by Francisco J. Ayala, August 20, 2008 (sent for review May 9, 2008) Strongylocentrotus intermedius (A. Agassiz, 1863) is an economically spines of the U form are relatively short; the length, as a rule, does important sea urchin inhabiting the northwest Pacific region of Asia. not exceed one third of the radius of the testa. The spines of the G The northern Primorye (Sea of Japan) populations of S. intermedius form are longer, reaching and frequently exceeding two thirds of the consist of two sympatric morphological forms, ‘‘usual’’ (U) and ‘‘gray’’ testa radius. The testa is significantly thicker in the U form than in (G). The two forms are significantly different in morphology and the G form. The morphological differences between the U and G preferred bathymetric distribution, the G form prevailing in deeper- forms of S. intermedius are stable and easily recognizable (Fig. 1), water settlements. We have analyzed the genetic composition of the and they are systematically reported for the northern Primorye S. intermedius forms using the nucleotide sequences of the mitochon- coast region (V.A.P., unpublished data). drial gene encoding the cytochrome c oxidase subunit I and the Little is known about the population genetics of S. intermedius; nuclear gene encoding bindin to evaluate the possibility of cryptic the available data are limited to allozyme polymorphisms (4–6).
    [Show full text]
  • PUNIC ECHINODERM REMAINS Excavated from Tas-Silg, Malta
    PUNIC ECHINODERM REMAINS Excavated from Tas-Silg, Malta C. Savona-Ventura Report submitted to the Department of Archaeology, University of Malta, 1999 The Tas-Silg Punic site is situated at an elevation of about 125 feet above sea level. This situation, together with the significant distance from the shore (circa 700 metres), makes it highly unlikely that marine animal remains excavated from the site represent shore wash. There are more likely to have been brought to the site by man. There is evidence to believe that since prehistoric and possibly classical times, the southeastern coast of Malta has gradually tilted towards the sea. The evidence for sinking during the classical period may be inferred by the presence of cart-ruts which cease suddenly at the edge of the water at Birzebbugia (St. George’s Bay) and cart- ruts which together with artificial caldrons occur beneath the water at Marsaxlokk. 1 This means that the Tas-Silg site was probably even higher above sea-level during the classical period than at present. Echinoderm remains were excavated in plentiful amounts from the site. The amount of fragments obtained from the site further suggests that these represent intentional transportation to the site by the action of man. Accidental transportation is unlikely to have accounted for large quantities of this marine animal. Two small fragments were obtained from the Tas-Silg Punic site on 22nd July 1998. The fragments represent 3 fused and one separate inter-ambulacral plates. The spine pattern of each inter-ambulacral plate is diagrammatically represented below. The spine pattern was characterised by large spines surrounded by a satellite series of smaller spines.
    [Show full text]
  • Sea Urchins As an Inspiration for Robotic Designs
    Sea urchins as an inspiration for robotic designs Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Stiefel, K. and Barrett, G. (2018) Sea urchins as an inspiration for robotic designs. Journal of Marine Science and Engineering, 6 (4). 112. ISSN 2077-1312 doi: https://doi.org/10.3390/jmse6040112 Available at http://centaur.reading.ac.uk/79763/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.3390/jmse6040112 Publisher: MDPI All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Journal of Marine Science and Engineering Review Sea Urchins as an Inspiration for Robotic Designs Klaus M. Stiefel 1,2,3 and Glyn A. Barrett 3,4,* 1 Neurolinx Research Institute, La Jolla, CA 92039, USA; [email protected] 2 Marine Science Institute, University of the Philippines, Dilliman, Quezon City 1101, Philippines 3 People and the Sea, Malapascua, Daanbantayan, Cebu 6000, Philippines 4 School of Biological Sciences, University of Reading, Reading RG6 6UR, UK * Correspondence: [email protected]; Tel.: +44-(0)-118-378-8893 Received: 25 August 2018; Accepted: 4 October 2018; Published: 10 October 2018 Abstract: Neuromorphic engineering is the approach to intelligent machine design inspired by nature.
