A Review on Thermoelectric Generators: Progress and Applications

Total Page:16

File Type:pdf, Size:1020Kb

A Review on Thermoelectric Generators: Progress and Applications energies Review A Review on Thermoelectric Generators: Progress and Applications Mohamed Amine Zoui 1,2 , Saïd Bentouba 2 , John G. Stocholm 3 and Mahmoud Bourouis 4,* 1 Laboratory of Energy, Environment and Information Systems (LEESI), University of Adrar, Adrar 01000, Algeria; [email protected] 2 Laboratory of Sustainable Development and Computing (LDDI), University of Adrar, Adrar 01000, Algeria; [email protected] 3 Marvel Thermoelectrics, 11 rue Joachim du Bellay, 78540 Vernouillet, Île de France, France; [email protected] 4 Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans No. 26, 43007 Tarragona, Spain * Correspondence: [email protected] Received: 7 June 2020; Accepted: 7 July 2020; Published: 13 July 2020 Abstract: A thermoelectric effect is a physical phenomenon consisting of the direct conversion of heat into electrical energy (Seebeck effect) or inversely from electrical current into heat (Peltier effect) without moving mechanical parts. The low efficiency of thermoelectric devices has limited their applications to certain areas, such as refrigeration, heat recovery, power generation and renewable energy. However, for specific applications like space probes, laboratory equipment and medical applications, where cost and efficiency are not as important as availability, reliability and predictability, thermoelectricity offers noteworthy potential. The challenge of making thermoelectricity a future leader in waste heat recovery and renewable energy is intensified by the integration of nanotechnology. In this review, state-of-the-art thermoelectric generators, applications and recent progress are reported. Fundamental knowledge of the thermoelectric effect, basic laws, and parameters affecting the efficiency of conventional and new thermoelectric materials are discussed. The applications of thermoelectricity are grouped into three main domains. The first group deals with the use of heat emitted from a radioisotope to supply electricity to various devices. In this group, space exploration was the only application for which thermoelectricity was successful. In the second group, a natural heat source could prove useful for producing electricity, but as thermoelectricity is still at an initial phase because of low conversion efficiency, applications are still at laboratory level. The third group is progressing at a high speed, mainly because the investigations are funded by governments and/or car manufacturers, with the final aim of reducing vehicle fuel consumption and ultimately mitigating the effect of greenhouse gas emissions. Keywords: thermoelectric generator; figure of merit; thermoelectric materials; nanostructuring 1. Introduction The supply of healthy and non-polluting energy is one of today’s major concerns. Fossil fuels currently make up the largest contribution to global energy production. These energy sources are polluting, they emit greenhouse gases and, furthermore, will run out in a few decades’ time [1]. The only current competitor is nuclear power, but the fatal risks involved in nuclear operation, as seen in the nuclear accident at the Fukushima Daiichi power plant (Japan) in March 2011, have limited any expansion or development in the nuclear sector [2]. It is essential for future generations to reduce the quantity of global energy consumed, and this can only be achieved through technological development and the use of diversified renewable energy Energies 2020, 13, 3606; doi:10.3390/en13143606 www.mdpi.com/journal/energies Energies 2020, 13, 3606 2 of 32 sources, i.e., solar, wind and hydropower, in addition to the energy sources currently used [3]. Among these different energy sources, thermoelectricity is currently emerging as a common and promising alternative energy source for the future [4]. Thermoelectric materials have the specific capacity of converting a flow of heat into electrical energy (Seebeck effect) and vice versa (Peltier effect) [5]. Their use is becoming of more interest, as they offer the advantages of recycling waste energy. This means transforming the heat from industry or road transport into electricity, thus increasing system efficiency and decreasing operating costs and environmental pollution. To cite an example of the heat involved, the