E8e “Hall Effect”

Total Page:16

File Type:pdf, Size:1020Kb

E8e “Hall Effect” Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E8e “Hall Effect” Tasks 1. Measure the Hall voltage and the longitudinal voltage of a Germanium sample at constant temperature and constant current as a function of the applied magnetic field. Plot both Hall voltage and longitudinal voltage as a function of the magnetic field. Determine the Hall constant as well as the zero field conductivity of the sample. Further determine the carrier density and the mobility. What conclusions can you draw on the charge carrier type? 2. Measure the longitudinal voltage of the Germanium sample at a constant current in zero magnetic field B = 0 as a function of temperature. Determine the band gap. Literature Physikalisches Praktikum, 13. Auflage, Hrsg. W. Schenk, F. Kremer, Elektrizitätslehre, 1.0.1, 2.4 Physics, P. A. Tipler, 3rd Edition, Vol. 2, 22-1, 22-2, 22-5, 24-4 Accessories Germanium sample on an integrated circuit board with heater and thermocouple, Teslameter with Hall field sensor, electromagnet, laboratory power supplies, digital multimeters Keywords for preparation - Conduction processes in metals and semiconductors, conductivity, mobility - Moving charges in a magnetic field (Lorentz force) - Hall Effect, Hall voltage, Hall constant - Practical applications of the Hall Effect - Temperature dependence of the conductivity of semiconductors - Thermoelectric effect, thermocouple 1 Remarks As shown in Fig. 1, the Germanium sample is mounted on a circuit board with the contacts for the measurement of the longitudinal voltage (2.1, 2.2, 2.3) and the Hall voltage (3) already attached. Further a sample heater (heating coil with contacts 4 embedded in the circuit board) and a thermocouple with contacts (7) are integrated into the circuit board. These boards are comparatively expensive and can be easily destroyed by erroneous electrical wiring. Therefore, electrical connections should be wired up deliberately and carefully. All circuitry may only be set up after some instruction by the supervisor and with all power supplies being switched off. Measurements are only to be started after the circuits were checked by the supervisor. Special care has to be devoted to the heater electrical connections in task 2. Especially, the temperature of the semiconductor must not exceed 150°C and the magnetic field sensor of the Teslameter must not be exposed to a temperature above 50°C, i.e. in case of measurements above 50°C the magnetic field sensor must be removed from the heated sample area. Fig. 1. Hall circuit board with contacts. In task 1, the semiconductor sample with dimensions 20 mm x 10 mm x 1 mm that is mounted on the circuit board as shown in Fig. 1, is placed between the removable pole shoes of an electromagnet. Close to the semiconductor sample the magnetic field sensor of the Teslameter should be positioned, in order to obtain an accurate measurement of the local magnetic field. The elements of the circuit board as well as the electromagnet have to be wired up with appropriate cables; care has to be taken when inserting electrical plugs into the sockets on the board, by exerting a certain counter pressure onto the backside. After the wiring is finished, the pole shoes are careful put into place, without touching the 2 semiconductor sample. In this experiment four digital multimeters are used. One multimeter each is used for the measurement of the Hall voltage across the contacts 3 and the longitudinal voltage at the contacts 2.1 and 2.2, respectively. The third multimeter is used for the measurement of the current through the semiconductor; the respective laboratory power supply is connected to the contacts 2.1 and 2.3. Between contacts 2.2 and 2.3 a compensation circuit is located that serves to compensate the offset voltage between the contacts 3 that is still there in zero magnetic field (B = 0) and that is caused by a slight misalignment of the Hall contacts. The fourth multimeter is used to control the current through the electromagnet (warning: set to measuring range 20 A). After a check of the circuitry by the supervisor a sample current I = 30 mA is set with the laboratory power supply by applying a voltage between 12 V and maximally 30 V to the contacts 2.1 and 2.3. Since the sample resistance weakly depends on the magnetic field, the sample current must be readjusted during measurements. Hall voltage and longitudinal voltage are measured at room temperature as a function of the magnetic field B. The current is supplied to the