    [Show full text]
  • Marine Invertebrate Diversity in Aristotle's Zoology
    Contributions to Zoology, 76 (2) 103-120 (2007) Marine invertebrate diversity in Aristotle’s zoology Eleni Voultsiadou1, Dimitris Vafi dis2 1 Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR - 54124 Thessaloniki, Greece, [email protected]; 2 Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, Uni- versity of Thessaly, 38446 Nea Ionia, Magnesia, Greece, dvafi [email protected] Key words: Animals in antiquity, Greece, Aegean Sea Abstract Introduction The aim of this paper is to bring to light Aristotle’s knowledge Aristotle was the one who created the idea of a general of marine invertebrate diversity as this has been recorded in his scientifi c investigation of living things. Moreover he works 25 centuries ago, and set it against current knowledge. The created the science of biology and the philosophy of analysis of information derived from a thorough study of his biology, while his animal studies profoundly infl uenced zoological writings revealed 866 records related to animals cur- rently classifi ed as marine invertebrates. These records corre- the origins of modern biology (Lennox, 2001a). His sponded to 94 different animal names or descriptive phrases which biological writings, constituting over 25% of the surviv- were assigned to 85 current marine invertebrate taxa, mostly ing Aristotelian corpus, have happily been the subject (58%) at the species level. A detailed, annotated catalogue of all of an increasing amount of attention lately, since both marine anhaima (a = without, haima = blood) appearing in Ar- philosophers and biologists believe that they might help istotle’s zoological works was constructed and several older in the understanding of other important issues of his confusions were clarifi ed.
    [Show full text]
  • Vulnerable Forests of the Pink Sea Fan Eunicella Verrucosa in the Mediterranean Sea
    diversity Article Vulnerable Forests of the Pink Sea Fan Eunicella verrucosa in the Mediterranean Sea Giovanni Chimienti 1,2 1 Dipartimento di Biologia, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy; [email protected]; Tel.: +39-080-544-3344 2 CoNISMa, Piazzale Flaminio 9, 00197 Roma, Italy Received: 14 April 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: The pink sea fan Eunicella verrucosa (Cnidaria, Anthozoa, Alcyonacea) can form coral forests at mesophotic depths in the Mediterranean Sea. Despite the recognized importance of these habitats, they have been scantly studied and their distribution is mostly unknown. This study reports the new finding of E. verrucosa forests in the Mediterranean Sea, and the updated distribution of this species that has been considered rare in the basin. In particular, one site off Sanremo (Ligurian Sea) was characterized by a monospecific population of E. verrucosa with 2.3 0.2 colonies m 2. By combining ± − new records, literature, and citizen science data, the species is believed to be widespread in the basin with few or isolated colonies, and 19 E. verrucosa forests were identified. The overall associated community showed how these coral forests are essential for species of conservation interest, as well as for species of high commercial value. For this reason, proper protection and management strategies are necessary. Keywords: Anthozoa; Alcyonacea; gorgonian; coral habitat; coral forest; VME; biodiversity; mesophotic; citizen science; distribution 1. Introduction Arborescent corals such as antipatharians and alcyonaceans can form mono- or multispecific animal forests that represent vulnerable marine ecosystems of great ecological importance [1–4].
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Edible sea urchin (Echinus esculentus) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Dr Harvey Tyler-Walters 2008-04-29 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1311]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H., 2008. Echinus esculentus Edible sea urchin. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1311.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-04-29 Edible sea urchin (Echinus esculentus) - Marine Life Information Network See online review for distribution map Echinus esculentus and hermit crabs on grazed rock.
    [Show full text]
  • The Benthos Sensitivity Index to Trawling Operations (BESITO)
    ICES Journal of Marine Science (2018), doi:10.1093/icesjms/fsy030 Determining and mapping species sensitivity to trawling impacts: the BEnthos Sensitivity Index to Trawling Operations (BESITO) Jose M. Gonza´lez-Irusta1,*, Ana De la Torriente1, Antonio Punzo´n1, Marian Blanco1,and Alberto Serrano1 1Instituto Espa~nol de Oceanografı´a, Centro Oceanogra´fico de Santander, 39080 Santander, Spain *Corresponding author: tel: þ34 942 291 716; fax: þ34942275072; e-mail: [email protected]. Gonza´lez-Irusta, J. M., De la Torriente, A., Punzo´n, A., Blanco, M., and Serrano, A. Determining and mapping species sensitivity to trawl- ing impacts: the BEnthos Sensitivity Index to Trawling Operations (BESITO). – ICES Journal of Marine Science, doi:10.1093/icesjms/ fsy030. Received 18 December 2017; revised 16 February 2018; accepted 26 February 2018. Applying an ecosystem approach requires a deep and holistic understanding of interactions between human activities and ecosystems. Bottom trawling is the most widespread physical human disturbance in the seabed and produces a wide range of direct and indirect impacts on benthic ecosystems. In this work, we develop a new index, the BEnthos Sensitivity Index to Trawling Operations (BESITO), using biological traits to classify species according to their sensitivity to bottom trawling. Seventy-nine different benthic taxa were classified according to their BESITO scores in three groups. The effect of trawling on the relative abundance of each group (measured as biomass proportion) was analysed using General Additive Models (GAMs) in a distribution model framework. The distribution of the relative biomass of each group was mapped and the impact of trawling was computed. Species with the lowest BESITO score (group I) showed a positive response to trawling dis- turbance (opportunistic response) whereas species with values higher than 2 (group III) showed a negative response (sensitive response).