temperature of exhaust gases emitted from vehicle engines, biomass combustion systems and matrix-stabilized porous medium combustion can reach 500 ◦C, while the operating temperature of micro-turbine power cycles can rise to 600 ◦C, and even to 900 ◦C in the case of a solar energy receiver [6]. Thermoelectric devices are particularly reliable, silent, and do not generate vibrations since their operation does not require the contribution of mechanical energy [7]. For these reasons, major efforts have been carried out, using new materials, to develop the technology of thermoelectric systems. It was during the 1960s that the most important research programs, using semiconductor materials, were carried out in this field [8]. Since the discovery of thermoelectricity (TE) in 1821 by Seebeck [9], researchers have been trying to understand and control this phenomenon. Peltier did exactly this in 1834 by discovering the opposite effect [10], and Lord Calvin in 1851 formulated the laws that link these two phenomena [11]. In the following century, in 1909, Edmund Altenkirch [12] correctly calculated, for the first time, the energy efficiency of a thermoelectric generator now known as figure of merit (ZT), and two years later that of thermoelectricity in cooling mode [13]. In 1912, Altenkirch invented a thermoelectric heating and cooling apparatus [14], which was later succeeded by several other prototypes developed by various scientists and companies. Unfortunately, these attempts to produce a practical refrigerator failed due to the lack of suitable materials [15]. It is worth note that a ZT > 3 for refrigeration and ZT > 2 for power generation is required to replace a conventional energy system [16]. In 1950, Abram Ioffe discovered the thermoelectric properties of semiconductors [17], which opened up new projections for thermoelectricity with a figure of merit ZT close to 1. This value was still low, but acceptable enough for some inventors and industrialists to design new applications to be commercialized. One such application was the thermoelectric refrigerator designed by Becket et al. in 1956 [18]. In the same decade the idea of thermoelectric generators emerged, such as Ioffé’s thermoelectric lamp in 1957, which fed a radio by recovering the heat released by the lamp. In 1993, Hicks and Mildred Dresselhaus [19] showed that quantum-well superlattice structures (small dimensions of matter) could affect thermoelectricity by reducing phonon thermal conductivity, and therefore improving the ZT by a factor of 13. As a result, a new era in thermoelectricity was launched and gave rise to an exponential increase in the number of research projects being carried out into thermoelectricity (Figure1)[20]. EnergiesEnergies2020 2020, ,13 13,, 3606 x FOR PEER REVIEW 33 of of 32 34 Figure 1. Open literature publications on the Web of Science database with the keyword “thermoelectric” asFigure a percentage 1. Open of allliterature publications publications on the database on the for Web each of year Science from 1955 database to 2003 with [20]. the keyword “thermoelectric” as a percentage of all publications on the database for each year from 1955 to 2003 2. Thermoelectric[20]. Modules To extend the use of thermoelectricity, it was essential to manufacture standard thermoelectric modules2. Thermoelectric of different Modules sizes, accessible to all. In 1959 the General Electric company commercialized [21] thermoelectricTo extend modules the use composedof thermoelectricity, of 36 couples it ofwas bismuth essential telluride to manufacture in flat bulk architecture.standard thermoelectric Nowadays, theremodules are dozensof different of companies sizes, accessible all over to the all. world In 1959 that the manufacture General Electric TE modules. company Some commercialized of these are listed[21] thermoelectric in [22]. modules composed of 36 couples of bismuth telluride in flat bulk architecture. Nowadays,A typical there thermoelectric are dozens generatorof companies (TEG) all moduleover the consistsworld that of between manufacture 10 and TE 100 modules. thermoelectric Some of elementsthese are of listed type in n and[22]. type p, electrically connected in series and thermally in parallel, and interposed betweenA typical two ceramic thermoelectric layers, generator as shown (TEG) in Figure module2. The consists p–n pairs of between are joined 10 and by 100 conductive thermoelectric