electromagnet with an adjustable laboratory power supply, never exceeding the maximum current rating of the coils of 4 A. Measure for positive and negative values of the magnetic field (reversing polarity by replugging the cables at the magnet power supply). Plot the Hall voltage UH as a function of the magnetic field and determine the charge carrier density. Try to draw any conclusions on the type of the charge carriers. Further, plot the magnetoresistance (R-R0)/R0 (R0: sample resistance at B = 0).as a function of magnetic field. Calculate the conductivity from the resistance measured at zero magnetic field; calculate further the mobility. Determine the number of donor/acceptor atoms per Germanium atom using the following -3 -1 values: Ge= 5.32 g cm , MGe= 72.6 g mol . In task 2 the circuit board is removed from the vicinity of the electromagnet and magnetic field sensor. Under no circumstances the magnetic field sensor of the Teslameter should be close to the hot circuit board (danger of thermal destruction). The semiconductor sample is heated by the integrated sample heater. To this end, the laboratory power supply that was used to supply the magnet current in task 1 is now connected to the heater contacts (not to the thermocouple contacts!). The sample is heated up to a maximum temperature of 150°C, where the sample temperature is measured with the integrated thermocouple. The heater current should be slowly increased with increasing temperature (increasing thermocouple voltage), until the thermocouple voltage reaches 5.5 mV or the temperature is 150°C. The heater current is then decreased in steps and the longitudinal sample voltage is measured on cooling. The sample temperature might be calculated from the thermocouple equation U TTTh , (1) a r 3 where Tr denotes room temperature and a the Seebeck coefficient of the Cu/CuNi thermocouple (a= 40 V/K). Since this is a standard thermocouple, the conversion from thermocouple voltage to temperature might be done by a digital multimeter using a standard calibration table; in this case chose the setting “°C” on the multimeter. The analysis is done graphically. Plot the logarithm of the reciprocal sample voltage as a function of the reciprocal absolute temperature and determine the band gap from the slope of this graph. Hall Effect Fig. 2. Schematic representation of the Hall Effect of a long, thin, rectangular sample. The magnetic field B is applied perpendicular to the large sample face along the z-axis. The Hall electric field is generated between the sample edges perpendicular to the magnetic field. Figure 2 shows the typical configuration of a Hall Effect measurement. A current I flows through a long, thin, rectangular sample, i.e. the current density j points along the x-axis. Perpendicular to the large sample face and therefore perpendicular to the current density a magnetic field B is applied along the z-axis. The resulting Lorentz force F qv B (2) deflects the charge carriers along the y-axis. The charge carriers accumulate at the sample edge and generate an electric field EH, such that the Lorentz force is just compensated: qv B qEH . (3) With the relations j qnv I j() wd (4) UHH E w One immediately obtains the Hall constant U 1 RdH , (5) H IB qn that has the same sign as the charge of the prevailing charge carrier type (electrons or 4 holes). The equations might be written in a slightly different way. With the definition of the resistivity by Ej , (6) where E denotes the longitudinal electric field, and after conversion of Eq. (5) to EHHH() R B j j (7) one obtains in compact notation Ejx Ej H xx xy x . (8) Ejy EHH 0 yx yy y Besides the diagonal component xx the magnetic field generates an off-diagonal component yx of the resistivity tensor. From Eq. (8) the denotations longitudinal voltage for the sample voltage and transverse voltage for the Hall voltage become clear. Temperature dependence of the conductivity In the regime of intrinsic conduction the conductivity has a thermally activated form: Eg 0 exp , (9) 2kTB where denotes the conductivity, Eg the band gap, kB Boltzmann’s constant and T the temperature. If the logarithm of the conductivity is plotted against the reciprocal temperature, the band gap might be determined from the slope. Mobility The conductivity is related to the charge carrier mobilities n or p as well as the charge carrier concentrations n or p (n for electrons and p for holes): ne np pe . (10) If one charge carrier type dominartes the conduction processes, one obtains the simplified equations: R , R . (11) nHne pH pe 5 .