    [Show full text]
  • Sea Urchin Aquaculture
    American Fisheries Society Symposium 46:179–208, 2005 © 2005 by the American Fisheries Society Sea Urchin Aquaculture SUSAN C. MCBRIDE1 University of California Sea Grant Extension Program, 2 Commercial Street, Suite 4, Eureka, California 95501, USA Introduction and History South America. The correct color, texture, size, and taste are factors essential for successful sea The demand for fish and other aquatic prod- urchin aquaculture. There are many reasons to ucts has increased worldwide. In many cases, develop sea urchin aquaculture. Primary natural fisheries are overexploited and unable among these is broadening the base of aquac- to satisfy the expanding market. Considerable ulture, supplying new products to growing efforts to develop marine aquaculture, particu- markets, and providing employment opportu- larly for high value products, are encouraged nities. Development of sea urchin aquaculture and supported by many countries. Sea urchins, has been characterized by enhancement of wild found throughout all oceans and latitudes, are populations followed by research on their such a group. After World War II, the value of growth, nutrition, reproduction, and suitable sea urchin products increased in Japan. When culture systems. Japan’s sea urchin supply did not meet domes- Sea urchin aquaculture first began in Ja- tic needs, fisheries developed in North America, pan in 1968 and continues to be an important where sea urchins had previously been eradi- part of an integrated national program to de- cated to protect large kelp beds and lobster fish- velop food resources from the sea (Mottet 1980; eries (Kato and Schroeter 1985; Hart and Takagi 1986; Saito 1992b). Democratic, institu- Sheibling 1988).
    [Show full text]
  • Additions to the Echinoid Fauna of New Zealand
    90 [MAR. ADDITIONS TO THE ECHINOID FAUNA OF NEW ZEALAND D. G. MCKNIGHT New Zealand Oceanographic Institute, Department of Scientific and Industrial Research, Wellington (Received for publication 25 August 1967) SUMMARY Seven species of echinoids are added to the New Zealand fauna, two being described as new species of the genera Caenopedina and Spatangus. Described species, new to the fauna, are Gracilechinus multidentatus (H. L. Clark), Pourtalesia laguncula A. Agassiz, Hemiaster expergitus gibbosus A. Agassiz, and Gymnopatagus magnus A. Agassiz and H. L. Clark. Fragments of Spatangus, possibly hybrid S. thor Fell, and fragments of Echinocardium, almost certainly not E. cordatum (Pennant), are also described. INTRODUCTION Species described below are from recent archibenthal collections made by the New Zealand Oceanographic Institute. Genera new to New Zealand waters are Gracilechinus, Pourtalesia, Hemiaster, and Gymnopatagus. New species of the genera Caenopedina, Spatangus, and Echinocardium are described- Fragments of a possible hybrid form of Spatangus thor Fell are described. Described species new to the fauna are Gracilechinus multidentatus (H. L. Clark), Pourtalesia laguncula A. Agassiz, Hemiaster expergitus gibbosus A. Agassiz, and Gymnopatagus magnus A. Agassiz and H. L. Clark. Downloaded by [193.191.134.1] at 06:21 27 May 2015 The classification adopted here follows that in Moore (1966). SYSTEMATIC ACCOUNT Class ECHINOIDEA Order PEDINOIDA Family PEDINIDAE Caenopedina otagoensis n.sp. (Figs 1-3) DESCRIPTION Test ambitally circular, flattened above and below, the sides strongly arched. N.Z. Jl mar. Freshwat. 2: 90-110 1968] MCKNIGHT—ECHINOID FAUNA FIG. 1—Caenopedina otagoensis n.sp. Holotype, in aboral aspect. Ambulacra: Plates of the diadematoid type, the central element barely enlarged carrying the primary tubercule.
    [Show full text]