tabs connectedelements toof thetype elements n and viatype a low p, meltingelectrically point connected solder (PbSn in series or BiSn). and When thermally a temperature in parallel, gradient and occursinterposed between between its two two junctions, ceramic thelayers, TEG as converts shown in thermal Figure energy2. The p–n into pairs electrical are joined energy by according conductive to thetabs principle connected of theto the Seebeck elements effect. via This a low flat melting bulk architecture point solder is the(PbSn most or widelyBiSn). When used anda temperature marketed. However,gradient occurs in some between applications its two a flat junctions, shape is notthe practical.TEG converts This isthermal because energy of the diintofficulty electrical in adapting energy theaccording heat source to the to theprinciple thermoelectric of the Seebeck
Recommended publications
  • Avionics Thermal Management of Airborne Electronic Equipment, 50 Years Later
    FALL 2017 electronics-cooling.com THERMAL LIVE 2017 TECHNICAL PROGRAM Avionics Thermal Management of Advances in Vapor Compression Airborne Electronic Electronics Cooling Equipment, 50 Years Later Thermal Management Considerations in High Power Coaxial Attenuators and Terminations Thermal Management of Onboard Charger in E-Vehicles Reliability of Nano-sintered Silver Die Attach Materials ESTIMATING INTERNAL AIR ThermalRESEARCH Energy Harvesting ROUNDUP: with COOLING TEMPERATURE OCTOBERNext Generation 2017 CoolingEDITION for REDUCTION IN A CLOSED BOX Automotive Electronics UTILIZING THERMOELECTRICALLY ENHANCED HEAT REJECTION Application of Metallic TIMs for Harsh Environments and Non-flat Surfaces ONLINE EVENT October 24 - 25, 2017 The Largest Single Thermal Management Event of The Year - Anywhere. Thermal Live™ is a new concept in education and networking in thermal management - a FREE 2-day online event for electronics and mechanical engineers to learn the latest in thermal management techniques and topics. Produced by Electronics Cooling® magazine, and launched in October 2015 for the first time, Thermal Live™ features webinars, roundtables, whitepapers, and videos... and there is no cost to attend. For more information about Technical Programs, Thermal Management Resources, Sponsors & Presenters please visit: thermal.live Presented by CONTENTS www.electronics-cooling.com 2 EDITORIAL PUBLISHED BY In the End, Entropy Always Wins… But Not Yet! ITEM Media 1000 Germantown Pike, F-2 Jean-Jacques (JJ) DeLisle Plymouth Meeting, PA 19462 USA
    [Show full text]
  • Thermoelectric Cooling Devices: Thermodynamic
    THERMOELECTRIC COOLING DEVICES: THERMODYNAMIC MODELLING AND THEIR APPLICATION IN ADSORPTION COOLING CYCLES ANUTOSH CHAKRABORTY (B.Sc Eng. (BUET), M.Eng. (NUS)) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2005 Acknowledgements I am deeply grateful to my supervisor, Professor Ng Kim Choon, for giving me the guidance, insight, encouragement, and independence to pursue a challenging project. His contributions to this work were so integral that they cannot be described in words here. I would like to thank Associate Professor Bidyut Baran Saha of Kyushu University, Japan, for the encouragement and helpful technical advice. I am deeply grateful to Mr. Sai Maung Aye for his assistance in the electro-adsorption chiller experimentation program and Mr. R Sacadeven for kindly assisting in the procurement of equipment, and construction of the constant-volume-variable-pressure (CVVP) experimental test facility. I would like to extend my deepest gratitude to my parents for their complete moral support. Finally, I wish to thank my wife, Dr. Antara Chakraborty and my son Amitosh Chakraborty, for being a constant source of mental support. Last but not least, I wish to express my gratitude for the honor to be co-author with my supervisor in six international peer-reviewed journal papers, three international peer- reviewed conference papers and one patent (US Patent no 6434955). I also thank A* STAR for providing financial assistance to a patent application on the electro- adsorption chiller: a miniaturized cooling cycle design, fabrication and testing results. I extend my appreciation to the National University of Singapore for the research scholarship during the course of candidature, to the Micro-system technology initiative (MSTI) laboratory for giving me full support in the setting up of the test facility.