Recommended publications
  • Week 10: Oct 27, 2016 Preamble to Quantum Hall Effect: Exotic
    Week 10: Oct 27, 2016 Preamble to Quantum Hall Effect: Exotic Phenomenon in Quantum Physics The quantum Hall effect is one of the most remarkable of all quantum-matter phenomena, quite unanticipated by the physics community at the time of its discovery in 1980. This very surprising discovery earned von Klitzing the Nobel Prize in physics in 1985. The basic experimental observation is the quantization of resistance, in two-dimensional systems, to an extreme precision, irrespective of the sample’s shape and of its degree of purity. This intriguing phenomenon is a manifestation of quantum mechanics on a macroscopic scale, and for that reason, it rivals superconductivity and Bose–Einstein condensation in its fundamental importance. As we will see later in this class, that this effect is an example of Berry phase and the “quanta” that appear in the quantization of Hall conductivity are the topological integers that emerge from quantum analog of Gauss-Bonnet theorem. This years Nobel prize to David Thouless is for explaining this exotic quantization in terms of topology. It turns out that the classical and quantum anholonomy are described by the same mathematics. To understand that, we need to introduce the concept of “curvature. As we know, it is the curved space that leads to anholonomy in classical physics. This allows us to define curvature in quantum physics. That is, using the concept of anholonomy in quantum physics, we can define the concept of curvature in quantum physics – that is, in Hilbert space. Curvature leads us to Topological Invariants that tells us that anholonomy may have its roots in topology.
    [Show full text]
  • Seebeck and Peltier Effects V
    Seebeck and Peltier Effects Introduction Thermal energy is usually a byproduct of other forms of energy such as chemical energy, mechanical energy, and electrical energy. The process in which electrical energy is transformed into thermal energy is called Joule heating. This is what causes wires to heat up when current runs through them, and is the basis for electric stoves, toasters, etc. Electron diffusion e e T2 e e e e e e T2<T1 e e e e e e e e cold hot I - + V Figure 1: Electrons diffuse from the hot to cold side of the metal (Thompson EMF) or semiconductor leaving holes on the cold side. I. Seebeck Effect (1821) When two ends of a conductor are held at different temperatures electrons at the hot junction at higher thermal velocities diffuse to the cold junction. Seebeck discovered that making one end of a metal bar hotter or colder than the other produced an EMF between the two ends. He experimented with junctions (simple mechanical connections) made between different conducting materials. He found that if he created a temperature difference between two electrically connected junctions (e.g., heating one of the junctions and cooling the other) the wire connecting the two junctions would cause a compass needle to deflect. He thought that he had discovered a way to transform thermal energy into a magnetic field. Later it was shown that a the electron diffusion current produced the magnetic field in the circuit a changing emf V ( Lenz’s Law). The magnitude of the emf V produced between the two junctions depends on the material and on the temperature ΔT12 through the linear relationship defining the Seebeck coefficient S for the material.
    [Show full text]
  • Topological Insulators Physicsworld.Com Topological Insulators This Newly Discovered Phase of Matter Has Become One of the Hottest Topics in Condensed-Matter Physics
    Feature: Topological insulators physicsworld.com Topological insulators This newly discovered phase of matter has become one of the hottest topics in condensed-matter physics. It is hard to understand – there is no denying it – but take a deep breath, as Charles Kane and Joel Moore are here to explain what all the fuss is about Charles Kane is a As anyone with a healthy fear of sticking their fingers celebrated by the 2010 Nobel prize – that inspired these professor of physics into a plug socket will know, the behaviour of electrons new ideas about topology. at the University of in different materials varies dramatically. The first But only when topological insulators were discov- Pennsylvania. “electronic phases” of matter to be defined were the ered experimentally in 2007 did the attention of the Joel Moore is an electrical conductor and insulator, and then came the condensed-matter-physics community become firmly associate professor semiconductor, the magnet and more exotic phases focused on this new class of materials. A related topo- of physics at University of such as the superconductor. Recent work has, how- logical property known as the quantum Hall effect had California, Berkeley ever, now uncovered a new electronic phase called a already been found in 2D ribbons in the early 1980s, and a faculty scientist topological insulator. Putting the name to one side for but the discovery of the first example of a 3D topologi- at the Lawrence now, the meaning of which will become clear later, cal phase reignited that earlier interest. Given that the Berkeley National what is really getting everyone excited is the behaviour 3D topological insulators are fairly standard bulk semi- Laboratory, of materials in this phase.
