<<

AME 60634 Int. Trans.

Thermoelectric Effect & Thermoelectric Devices

*borrowed heavily from presentation by G. Chen, MIT

D. B. Go Slide 1 AME 60634 Int. Heat Trans. Seebeck Effect

Seebeck Effect: difference generates a between two different materials

hot

Conductor 1 Conductor 2

cold 1821, Germany

D. B. Go Slide 2 AME 60634 Int. Heat Trans. Seebeck Effect

electrons diffuse from hot to cold

Thot Tcold

electric potential builds up that resists diffusion

ΔV V −V S = − = − hot cold ΔT Thot −Tcold

Seebeck coefficient: S [V/K]

D. B. Go Slide 3 AME 60634 Int. Heat Trans. Peltier Effect

Peltier Effect: Current flow can induce a temperature gradient depending on direction of current flow

hot

Conductor 1 Conductor 2

A

Jean Charles Athanase Peltier 1834, France

D. B. Go Slide 4 AME 60634 Int. Heat Trans. Current and Heat Flow Newton’s 2nd Law     m*v dv F = −qE − = m* τ dt

Coulombic force drag due to collisions

The€ steady-state solution gives the average electron “drift” velocity  qτ  qτ v = − * E µe = * ≡ electron mobility m m

The is the rate of charge transport per unit area (like heat flux)  n q2τ   elec compare to Ohm’s law! j€ele c = −nelecqv = * € E = σ∇Φ m

But the electrons carry heat with them!  u Peltier coefficient: Π [J/A] j = n uv = j = Πj heat elec q elec elec

D. B. Go Slide 5 AME 60634 Int. Heat Trans. Peltier Effect

- Induced heating and cooling at the two junctions due to mismatch - Reversible by reversing the direction of current flow - A refrigerator! (current is “” to drive “heat”)

jelec, jheat 1

q q 2

jelec, jheat

q (Peltier): (Π1-Π2)×j

D. B. Go Slide 6 AME 60634 Int. Heat Trans. Thomson Effect

Thomson Effect: Current flow through a temperature gradient will generate/absorb heat because thermoelectric properties are temperature dependant

heat release/adsorption

Thot Tcold

current

William Thomson, Lord Kelvin 1855, Ireland

D. B. Go Slide 7 AME 60634 Int. Heat Trans. Thomson Effect

heat release/ absorption needed for energy balance electrons diffuse q(x) from hot to cold

Thot Tcold

current i

Thomson coefficient: τ = (1/i)×(dq/dx)/(dT/dx)

Kelvin Relations: dS Π = ST; τ = T dT

D. B. Go Slide 8 AME 60634 Int. Heat Trans. & The

Thermocouples operate under the principle that a circuit made by connecting two dissimilar metals produces a measurable voltage when a temperature gradient is imposed between one end and the other.

D. B. Go Slide 9 AME 60634 Int. Heat Trans. Thermoelectric Devices

http://www.energybandgap.com

D. B. Go Slide 10 AME 60634 Int. Heat Trans. Peltier Coolers

T , q c c Ideal Device: • No conduction (hot to cold) • No

qc = (Π p − Πn )×i

Real Device: • conduction (hot to cold) Th, qh • Joule heating

2 qc = (Π p − Πn )i −i R 2 −σ cond (Th −Tc )

electrical resistance thermal conductance A k A k L L σ = p p + n n R p n cond = + Lp Ln Apσ p Anσ n

D. B. Go Slide 11 AME 60634 Int. Heat Trans. Peltier Coolers: Performance

Voltage Drop: Sp − Sn Real Device: V = iR + • conduction (hot to cold) Th −Tc • Joule heating

Coefficient of Performance: S S iT i2 R 2 T T qc ( p − n ) c − −σ cond ( h − c ) COP = = 2 W (Sp − Sn )i(Th −Tc ) +i R

Optimal Current to Maximize COP:

1 Tc 1+ ZTM −Th Tc COP = Tm = (Th +Tc ) max 2 (Th −Tc ) 1+ ZTM +1

D. B. Go Slide 12 AME 60634 Int. Heat Trans. The Z Parameter

2 2 S − S S − S Z = ( p n ) = ( p n ) R " %" % σ cond Lp Ln Apkp Ankn $ + '$ + ' # Apσ p Anσ n &# Lp Ln &

To Maximize Z:

1 ! $2 ! $ 2 k k Ln Ap σ k Rσ = # p + p & when = # n n & ( cond )min # & L A #σ k & " σ p σ p % p n " p p %

Leading to Z: 2 (Sp − Sn ) Zmax = 2 k k ( p σ p + n σ n ) D. B. Go Slide 13 AME 60634 Int. Heat Trans. Figure of Merit: ZT

For a Single Material:

2 σ S T increase electrical conductivity ZT = k decrease thermal losses (conduction)

D. B. Go http://chemgroups.northwestern.edu/kanatzidis/greatthermo.html Slide 14 AME 60634 Int. Heat Trans. Superlattice

increase electrical conductivity decrease thermal losses (conduction) 2 2 2 σ S T constrained by k π kB ZT = Widemann-Franz = 2 k σT 3q

σ S2T ZT = kelec + kphonon

http://lucidthoughts.com.au/ D. B. Go Slide 15 AME 60634 Int. Heat Trans.

http://www.kickstarter.com/projects/flamestower/flamestower-charge-your-gear-with-fire

http://energyblog.nationalgeographic.com/2013/09/24/google-science-fair-winner-makes-flashlight-powered- by-body-heat/

http://www.customthermoelectric.com/

D. B. Go Slide 16