    [Show full text]
  • Seebeck and Peltier Effects V
    Seebeck and Peltier Effects Introduction Thermal energy is usually a byproduct of other forms of energy such as chemical energy, mechanical energy, and electrical energy. The process in which electrical energy is transformed into thermal energy is called Joule heating. This is what causes wires to heat up when current runs through them, and is the basis for electric stoves, toasters, etc. Electron diffusion e e T2 e e e e e e T2<T1 e e e e e e e e cold hot I - + V Figure 1: Electrons diffuse from the hot to cold side of the metal (Thompson EMF) or semiconductor leaving holes on the cold side. I. Seebeck Effect (1821) When two ends of a conductor are held at different temperatures electrons at the hot junction at higher thermal velocities diffuse to the cold junction. Seebeck discovered that making one end of a metal bar hotter or colder than the other produced an EMF between the two ends. He experimented with junctions (simple mechanical connections) made between different conducting materials. He found that if he created a temperature difference between two electrically connected junctions (e.g., heating one of the junctions and cooling the other) the wire connecting the two junctions would cause a compass needle to deflect. He thought that he had discovered a way to transform thermal energy into a magnetic field. Later it was shown that a the electron diffusion current produced the magnetic field in the circuit a changing emf V ( Lenz’s Law). The magnitude of the emf V produced between the two junctions depends on the material and on the temperature ΔT12 through the linear relationship defining the Seebeck coefficient S for the material.
    [Show full text]
  • A Novel and Cost Effective Radiant Heat Flux Gauge This Paper Presents a Patent-Pending Methodology of Measuring Radiation Emiss
    A Novel and Cost Effective Radiant Heat Flux Gauge S. Safaei and A. S. Rangwala Department of Fire Protection Engineering, Worcester Polytechnic Institution, Worcester, MA, 01609, USA V. Raghavan Department of Mechanical Engineering Indian Institute of Technology Madras, Chennai, India T.M. Muruganandam, Department of Aerospace Engineering, National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai, India This paper presents a patent-pending methodology of measuring radiation emissions from fires, for the purposes of more practical optical flame detection and analysis. Flame radiation comprises of three phenomena: chemiluminescence, photoluminescence, and thermal radiation. The first two types are caused by elementary breakdown reactions of the reactants and the molecular excitations of products such as H2O and CO2, respectively. These emissions are within narrow bands of electromagnetic radiation wavelengths, and due to their specific molecular physics, are largely fuel dependant. The third type, thermal radiation emissions come from high temperature soot, which is a blanket term for any carbonaceous intermittent species of the combustion reaction. The amount and temperature of soot is case-specific, as it is influenced by fuel type, geometries, fuel-oxidizer premixing and the resulting level of combustion efficiency. However since naturally occurring fire hazards are diffusion flames, soot is present in high quantities and the majority of the radiation can be attributed to soot alone [1 – 2]. These soot emissions are over large ranges of the electromagnetic spectrum, from ultraviolet all the way to Long wave Infrared (LWIR), following the classic Planck Law for Blackbody emitters. This distribution of radiant energy, E, is highly dependent on the temperature of the emitter, T, due to its exponential relation E=T4.
    [Show full text]
  • A Review of Energy Storage Technologies' Application
    sustainability Review A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration Henok Ayele Behabtu 1,2,* , Maarten Messagie 1, Thierry Coosemans 1, Maitane Berecibar 1, Kinde Anlay Fante 2 , Abraham Alem Kebede 1,2 and Joeri Van Mierlo 1 1 Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium; [email protected] (M.M.); [email protected] (T.C.); [email protected] (M.B.); [email protected] (A.A.K.); [email protected] (J.V.M.) 2 Faculty of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma University, Jimma P.O. Box 378, Ethiopia; [email protected] * Correspondence: [email protected]; Tel.: +32-485659951 or +251-926434658 Received: 12 November 2020; Accepted: 11 December 2020; Published: 15 December 2020 Abstract: Renewable energy sources (RESs) such as wind and solar are frequently hit by fluctuations due to, for example, insufficient wind or sunshine. Energy storage technologies (ESTs) mitigate the problem by storing excess energy generated and then making it accessible on demand. While there are various EST studies, the literature remains isolated and dated. The comparison of the characteristics of ESTs and their potential applications is also short. This paper fills this gap. Using selected criteria, it identifies key ESTs and provides an updated review of the literature on ESTs and their application potential to the renewable energy sector. The critical review shows a high potential application for Li-ion batteries and most fit to mitigate the fluctuation of RESs in utility grid integration sector.