    [Show full text]
  • Thermoelectric Effect Peltier Seebeck and Thomson Uri Lachish, Guma Science
    New: On Jupiter as an Exoplanet Blue Marble the Uniform Earth Image Particles in a box Thermoelectric Effect Peltier Seebeck and Thomson Uri Lachish, guma science Abstract: A simple model system is generated to derive explicit thermoelectric effect expressions for Peltier, Seebeck and, Thomson. The model applies an n-type semiconductor junction with two different charge-carrier concentration nL and nR. Peltier effect and Seebeck effect are calculated by applying a reversible closed Carnot cycle, and Thomson effect by the Boltzmann transport equation. Peltier's heat rate for the electric current I is: 푑푄⁄푑푡 = (훱퐴 − 훱퐵)퐼. Peltier's coefficients calculated by the model are: 훱퐴 = 푘푇푙푛(푛퐿) 훱퐵 = 푘푇푙푛(푛푅). Seebeck's EMF of two junctions at different temperatures TH and TC is: 푉 = −푆(푇퐻 − 푇퐶). Seebeck's coefficient calculated by the model is: 푆 = 푘 ln(푛퐿⁄푛푅). Thomson's heat rate for the current density J is: 푑푞⁄푑푡 = −퐾 퐽 훥푇. Thomson's coefficient calculated by the model is: 퐾 = (3⁄2)푘. Peltier effect and Seebeck effect are reversible thermodynamic processes. Thomson's (Kelvin's) second relation 퐾 = 푇 푑푆/푑푇 does not comply with the calculated coefficients. 1. Background The Peltier effect is the production or absorption of heat at a junction between two different conductors when electric charge flows through it [1]. The rate dQ/dt of heat produced or absorbed at a junction between conductors A and B is: 푑푄⁄푑푡 = (훱퐴 − 훱퐵)퐼, (1) where I is the electric current and A,B are Peltier's coefficients of the conductors.
    [Show full text]
  • Phonon Effects in the Thermoelectric Power of Impure Metals
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Kirill Belashchenko Publications Research Papers in Physics and Astronomy 1998 Phonon effects in the thermoelectric power of impure metals Kirill D. Belashchenko Kurchatov Institute, [email protected] D V Livanov Moscow Institute of Steel and Alloys Follow this and additional works at: https://digitalcommons.unl.edu/physicsbelashchenko Belashchenko, Kirill D. and Livanov, D V, "Phonon effects in the thermoelectric power of impure metals" (1998). Kirill Belashchenko Publications. 3. https://digitalcommons.unl.edu/physicsbelashchenko/3 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kirill Belashchenko Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Phys.: Condens. Matter 10 (1998) 7553–7566. Printed in the UK PII: S0953-8984(98)92208-1 Phonon effects in the thermoelectric power of impure metals K D Belashchenko and D V Livanov † ‡ Russian Research Center, ‘Kurchatov Institute’, Moscow 123182, Russia † Moscow Institute of Steel and Alloys, Leninskii Prospect 4, Moscow 117936, Russia ‡ Received 4 March 1998, in final form 5 June 1998 Abstract. Using the quantum transport equations for interacting electrons and phonons we study the phonon effects in the thermoelectric transport in impure metals. The contributions of both equilibrium phonons (the diffusive part) and non-equilibrium phonons (the drag effect) are investigated. We show that the drag effect which dominates in the thermopower of pure samples is strongly suppressed even by a small impurity concentration owing to the inelastic electron– impurity scattering processes.
    [Show full text]
  • Understanding & Applying Hall Effect Sensor Datasheets
    Application Report SLIA086 – July 2014 Understanding & Applying Hall Effect Sensor Datasheets Ross Eisenbeis Motor Drive Business Unit ABSTRACT Hall effect sensors measure magnetic fields, and their datasheet parameters can initially be difficult to understand and apply toward system design. This article provides a baseline of information. Units A magnet produces a magnetic field that travels from the North pole to the South pole. The total amount of field through a 2-dimensional slice is the “flux”, in units of weber. Webers per square meter describes flux density, in units of tesla (T). The unit of gauss (G) also describes flux density, where 1 T = 10000 G. In millitesla, 1 mT = 10 G. Tesla is the official SI unit, and it’s used by TI datasheets, but many other sources use gauss. Practical Concepts The closer you are to a magnet, the higher the flux density. The flux density at the surface of the magnet depends on its material and the magnetization amount. Typical magnets have surface fields between 40 to 600 mT. At a given distance, physically large magnets project a larger flux density. Polarity The symbol “B” is used for flux density. TI Hall sensors use the convention that magnetic fields traveling from the bottom of the device through the top are “positive B”, and fields traveling from the top to the bottom of the device are “negative B”. Only the perpendicular vector component of the magnetic field is sensed by the internal element. N S S N B > 0 mT B < 0 mT Figure 1. Polarity of field directions 1 Digital Hall Sensor Functionality Digital Hall Sensor Functionality Digital Hall sensors have an open-drain output that pulls Low if B exceeds the threshold BOP (the Operate Point).
    [Show full text]
  • Hall Effect Metamaterials: Guiding Fields in the Unit Cell
    Hall effect metamaterials: guiding fields in the unit cell Marc Briane, Rennes, France Christian Kern, KIT, Germany Muamer Kadic, FEMTO-ST, France Graeme Milton, University of Utah Martin Wegener, KIT, Germany Group of Martin Wegener Group of Julia Greer Wegener (2018): Metamaterials are rationally designed composites made of tailored building blocks or unit cells, which are composed of one or more constituent bulk materials. The metamaterial properties go beyond those of the ingredient materials – qualitatively or quantitatively. With an addition: ….The properties of the metamaterial can be mapped onto effective-medium parameters Metamaterials are not new: -Dispersions of metallic particles for optical effects in stained glasses (Maxwell-Garnett, 1904 ) -Bubbly fluids for absorbing sound (masking submarine prop. noise) -Split ring resonators for artificial magnetic permeability (Schelkunoff and Friis, 1952) -Wire metamaterials with artificial electric permittivity (Brown, 1953) -Metamaterials with negative and anisotropic mass densities (Auriault and Bonnet, 1985, 1994) -Metamaterials with negative Poisson’s ratio (Lakes 1987, Milton 1992) What is new is the unprecedented ability to tailor-make structures the explosion of interest, and the variety of emerging novel directions. One can get a similar effect for poroelasticity Qu, et.al 2017 New classes of elastic materials (with Cherkaev, 1995) Like a fluid it only supports one loading, unlike a fluid that loading may be anisotropic. Desired support of a given anisotropic loading is achieved by moving P to another position in the unit cell. KEY POINT is the coordination number of 4 at each vertex: the tension in one double cone connector, by balance of forces, determines uniquely the tension in the other 3 connecting double cones, and by induction the entire average stress field in the material.