    [Show full text]
  • Low Cost Solar Thermoelectric Water Floating Device to Supply Measurement Platform
    78 IAPGOŚ 4/2019 p-ISSN 2083-0157, e-ISSN 2391-6761 DOI: 10.35784/IAPGOS.734 LOW COST SOLAR THERMOELECTRIC WATER FLOATING DEVICE TO SUPPLY MEASUREMENT PLATFORM Andrzej Nowrot1, Monika Mikołajczyk2, Anna Manowska1, Joachim Pielot1, Antoni Wojaczek1 1Silesian University of Technology, Department of Electrical Engineering and Automation in Industry, Gliwice, Poland, 2Famur Institute Ltd, Katowice, Poland Abstract. This work presents the prototype of the solar – thermoelectric device, which can float on water surface. It produces electrical energy as a result of the Seebeck effect in a commercial, low-cost Peltier module. The main application of the device will be an autonomous and a floating measurement platform. An important advantage of the presented solution is the possibility to work alike at day, when a solar light heats the surface of the absorber, and at night, when the different of temperatures between air and water causes the heat flux and in an effect the electricity. The device is capable of working for many cloudy days and also in winter on very short days. The presented device is based on low-cost and widely available components. Keywords: thermoelectric devices, solar power generation, energy conversion TERMOELEKTRYCZNE URZĄDZENIE SOLARNE DO ZASILANIA PLATFORMY POMIAROWEJ Streszczenie. W pracy zaprezentowano prototypowe solarne urządzenie termoelektryczne pływające po powierzchni wody. Wytwarza ono w niedrogim, komercyjnym module Peltiera energię elektryczną w wyniku zachodzącego w nim zjawiska Seebecka. Docelowo głównym obszarem aplikacyjnym urządzenia będzie zasilanie autonomicznej, pływającej platformy pomiarowa do monitorowania parametrów środowiskowych. Istotną zaletą przedstawionego rozwiązania jest możliwość pracy zarówno w dzień, gdy światło słoneczne ogrzewa powierzchnię absorbera, jak również w nocy, gdy różnica temperatur między powietrzem a wodą powoduje powstawanie strumienia ciepła w module Peltiera.
    [Show full text]
  • 3.Joule's Experiments
    The Force of Gravity Creates Energy: The “Work” of James Prescott Joule http://www.bookrags.com/biography/james-prescott-joule-wsd/ James Prescott Joule (1818-1889) was the son of a successful British brewer. He tinkered with the tools of his father’s trade (particularly thermometers), and despite never earning an undergraduate degree, he was able to answer two rather simple questions: 1. Why is the temperature of the water at the bottom of a waterfall higher than the temperature at the top? 2. Why does an electrical current flowing through a conductor raise the temperature of water? In order to adequately investigate these questions on our own, we need to first define “temperature” and “energy.” Second, we should determine how the measurement of temperature can relate to “heat” (as energy). Third, we need to find relationships that might exist between temperature and “mechanical” energy and also between temperature and “electrical” energy. Definitions: Before continuing, please write down what you know about temperature and energy below. If you require more space, use the back. Temperature: Energy: We have used the concept of gravity to show how acceleration of freely falling objects is related mathematically to distance, time, and speed. We have also used the relationship between net force applied through a distance to define “work” in the Harvard Step Test. Now, through the work of Joule, we can equate the concepts of “work” and “energy”: Energy is the capacity of a physical system to do work. Potential energy is “stored” energy, kinetic energy is “moving” energy. One type of potential energy is that induced by the gravitational force between two objects held at a distance (there are other types of potential energy, including electrical, magnetic, chemical, nuclear, etc).
    [Show full text]
  • Work and Energy Summary Sheet Chapter 6
    Work and Energy Summary Sheet Chapter 6 Work: work is done when a force is applied to a mass through a displacement or W=Fd. The force and the displacement must be parallel to one another in order for work to be done. F (N) W =(Fcosθ)d F If the force is not parallel to The area of a force vs. the displacement, then the displacement graph + W component of the force that represents the work θ d (m) is parallel must be found. done by the varying - W d force. Signs and Units for Work Work is a scalar but it can be positive or negative. Units of Work F d W = + (Ex: pitcher throwing ball) 1 N•m = 1 J (Joule) F d W = - (Ex. catcher catching ball) Note: N = kg m/s2 • Work – Energy Principle Hooke’s Law x The work done on an object is equal to its change F = kx in kinetic energy. F F is the applied force. 2 2 x W = ΔEk = ½ mvf – ½ mvi x is the change in length. k is the spring constant. F Energy Defined Units Energy is the ability to do work. Same as work: 1 N•m = 1 J (Joule) Kinetic Energy Potential Energy Potential energy is stored energy due to a system’s shape, position, or Kinetic energy is the energy of state. motion. If a mass has velocity, Gravitational PE Elastic (Spring) PE then it has KE 2 Mass with height Stretch/compress elastic material Ek = ½ mv 2 EG = mgh EE = ½ kx To measure the change in KE Change in E use: G Change in ES 2 2 2 2 ΔEk = ½ mvf – ½ mvi ΔEG = mghf – mghi ΔEE = ½ kxf – ½ kxi Conservation of Energy “The total energy is neither increased nor decreased in any process.
    [Show full text]
  • Active Short Circuit - Chassis Short Characterization and Potential Mitigation Technique for the MMRTG
    Jet Propulsion Laboratory California Institute of Technology Multi-Mission RTG Active Short Circuit - Chassis Short Characterization and Potential Mitigation Technique for the MMRTG February 25, 2015 Gary Bolotin1 Nicholas Keyawa1 1Jet Propulsion Laboratory, California Institute of Technology 1 Jet Propulsion Laboratory California Institute of Technology Agenda Multi-Mission RTG • Introduction – MMRTG – Internal MMRTG Chassis Shorts • Active Short Circuit Purpose • Active Short Circuit Theory • Active Short Design and Component Layout • Conclusion and Future Work 2 Jet Propulsion Laboratory California Institute of Technology Introduction – MMRTG Multi-Mission RTG • The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) utilizes a combination of PbTe, PbSnTe, and TAGS thermoelectric couples to produce electric current from the heat generated by the radioactive decay of plutonium – 238. 3 Jet Propulsion Laboratory Introduction – Internal MMRTG Chassis California Institute of Technology Shorts Multi-Mission RTG • Shorts inside the MMRTG between the electrical power circuit and the MMRTG chassis have been detected via isolation checks and/or changes in the bus balance voltage. • Example location of short shown below MMRTG Chassis Internal MMRTG Short 4 Jet Propulsion Laboratory California Institute of Technology Active Short Circuit Purpose Multi-Mission RTG • The leading hypothesis suggests that the FOD which is causing the internal shorts are extremely small pieces of material that could potentially melt and/or sublimate away given a sufficient amount of current. • By inducing a controlled second short (in the presence of an internal MMRTG chassis short), a significant amount of current flow can be generated to achieve three main design goals: 1) Measure and characterize the MMRTG internal short to chassis, 2) Safely determine if the MMRTG internal short can be cleared in the presence of another controlled short 3) Quantify the amount of energy required to clear the MMRTG internal short.
    [Show full text]
  • Energy Harvesting for Low-Power Sensor Systems
    White Paper – RX100 Microcontroller Family Energy Harvesting for Low-Power Sensor Systems By: David Squires, Squires Consulting; Forrest Huff, Renesas Electronics America Inc. Feb. 2015 Abstract This white paper details important design issues associated with designing the very-low-power remote sensors that play important roles in the feedback control loops of embedded electronic systems. Using a basic configuration for a standalone sensor system as a reference, the discussion covers sensor/transducer types, power budgets, power sources (especially devices that harvest ambient energy) and energy-storage solutions. It also summarizes microcontroller requirements and highlights the latest power-management chips and wireless ICs. Special emphasis is placed on the concept and reality of energy harvesting as a viable method for powering standalone embedded systems for extended periods of time. An example security alarm design is described and explained to provide engineering context and perspective. Index I. Introduction – III. Additional Insights on Very-Low-Power Sensor Products 2 Sensor Components 7 II. Basic System Design Issues 2 • Sensors 7 • Sensors 3 • Energy Storage Devices 7 • Power Budgets 3 • Energy Harvesting Solutions 12 • Energy Storage Devices 3 • MCUs 15 • Energy Harvesting Solutions 4 • Power Management Devices 18 • Microcontrollers (MCUs) 6 • Wireless Connectivity Modules 20 • Power Management Devices 6 IV. Example Design: Glass Break Sensor 22 • Wireless Connectivity Modules 6 V. Summary 28 VI. Appendix 28 White Paper – Energy Harvesting for Low-Power Sensor Systems Page 1 of 29 I. Introduction – Very-Low-Power Sensor Products Modern low-power sensors enable precise local, remote or autonomous control of a vast range of products. Their use is rapidly proliferating in vehicles, appliances, HVAC systems, hospital intensive care suites, oil refineries, and military and security systems.