    [Show full text]
  • Generation of Self-Sustainable Electrical Energy for the Unidad Central Del Valle Del Cauca, by the Use of Peltier Cells
    International Journal of Renewable Energy Sources Jorge Antonio Vélez Ramírez et al. http://www.iaras.org/iaras/journals/ijres GENERATION OF SELF-SUSTAINABLE ELECTRICAL ENERGY FOR THE UNIDAD CENTRAL DEL VALLE DEL CAUCA, BY THE USE OF PELTIER CELLS JORGE ANTONIO VÉLEZ RAMÍREZ1; WILLIAM FERNANDO ARISTIZABAL CARDONA2; JAVIER BENAVIDES BUCHELLI3. Engineering faculty Unidad Central del Valle del Cauca COLOMBIA Cra 21 #21151, Tuluá, Valle del Cauca [email protected], [email protected], [email protected] Abstract: - It is proposed to generate self-sustainable electrical energy taking advantage of the environment’s natural conditions in the Unidad Central del Valle del Cauca (UCEVA). This, by the use of the so-called Peltier Cells, which have the capacity to generate electricity from a thermal gradient, thanks to the properties of the Seebeck, Peltier, Joule and Thompson effects, for semiconductor materials, being these the main theoretical references in this research project. To carry out this idea, it is proposed to design, build and characterize a floating device initially made up by Peltier Cells. Likewise, it is aimed to place on the lake in the university campus in order to take advantage of both the low temperatures of this water reservoir and the high temperatures generated by direct exposure to sunlight turning those opposite temperatures into a source of energy. That energy will provide a certain area adjacent to the lake not before expanding the studies related to the effects mentioned above and other principles of thermoelectricity. This research project will open the doors to a relatively new branch of renewable energies, thermoelectricity, both for the UCEVA and for the scientific community in Tuluá and Valle del Cauca.
    [Show full text]
  • Application Information Hall-Effect IC Applications Guide
    Application Information Hall-Effect IC Applications Guide Allegro™ MicroSystems uses the latest integrated circuit Sensitive Circuits for Rugged Service technology in combination with the century-old Hall The Hall-effect sensor IC is virtually immune to environ- effect to produce Hall-effect ICs. These are contactless, mental contaminants and is suitable for use under severe magnetically activated switches and sensor ICs with the service conditions. The circuit is very sensitive and provides potential to simplify and improve electrical and mechanical reliable, repetitive operation in close-tolerance applications. systems. Applications Low-Cost Simplified Switching Applications for Hall-effect ICs include use in ignition sys- Simplified switching is a Hall sensor IC strong point. Hall- tems, speed controls, security systems, alignment controls, effect IC switches combine Hall voltage generators, signal micrometers, mechanical limit switches, computers, print- amplifiers, Schmitt trigger circuits, and transistor output cir- ers, disk drives, keyboards, machine tools, key switches, cuits on a single integrated circuit chip. The output is clean, and pushbutton switches. They are also used as tachometer fast, and switched without bounce (an inherent problem with pickups, current limit switches, position detectors, selec- mechanical switches). A Hall-effect switch typically oper- tor switches, current sensors, linear potentiometers, rotary ates at up to a 100 kHz repetition rate, and costs less than encoders, and brushless DC motor commutators. many common electromechanical switches. The Hall Effect: How Does It Work? Efficient, Effective, Low-Cost Linear Sensor ICs The basic Hall element is a small sheet of semiconductor The linear Hall-effect sensor IC detects the motion, position, material, referred to as the Hall element, or active area, or change in field strength of an electromagnet, a perma- represented in figure 1.
    [Show full text]
  • A Review on Thermoelectric Generators: Progress and Applications
    energies Review A Review on Thermoelectric Generators: Progress and Applications Mohamed Amine Zoui 1,2 , Saïd Bentouba 2 , John G. Stocholm 3 and Mahmoud Bourouis 4,* 1 Laboratory of Energy, Environment and Information Systems (LEESI), University of Adrar, Adrar 01000, Algeria; [email protected] 2 Laboratory of Sustainable Development and Computing (LDDI), University of Adrar, Adrar 01000, Algeria; [email protected] 3 Marvel Thermoelectrics, 11 rue Joachim du Bellay, 78540 Vernouillet, Île de France, France; [email protected] 4 Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans No. 26, 43007 Tarragona, Spain * Correspondence: [email protected] Received: 7 June 2020; Accepted: 7 July 2020; Published: 13 July 2020 Abstract: A thermoelectric effect is a physical phenomenon consisting of the direct conversion of heat into electrical energy (Seebeck effect) or inversely from electrical current into heat (Peltier effect) without moving mechanical parts. The low efficiency of thermoelectric devices has limited their applications to certain areas, such as refrigeration, heat recovery, power generation and renewable energy. However, for specific applications like space probes, laboratory equipment and medical applications, where cost and efficiency are not as important as availability, reliability and predictability, thermoelectricity offers noteworthy potential. The challenge of making thermoelectricity a future leader in waste heat recovery and renewable energy is intensified by the integration of nanotechnology. In this review, state-of-the-art thermoelectric generators, applications and recent progress are reported. Fundamental knowledge of the thermoelectric effect, basic laws, and parameters affecting the efficiency of conventional and new thermoelectric materials are discussed. The applications of thermoelectricity are grouped into three main domains.