    [Show full text]
  • Thermal Energy Conversion Utilizing Magnetization Dynamics and Two-Carrier Effects Dissertation Presented in Partial Fulfillment
    Thermal Energy Conversion Utilizing Magnetization Dynamics and Two-Carrier Effects Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sarah June Watzman Graduate Program in Mechanical Engineering The Ohio State University 2018 Dissertation Committee Joseph P. Heremans, Advisor Nandini Trivedi Fengyuan Yang Igor Adamovich Copyrighted by Sarah June Watzman 2018 Abstract This dissertation seeks to contribute to the field of thermoelectrics, here utilizing magnetization dynamics in two-carrier systems, employing unconventional thermoelectric materials. Thermoelectric devices offer fully solid-state conversion of waste heat into usable electric energy or fully solid-state cooling. The goal of this dissertation is to elucidate key transport phenomena in ferromagnetic transition metals and Weyl semimetals in order to positively contribute to the overarching effort of using thermoelectric materials as a clean energy source. The first subject of this dissertation is magnon drag in Fe, Co, and Ni. Magnon drag is shown to dominate the thermopower of elemental Fe from 2 to 80 K and of elemental Co from 150 to 600 K; it is also shown to contribute to the thermopower of elemental Ni from 50 to 500 K. Two theoretical models are presented for magnon-drag thermopower. One is a hydrodynamic theory based purely on non-relativistic electron-magnon scattering, and the other is based on microscopic spin-motive forces. In spite of their very different origins, the two give similar predictions for pure metals at low temperature, providing a semi-quantitative explanation for the observed thermopower of elemental Fe and Co without adjustable parameters.
    [Show full text]
  • Thermoelectric Properties of Sb-S System Compounds from DFT Calculations
    materials Article Thermoelectric Properties of Sb-S System Compounds from DFT Calculations Hailong Yang 1,2, Pascal Boulet 1,* and Marie-Christine Record 2 1 Campus St Jérôme, Aix-Marseille University, CNRS, Madirel, 13013 Marseille, France; [email protected] 2 Campus St Jérôme, Aix-Marseille University, University of Toulon, CNRS, IM2NP, 13013 Marseille, France; [email protected] * Correspondence: [email protected]; Tel.: +33-4135-518-10 Received: 12 August 2020; Accepted: 19 October 2020; Published: 22 October 2020 Abstract: By combining density functional theory, quantum theory of atoms in molecules and transport properties calculations, we evaluated the thermoelectric properties of Sb-S system compounds and shed light on their relationships with electronic structures. The results show that, for Sb2S3, the large density of states (DOS) variation induces a large Seebeck coefficient. Taking into account the long-range weak bonds distribution, Sb2S3 should exhibit low lattice thermal conductivity. Therefore, Sb2S3 is promising for thermoelectric applications. The insertion of Be atoms into the Sb2S3 interstitial sites demonstrates the electrical properties and Seebeck coefficient anisotropy and sheds light on the understanding of the role of quasi-one-dimensional structure in the electron transport. The large interstitial sites existing in SbS2 are at the origin of phonons anharmonicity which counteracts the thermal transport. The introduction of Zn and Ga atoms into these interstitial sites could result in an enhancement of all the thermoelectric properties. Keywords: chalcogenides; thermoelectric; DFT;QTAIM; transport properties; structure-properties relationships 1. Introduction In a preceding paper [1], we performed a chemical bonding analysis on the ternary Cu-Sb-Se system compounds and showed that the weak interactions, either in local or whole structure, played an important role in lattice thermal conductivity.
    [Show full text]