    [Show full text]
  • A Physics-Based Compact Model for Thermoelectric Devices Kyle Jeffrey Conrad Purdue University
    Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations Winter 2015 A physics-based compact model for thermoelectric devices Kyle Jeffrey Conrad Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Part of the Electrical and Computer Engineering Commons Recommended Citation Conrad, Kyle Jeffrey, "A physics-based compact model for thermoelectric devices" (2015). Open Access Theses. 539. https://docs.lib.purdue.edu/open_access_theses/539 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. A PHYSICS-BASED COMPACT MODEL FOR THERMOELECTRIC DEVICES A Thesis Submitted to the Faculty of Purdue University by Kyle Conrad In Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical and Computer Engineering May 2015 Purdue University West Lafayette, Indiana ii I would like to dedicate this to alot of people: Jeff, Lindy, Kevin, Wolf, Tor, Mark, Debbie, Brenden, Charley, Levi, Matt, Mike, Nate, Tristan, and Tyler iii ACKNOWLEDGMENTS First, I would like to thank Professor Lundstrom for all that he has done to help me along the way. From the moment that I walked into his office asking "to get my feet wet" in a research project he has given me incredible opportunities and been a great teacher both inside and outside the classroom. He has always been there to help guide and motivate me along the way, and done so with an excellent attitude that has been a constant source of encouragement. I would also like to give sincere thanks to Dr.
    [Show full text]
  • Quantum Hall Effect
    Preprint typeset in JHEP style - HYPER VERSION January 2016 The Quantum Hall Effect TIFR Infosys Lectures David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/qhe.html [email protected] arXiv:1606.06687v2 [hep-th] 20 Sep 2016 –1– Abstract: There are surprisingly few dedicated books on the quantum Hall effect. Two prominent ones are Prange and Girvin, “The Quantum Hall Effect” • This is a collection of articles by most of the main players circa 1990. The basics are described well but there’s nothing about Chern-Simons theories or the importance of the edge modes. J. K. Jain, “Composite Fermions” • As the title suggests, this book focuses on the composite fermion approach as a lens through which to view all aspects of the quantum Hall effect. It has many good explanations but doesn’t cover the more field theoretic aspects of the subject. There are also a number of good multi-purpose condensed matter textbooks which contain extensive descriptions of the quantum Hall effect. Two, in particular, stand out: Eduardo Fradkin, Field Theories of Condensed Matter Physics • Xiao-Gang Wen, Quantum Field Theory of Many-Body Systems: From the Origin • of Sound to an Origin of Light and Electrons Several excellent lecture notes covering the various topics discussed in these lec- tures are available on the web. Links can be found on the course webpage: http://www.damtp.cam.ac.uk/user/tong/qhe.html. Contents 1. The Basics 5 1.1 Introduction 5 1.2 The Classical Hall Effect 6 1.2.1 Classical Motion in a Magnetic Field 6 1.2.2 The Drude Model 7 1.3 Quantum Hall Effects 10 1.3.1 Integer Quantum Hall Effect 11 1.3.2 Fractional Quantum Hall Effect 13 1.4 Landau Levels 14 1.4.1 Landau Gauge 18 1.4.2 Turning on an Electric Field 21 1.4.3 Symmetric Gauge 22 1.5 Berry Phase 27 1.5.1 Abelian Berry Phase and Berry Connection 28 1.5.2 An Example: A Spin in a Magnetic Field 32 1.5.3 Particles Moving Around a Flux Tube 35 1.5.4 Non-Abelian Berry Connection 38 2.
    [Show full text]